
CERIAS Tech Report 2012-12
Privacy Preserving Access Control on Third-Party Data Management Systems

 by Mohamed Nabeel
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

Mohamed Yoosuf Mohamed Nabeel By

Entitled
Privacy Preserving Access Control on Third-Party Data Management Systems

Doctor of Philosophy For the degree of

Is approved by the final examining committee:

Elisa Bertino, Ph.D.
 Chair

Ninghui Li, Ph.D.

Samuel S. Wagstaff, Ph.D.

Dongyan Xu, Ph.D.

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Elisa Bertino, Ph.D. Approved by Major Professor(s): ____________________________________

Approved by: William J. Gorman, Ph.D. 07/18/2012
Head of the Graduate Program Date

Choose your degree

Graduate School Form 20
(Revised 9/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:
Privacy Preserving Access Control on Third-Party Data Management Systems

For the degree of Doctor of Philosophy

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States’ copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.

Mohamed Yoosuf Mohamed Nabeel

Printed Name and Signature of Candidate

07/12/2012

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

PRIVACY PRESERVING ACCESS CONTROL FOR THIRD-PARTY DATA

MANAGEMENT SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Mohamed Yoosuf Mohamed Nabeel

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2012

Purdue University

West Lafayette, Indiana

ii

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my adviser,

Prof. Elisa Bertino, for her unwavering support, patience and guidance through out

my PhD program. Without her constant support, advice and encouragement, this

dissertation could not have been completed.

I would like to thank Prof. Ninghui Li, Prof. Samuel S. Wagstaff, Jr., Prof. Sunil

Prabhakar and Prof. Dongyan Xu for taking time off their busy schedule to be in my

committee and providing their invaluable input.

I am also grateful to my mentors and supervisors who I worked with during my

summer internships and graduate assistantships: Ann Christine Catlin from Rosen

Center for Advanced Computing, Dr. David G. Stork from Ricoh Innovations, and

Dr. Mourad Ozzani from Cyber Center.

I am fortunate to be surrounded by an amazing group of fellow graduate students

and friends at Purdue. Special thanks to my colleague Ning Shang whom I closely

collaborated with during my initial research work. I would like to thank Purdue

University for supporting my research through Purdue Research Foundation (PRF)

scholarship and the Fulbright fellowship.

Finally and most importantly, words cannot express my gratitude to my parents,

Yoosuf and Zeenathunnisa, my wife Muffarriha, my siblings Zahmy, Nasly, Shireen

and Jasly for their unconditional love and always supporting me. I am very grateful

to the Almighty God for giving me the strength to achieve my dreams.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

SYMBOLS . x

ABBREVIATIONS . xi

ABSTRACT . xiii

1 INTRODUCTION . 1

1.1 Privacy Preserving Access Control in Pull Based Systems 2

1.2 Privacy Preserving Access Control in Subscription-based Systems . 4

1.3 Attribute Based Group Key Management 6

1.4 Contributions and Document Structure 7

2 BROADCAST GROUP KEY MANAGEMENT 9

2.1 Requirements for a Secure and Effective GKM 10

2.2 Broadcast GKM . 11

2.3 Our Construction: ACV-BGKM . 15

2.4 Security Analysis . 16

2.5 Improving the Performance of ACV-BGKM 21

2.5.1 Bucketization . 21

2.5.2 Subset Cover . 22

2.6 ACV-BGKM-2 . 23

2.6.1 Security Analysis . 25

2.7 Experimental Results . 27

3 ATTRIBUTE BASED GROUP KEY MANAGEMENT 31

3.1 Scheme 1: Inline AB-GKM . 32

3.1.1 Our Construction . 33

3.1.2 Security . 36

3.1.3 Performance . 39

3.2 Scheme 2: Threshold AB-GKM . 39

3.2.1 Our Construction . 41

3.2.2 Security . 43

3.2.3 Performance . 44

3.3 Scheme 3: Access Tree AB-GKM 45

3.3.1 Access Tree . 45

v

Page

3.3.2	 Our Construction . 46

3.3.3	 Security . 49

3.3.4	 Performance . 50

3.4 Example Application . 51

3.5 Experimental Results . 55

4	 PRIVACY PRESERVING PULL BASED SYSTEMS: SINGLE LAYER AP­
PROACH . 59

4.1 Overview of the SLE Approach . 60

4.2 Preserving the Privacy of Identity Attributes 62

4.2.1	 Discrete Logarithm Problem and Computational Diffie-Hellman

Problem . 63

4.2.2	 Pedersen Commitment . 63

4.2.3	 OCBE Protocols . 64

4.2.4	 Configurable Privacy . 67

4.3 Single Layer Encryption Approach 68

4.3.1	 Identity Token Issuance . 69

4.3.2	 Identity Token Registration 70

4.3.3	 Data Management . 74

4.4 Improving Efficiency of Re-Encryption 76

4.5 An Example Application . 80

4.6 Experimental Results . 85

4.6.1	 Privacy Preserving Secret Delivery 85

4.6.2	 Data and Key Management 87

4.6.3	 Encryption Management . 91

5	 PRIVACY PRESERVING PULL BASED SYSTEMS: TWO LAYER EN­
CRYPTION APPROACH . 93

5.1 Overview . 95

5.2 Policy Decomposition . 97

5.2.1	 Policy Cover . 98

5.2.2	 Policy Decomposition . 105

5.3 Two Layer Encryption Approach 107

5.3.1	 Identity Token Issuance . 107

5.3.2	 Policy Decomposition . 108

5.3.3	 Identity Token Registration 108

5.3.4	 Data Encryption and Upload 108

5.3.5	 Data Downloading and Decryption 109

5.3.6	 Encryption Evolution Management 109

5.4 Analysis . 110

5.4.1	 SLE vs. TLE . 110

5.4.2	 Security and Privacy . 111

5.5 Experimental Results . 112

vi

Page

6 PRIVACY PRESERVING SUBSCRIPTION BASED SYSTEMS 118

6.1 Overview . 121

6.1.1 Interactions . 124

6.1.2 Trust Model . 126

6.2 Background . 127

6.2.1 Pedersen Commitment . 127

6.2.2 Zero-Knowledge Proof of Knowledge (Schnorr’s Scheme) . . 128

6.2.3 Euler’s Totient Function φ(·) and Euler’s Theorem 128

6.2.4 Composite Square Root Problem 128

6.2.5 Paillier Homomorphic Cryptosystem 129

6.3 Proposed Scheme . 130

6.3.1 Initialize . 131

6.3.2 Register . 132

6.3.3 Subscribe . 133

6.3.4 Publish . 134

6.3.5 Match . 135

6.3.6 Cover . 137

6.3.7 The Distribution of Load . 138

6.4 Experimental Results . 138

6.4.1 Protocol Experiments . 139

6.4.2 System Experiments . 143

7 Survey of Related Work . 147

7.1 Group Key Management (GKM) 147

7.2 Functional Encryption . 148

7.3 Selective Publishing of Documents 149

7.4 Secure Data Outsourcing . 150

7.5 Secret Sharing Schemes . 151

7.6 Proxy Re-Encryption Systems . 151

7.7 Searchable Encryption . 152

7.8 Secure Multiparty Computation (SMC) 152

7.9 Private Information Retrieval (PIR) 153

8 SUMMARY . 154

LIST OF REFERENCES . 157

VITA . 163

vii

LIST OF TABLES

Table Page

3.1 Access tree functions . 46

3.2 Insurance plans supported by doctors/nurses 52

3.3 User attribute matrix . 52

3.4 List of employees satisfying each insurance plan 53

3.5 List of employees satisfying attributes . 53

3.6 Average time for CP-ABE algorithms . 56

4.1 A table of secrets maintained by the Pub 73

4.2 Average computation time for running one round of the EQ-OCBE protocol 86

6.1 Matching decision . 136

6.2 Average computation time for general operations 139

viii

LIST OF FIGURES

Figure	 Page

1.1 A typical pull based system . 3

1.2 A typical publish-subscribe system . 5

2.1 Average time to generate keys . 28

2.2 Average time to derive keys . 29

2.3 Average time to generate keys with different bucket sizes 29

2.4 Average time to derive keys with different bucket sizes 30

2.5 Average time to generate keys with the two optimizations 30

2.6 Average time to derive keys with the two optimizations 30

3.1 Average key generation time for different group sizes 56

3.2 Average encryption/decryption time for different group sizes 57

3.3 Average key generation time for varying attribute counts 58

4.1 Overall system architecture . 61

4.2 Average computation time for running one round of GE-OCBE protocol 87

4.3 Time to generate an ACV for different user configurations 88

4.4	 Key derivation time for different user configurations 89

4.5	 Size of ACV for different user configurations 89

4.6	 ACV generation and key derivation for different number of conditions per

policy . 90

4.7	 Different incremental encryption modes 91

4.8	 Average time to perform insert operation 91

5.1	 Two layer encryption approach . 96

5.2	 The example graph . 104

5.3	 Size of ACCs for 100 attributes . 113

5.4	 Size of ACCs for 500 attributes . 113

ix

Figure Page

5.5 Size of ACCs for 1000 attributes . 114

5.6 Size of ACCs for 1500 attributes . 114

5.7 Policy decomposition time breakdown with the random cover algorithm 115

5.8 Policy decomposition time breakdown with the greedy cover algorithm 116

5.9 Average time to generate keys for the two approaches 116

5.10 Average time to derive keys for the two approaches 117

6.1 An example CBPS system . 119

6.2 Sub registering with Pub . 132

6.3 Sub authenticating itself to Broker . 133

6.4 Time to blind subscriptions/notifications for different bit lengths of n . 141

6.5 Time to blind subscriptions/notifications for different l 142

6.6 Time to perform match/cover for different bit lengths of n 142

6.7 Time to perform match/cover for different l 143

6.8 Equality filtering time . 144

6.9 Equality filtering time for different domain sizes 145

6.10 Inequality filtering time for different domain sizes 146

x

SYMBOLS

KS Keyspace

ACP Policy

A Attribute universe

SS Secret space

S The set of issued secrets

AS The set of aggregated secrets

T Access tree

xi

ABBREVIATIONS

ABAC Attribute Based Access Control

ABE Attribute Based Encryption

AB-GKM Attribute Based Group Key Management

ACC Attribute Condition Cover

ACP Access Control Policy

ACV Access Control Vector

AVP Attribute Value Pair

BGKM Broadcast Group Key Management

CBPS Content Based Publish Subscribe

CP-ABE Ciphertext Policy Attribute Based Encryption

DaaS Data as a Service

EHR Electronic Health Record

GKM Group Key Management

KEV Key Extraction Vector

KP-ABE Key Policy Attribute Based Encryption

OCBE Oblivious Commitment Based Envelope

PaaS Platform as a Service

PI Public Information tuple

PIR Private Information Retrieval

RBAC Role Based Access Control

SaaS Software as a Service

SLE Single Layer Encryption

SMC Secure Multiparty Computation

TLE Two Layer Encryption

xii

TTP

UA

ZKPK

Trusted Third Party

User-Attribute matrix

Zero Knowledge Proof of Knowledge

xiii

ABSTRACT

Mohamed Nabeel, Mohamed Yoosuf Ph.D., Purdue University, August 2012. Pri­
vacy Preserving Access Control for Third-Party Data Management Systems. Major
Professor: Elisa Bertino.

The tremendous growth in electronic media has made publication of information

in either open or closed environments easy and effective. However, most application

domains (e.g. electronic health records (EHRs)) require that the fine-grained selec­

tive access to information be enforced in order to comply with legal requirements,

organizational policies, subscription conditions, and so forth. The problem becomes

challenging with the increasing adoption of cloud computing technologies where sensi­

tive data reside outside of organizational boundaries. An important issue in utilizing

third party data management systems is how to selectively share data based on fine-

grained attribute based access control policies and/or expressive subscription queries

while assuring the confidentiality of the data and the privacy of users from the third

party.

In this thesis, we address the above issue under two of the most popular dissem­

ination models: pull based service model and subscription based publish-subscribe

model. Encryption is a commonly adopted approach to assure confidentiality of data

in such systems. However, the challenge is to support fine grained policies and/or

expressive content filtering using encryption while preserving the privacy of users.

We propose several novel techniques, including an efficient and expressive group key

management scheme, to overcome this challenge and construct privacy preserving

dissemination systems.

1

1 INTRODUCTION

In the cloud computing era, disseminating and sharing data through a third-party

service provider has never been more economical and easier than now. However,

such service providers cannot be trusted to assure the confidentiality of the data.

In fact, data privacy and security issues have been major concerns for many orga­

nizations utilizing such services. Data (e.g. electronic health records (EHRs)) often

encode sensitive information and should be protected in order to comply with various

organizational policies, legal regulations, subscription conditions, and so forth. En­

cryption is a commonly adopted approach to protect the confidentiality of the data.

Encryption alone however is not sufficient as organizations often have to enforce fine-

grained access control on the data. Such control is often based on the attributes of

users, referred to as identity attributes, such as the roles of users in the organization,

projects on which users are working and so forth, as well as the attributes of data,

referred to as content attributes. These systems, in general, are called attribute based

systems. Therefore, an important requirement is to support fine-grained access con­

trol, based on policies and subscription conditions specified using identity and content

attributes, over encrypted data.

With the involvement of the third-party services, a crucial issue is that the iden­

tity attributes in the access control policies (ACPs) often reveal privacy-sensitive

information about users and leak confidential information about the data. The con­

fidentiality of the data and the privacy of the users are thus not fully protected if

the identity attributes are not protected. Further, privacy, both individual as well

as organizational, is considered a key requirement in all solutions, including cloud

services, for digital identity management [1–4]. Further, as insider threats [5] are

one of the major sources of data theft and privacy breaches, identity attributes must

be strongly protected even from accesses within organizations. With initiatives such

2

as cloud computing the scope of insider threats is no longer limited to the organi­

zational perimeter. Therefore, protecting the identity attributes of the users while

enforcing attribute-based access control both within the organization as well as in the

third-party service is crucial.

In this thesis, we investigate the problem of providing privacy preserving access

control on third-party systems under two of the most popular dissemination models:

pull based service model and subscription based publish-subscribe model. In a pull

based system, the data owner (Owner) uploads its data to a third-party server which

acts as a data repository. Users having valid credentials are allowed to download

data from the server. In a subscription based system, authorized users submit sub­

scription queries, which specify their interests, to the third-party server, which acts

as a brokering network. The Owner publishes data to the third-party server which

in turn forwards the data to many matching users based on their subscriptions. For

both models, we propose approaches to assure confidentiality of the data and privacy

of users from the third party server. The challenge is to support fine grained poli­

cies and/or expressive data filtering using encryption while preserving the privacy

of users. Group key management (GKM) is a fundamental building block used to

address this challenge. We identify that the existing GKM schemes are not well de­

signed to manage keys based on the attributes of users and to protect the privacy. As

part of this thesis, we first address this issue by constructing a novel scheme called

attribute based GKM (AB-GKM).

1.1 Privacy Preserving Access Control in Pull Based Systems

Figure 1.1 shows the architecture of a typical pull based system. Users initially

registers with the Owner and obtains the keys for the data they are authorized to

access. The Owner selectively encrypts the data and uploads to the third party server

such as Amazon S3 or Rackspace Cloud Files. Users download encrypted data from

3

the third party and decrypt using the keys obtained from the Owner at the time of

registration.

Owner�
Third Party�

Server�

User�

(1) Register�

(2) Keys�

(3) Selectively encrypt�
& upload�

(5) Download to re-encrypt�

(4) Download &�
decrypt�

Figure 1.1.: A typical pull based system

We identify the following requirements to assure privacy of users and confidential­

ity of data from the third-party while at the same time assuring that the third-party

enforces the ACPs specified by the data owner.

•	 The identity attributes of users must not be revealed to the third-party.

•	 The ACPs of the Owner must not be revealed to the third-party.

•	 The third-party must not learn the sensitive information in the data.

•	 Users must be granted access to portions of data only if their identity attributes

satisfy the corresponding ACPs.

As shown in Figure 1.1, the most common approach to support fine-grained selec­

tive attribute-based access control before uploading the data to the third-party server

is to encrypt each data item to which the same ACP (or set of ACPs) applies with the

same key. One approach to deliver the correct keys to the users based on the policies

they satisfy is to use a hybrid solution where the keys are encrypted using a public key

cryptosystem such as attribute based encryption (ABE) and/or proxy re-encryption

4

(PRE). However, such an approach has several weaknesses: it cannot efficiently han­

dle adding/revoking users or identity attributes, and policy changes; it requires to

keep multiple encrypted copies of the same key; it incurs high computational cost.

Therefore, a different approach is required.

It is worth noting that a simplistic group key management (GKM) scheme in

which the Owner directly delivers the symmetric keys to corresponding users has

some major drawbacks with respect to user privacy and key management. On one

hand, user private information encoded in the user identity attributes is not protected

in the simplistic approach. On the other hand, such a simplistic key management

scheme does not scale well as the number of users becomes large and when multiple

keys need to be distributed to multiple users. A key contribution of this thesis is

to develop a key management scheme which does not have the above shortcomings.

We observe that, without utilizing public key cryptography and by allowing users to

dynamically derive the symmetric keys at the time of decryption, one can address the

above weaknesses. Based on this idea, we first formalize a new GKM scheme called

broadcast GKM (BGKM) and then give a secure construction of BGKM scheme and

formally prove its security.

1.2 Privacy Preserving Access Control in Subscription-based Systems

Figure 1.2 shows the architecture of a content based publish subscribe (CBPS)

system. The Owner plays the role of content publishers (Pubs) and users play the

role of subscribers (Subs). The third-party brokering network manages subscriptions

from users and distribute the data published by the Owner, called notifications, to

users based on their subscriptions.

We identify the following requirements to assure privacy of users and confidential­

ity of data published by the Owner form the third-party brokering network while at

the same time assuring that only authorized users can access the data.

5

Notification�

Subscription�

Pub�1�

Pub2�

Bro�1�

Bro2�

Bro3�

Bro4�

Bro5� Sub1�

Sub2�

Sub3�

Third party broker network�

Data owners� Users�

Figure 1.2.: A typical publish-subscribe system

•	 Publication confidentiality: The content of notifications must be hidden from

the third party brokers.

•	 Subscription privacy: The content of the subscriptions must be hidden from the

third party brokers.

•	 The third party brokers must make forwarding decisions on hidden notifications

and subscriptions without learning the actual differences of notification and

subscription values. In other words, a randomized comparison scheme must be

provided.

Privacy and confidentiality issues in CBPS systems have long been identified [6],

but little progress has been made to address these issues in a holistic manner. Most of

prior work on data confidentiality techniques in the context of CBPS systems is based

on the assumption that content brokers are trusted with respect to the privacy of the

subscriptions by users [7–9]. With the absence of such an assumption the problem

becomes challenging as brokers need to make decisions without knowing the actual

notifications and subscriptions. In this thesis, we address this challenge by proposing a

novel scheme which is inspired from the Paillier homomorphic cryptosystem [10], and

6

uses AB-GKM scheme and zero-knowledge proof of knowledge (ZKPK) protocols [11].

It should be noted that existing approaches that try to achieve similar goals as ours

have limitations which undermine flexibility and/or accuracy [12–14].

1.3 Attribute Based Group Key Management

Group key management (GKM) plays a key role in building privacy preserving

data dissemination systems under both pull based models as well as publish-subscribe

models. Attribute based systems enable fine-grained access control among a group

of users each identified by a set of attributes. Privacy preserving data dissemination

systems need such flexible attribute based systems for managing and distributing

group keys. However, current GKM schemes are not well designed to manage group

keys based on the identity attributes of users.

In this thesis, we construct a new key management scheme called broadcast GKM

(BGKM) that allows users whose attributes satisfy a certain policy to derive group

keys. The idea is to give secrets to users based on the identity attributes they have

and later allow them to derive actual symmetric keys based on their secrets and

some public information. A key advantage of the BGKM scheme is that adding

users/revoking users or updating ACPs can be performed efficiently and only requires

updating the public information. Our BGKM scheme satisfies the requirements of

minimal trust, key indistinguishability, key independence, forward secrecy, backward

secrecy and collusion resistance as described in [15] with minimal computational,

space and communication cost.

Using the BGKM scheme as a building block, we construct a more expressive

GKM scheme called attribute based GKM (AB-GKM) which allows one to express

any threshold or monotonic 1 conditions over a set of identity attributes as the group

membership condition. It should be noted that the AB-GKM scheme recalls the

notion of attribute-based encryption (ABE) [16–18]; however, as we discuss later in

1Monotone formulas are Boolean formulas that contain only conjunction and disjunction connectives,
but no negation.

7

Chapter 3, ABE has several shortcomings when applied to GKM. In the pull based

model, we use the AB-GKM scheme to manage the keys used to selectively encrypt

data based on fine-grained policies. In the publish-subscribe model, we use AB-GKM

to manage the keys to encrypt payload messages.

1.4 Contributions and Document Structure

This thesis studies how we can build privacy preserving access control on third

party data management systems. Specifically, we propose privacy preserving access

control for two of the most popular dissemination models: pull based service model

and subscription based publish-subscribe model.

Chapter 2 proposes a new GKM scheme called broadcast GKM (BGKM) and

provides detailed security proofs to show that the scheme is secure. Using the BGKM

construct as a building block, in Chapter 3, we propose a more expressive scheme

called attribute based GKM (AB-GKM) which can handle any monotonic policies over

attribute conditions. We provide experimental results to show that our constructs

are efficient and practical.

Chapter 4 proposes a novel approach to privacy preserving pull based system

called Single Layer Encryption (SLE). To the best of our knowledge, it is the first

approach to assure the confidentiality of the data from the third party server and

preserve the privacy of users while enforcing attribute based ACPs on data. In the

SLE approach, the Owner itself enforces all ACPs by selectively encrypting the data

before uploading to the third party. While the SLE approach provides many benefits

over existing solutions, the Owner has to incur high communication and computation

cost to manage keys and encryptions whenever user credentials or organizational

authorization policies change. A better approach should delegate the enforcement

of fine-grained access control to the third party, so to minimize the overhead at the

Owner, whereas at the same time assuring data confidentiality from the third-party

server. In Chapter 5, we propose an extension to SLE approach called the Two Layer

8

Encryption (TLE) in order to address such requirement. Under the TLE approach,

the Owner performs a coarse grained encryption and the third party performs a fine

grained encryption. Since as much access control enforcement as possible is delegated

to the third party, the TLE approach reduces the workload at the Owner. In both

approaches, AB-GKM scheme is used to manage group keys and support attribute

based ACPs through selective encryption. We provide experimental results for both

approaches and compare their performance.

Chapter 6 proposes a novel privacy preserving subscription based system. Com­

pared to pull based systems, additional mechanisms are required to preserve the

privacy in subscription based systems as the third party needs to make decisions

based on data in addition to the credentials of users. Our approach preserves the

privacy of the subscriptions made by users and confidentiality of the data published

by the Owner using a tweaked version of the Paillier homomorphic cryptosystem [10]

when third-party content brokers are utilized to make routing decisions based on the

content. The AB-BGKM scheme is used to manage the keys used to encrypt the

payload of the data published. Our protocols are expressive to support any type of

subscriptions and designed to work efficiently. We distribute the work such that the

load on the third party content brokers, where the bottleneck is in a CBPS system,

is minimized. We extend SIENA [19], a popular CBPS system using our protocols to

implement a privacy preserving CBPS system.

Chapter 7 surveys the work related privacy preserving data dissemination systems

as well as the cryptographic techniques we propose as part of this thesis.

Chapter 8 provides a summary of this thesis and discuss extensions and future

work.

9

2 BROADCAST GROUP KEY MANAGEMENT

Group key management (GKM) plays a key role in building privacy preserving data

dissemination systems under both pull based models as well as publish-subscribe

models. Attribute based systems enable fine-grained access control among a group

of users each identified by a set of attributes. Privacy preserving data dissemination

systems need such flexible attribute based systems for managing and distributing

group keys. However, current group key management schemes are not well designed

to manage group keys based on the identity attributes of users.

A challenging well known problem in GKM is how to efficiently handle group

dynamics, i.e., a new user joining or an existing group member leaving. When the

group changes, a new group key must be shared with the existing members, so that

a new group member cannot access the data transmitted before she joined (forward

secrecy) and a user who left the group cannot access the data transmitted after she

left (backward secrecy). The process of issuing a new key is called rekeying or update.

Another challenging problem is to defend against collusion attacks by which a set of

colluding fraudulent users are able to obtain group keys which they are not allowed

to obtain individually.

In a traditional GKM scheme, when the group changes, the private information

given to all or some existing group members must be changed which requires es­

tablishing private communication channels. Establishing such channels is a major

shortcoming especially for highly dynamic groups. We observe that, without utilizing

public key cryptography and by allowing users to dynamically derive the symmet­

ric keys at the time of decryption, one can address this weaknesses. Based on this

idea, in this chapter, we first propose a new GKM scheme called broadcast GKM

(BGKM) scheme [20,21] that addresses this weakness. The scheme allows one to per­

10

form rekeying operations by only updating some public information without affecting

private information existing group members possess.

In this section, we first list the requirements for an effective GKM, then give an

overview of BGKM schemes and finally present our construction along with security

proofs.

2.1 Requirements for a Secure and Effective GKM

Several requirements are identified and discussed by Challel and Seba [15] and

others for effective GKM. Generally speaking, an efficient and practical GKM should

address the following requirements.

•	 Minimal trust requires the GKM scheme to place trust on a small number of

entities.

•	 Key hiding requires that with given public information, it is hard for anyone

outside the group to gain the shared group key. Ideally, every element in the

keyspace should have the same probability of being the real key.

•	 Key independence requires that the leak of one key does not compromise

other keys.

•	 Backward secrecy means that a member who has left the group cannot access

any future group keys.

•	 Forward secrecy means that a newly joining group member cannot access any

old keys.

•	 Collusion resistance requires that a set of colluding fraudulent users should

not obtain keys which they are not allowed to obtain individually.

•	 Low bandwidth overhead requires that the rekeying should not incur a high

volume of messages.

11

•	 Computational costs should be acceptable at both the server and the group

member.

•	 Storage requirements for keys and other relevant information should be min­

imal.

•	 Ease of maintenance requires that a single change of membership in the group

does not need many changes to take place for the other group members.

•	 Other requirements include service availability, minimal packet delays, and

so on. These factors are sometimes more affected by real-world settings and

implementation, and less related to the high-level design of the GKM.

2.2 Broadcast GKM

In order to provide forward and backward secrecy, rekey operations should be

performed whenever the users in the group change. Typical GKM schemes require

O(n) [22, 23] or at least O(log n) [24, 25] private communication channels to per­

form the rekey operation. In comparison, BGKM schemes make rekey a one-off pro­

cess [26–28]. In such schemes, rekeying is performed with a single broadcast without

using private communication channels. It should be noted that even though BGKM

schemes have some similarity with secret sharing (SS) schemes, they are constructed

for different purposes. “k out of n” SS schemes [29, 30] are constructed to split a

secret among n users and allow to recover the secret by combining at least k secret

shares. On the contrary, BGKM schemes allow each valid user to recover the secret by

using only their secret share. Also, colluding users, who individually cannot recover

the secret, are not able to recover the secret collectively. Unlike conventional GKM

schemes, BGKM schemes do not give users the private keys. Instead users are given

a secret which is combined with public information to obtain the actual private keys.

Such schemes have the advantage that it requires a private communication only once

for the initial secret sharing and the subsequent rekeying operations are performed

12

using one broadcast message. Further, such schemes can provide forward and back­

ward security by only changing the public information and without affecting secret

shares given to existing users. Based on our preliminary work [20], we propose a prov­

ably secure BGKM scheme, called ACV-BGKM (Access Control Vector BGKM), and

formalize the notion of BGKM. Further we prove the security of ACV-BGKM.

Definition 2.2.1 (BGKM) In general, a BGKM scheme consists of the following

five algorithms:

•	 Setup(ℓ): It initializes the BGKM scheme using a security parameter ℓ. It also

initializes the set of used secrets S, the secret space SS and the key space KS.

All the parameters are collectively denoted as Param.

•	 SecGen(): It selects a random bit string s /∈ S uniformly at random from the

secret space SS, adds s to S and outputs s.

•	 KeyGen(S): It chooses a group key K uniformly at random from the key space

KS and outputs the public information PI computed from the secrets in S and

the group key K.

•	 KeyDer(s, PI): It takes the user’s secret s and the public information PI to

output the group key. The derived group key is equal to K if and only if s ∈ S.

•	 Update(S) Whenever the set S changes, a new group key K ′ is generated.

Depending on the construction, it either executes the KeyGen algorithm again

or incrementally updates the output of the last KeyGen algorithm.

Now we provide some basic notions and formally define security.

Negligible functions

We call a function f : N → R negligible if for every positive polynomial p(·) there

exists an N such that for all n > N , we have f(n) < 1/p(n) [31].

Random oracle model

The random oracle model is a paradigm introduced by Bellare and Rogaway [32] for

13

design and analysis of certain cryptographic protocols. Intuitively, a random oracle

is a mathematical function that can be queried by anyone, and maps every query to

a uniformly randomly chosen response from its output domain. In practice, random

oracles can be used to model cryptographic hash functions in many cryptographic

schemes.

A BGKM scheme should allow a valid group member to derive the shared group

key, and prohibit anyone outside the group from doing so. Formally speaking, a

BGKM scheme should satisfy the following security properties. It must be correct,

sound, key hiding, and forward/backward key protecting. Let Svr be the group con­

troller.

Definition 2.2.2 (Correctness) Let Usr 1 be a current group member with a secret.

Let K and PubInfo be Svr’s output of the KeyGen algorithm. Let K ′ be Usr’s output

of the KeyDer algorithm. A BGKM scheme is correct if Usr can derive the correct

group key K with overwhelming probability, i.e.,

Pr[K = K ′] ≥ 1− f(k),

where f is a negligible function in k.

Definition 2.2.3 (Soundness) Let Usr be an individual without a valid secret. A

BGKM scheme is sound if the probability that Usr can obtain the correct group key

K by substituting the secret with a value val that is not one of the valid secrets and

then following the key derivation phase KeyDer is negligible.

We define the following security game to define the key hiding requirement.

Definition 2.2.4 (KeyHideA,Π) 1. The Svr, as the challenger, runs the KeyGen

algorithm of the BGKM scheme Π and gives the parameters Param to the ad­

versary A.

1In what follows we use the term Usr; however in practice the steps are carried out by the client
software transparently to the actual end user.

14

2. A selects two random keys K0, K1 ∈ KS and give to the Svr.

3. The Svr flips a random coin b ∈ {0, 1} and selects Kb as the group key and runs

the KeyGen algorithm.

4. The Svr gives the public information PubInfo of the output of the KeyGen algo­

rithm to A.

5. A outputs a guess b ′ of b.

6. The output of the game is defined to be 1 if b ′ = b, and 0 otherwise. We write

KeyHideA,Π = 1 if the output is 1 and in this case we say that A wins the

game.

The advantage of A in this game is defined as Pr[KeyHideA,Π = 1]− 1/2.

Definition 2.2.5 (Key hiding) A BGKM scheme is key hiding if given PubInfo,

any party which does not have a valid secret cannot distinguish the real group key

from a randomly chosen value in the keyspace KS with nonnegligible probability. More

specifically, a BGKM scheme, Π, is key hiding if for any adversary A as a probabilistic

interactive Turing machine [33], has a negligible advantage in the key hiding security

game 2.2.4:

Pr[KeyHideA,Π = 1] ≤ 1/2 + f(k),

where f is a negligible function in k.

Definition 2.2.6 (Forward/backward key protecting) Suppose Svr runs an Up­

date algorithm to generate Param for a new shared group key K ′ , and a previous

member Usr is no longer a group member after the Update algorithm. Let K be a pre­

vious shared group key which can be derived by Usr with a secret. A BGKM scheme is

backward key protecting if an adversary with knowledge of the secret, K, and the new

PubInfo cannot distinguish the new key K ′ from a random value in the keyspace KS

with nonnegligible probability. Similarly, a BGKM scheme is forward key protecting

if a new group member Usr after running the Update algorithm cannot learn anything

about the previous group keys.

15

2.3 Our Construction: ACV-BGKM

We now provide our construction of BGKM, the ACV-BGKM scheme, under

a client-server architecture. The ACV-BGKM scheme satisfies the requirements of

minimal trust, key indistinguishability, key independence, forward secrecy, backward

secrecy and collusion resistance as described earlier.

ACV-BGKM algorithms are executed with a trusted key server Svr and a group

of users Usri, i = 1, 2, . . . , n.

Setup(ℓ): Svr initializes the following parameters: an ℓ-bit prime number q, a cryp­

tographic hash function H(·) : {0, 1}∗ → Fq, where Fq is a finite field with q elements,

the keyspace KS = Fq, the secret space SS = {0, 1}ℓ and the set of issued secrets

S = ∅.

SecGen(Usri): Svr chooses the secret si ∈ SS uniformly at random for Usri such

that si ∈/ S and adds si to S.

KeyGen(S): Svr picks a random K ∈ KS as the group key. Svr chooses n ran­

dom bit strings z1, z2, . . . , zn ∈ {0, 1}
ℓ . Svr creates an n × (n + 1) Fq-matrix

 
1 a1,1 a1,2 . . . a1,n  
1 a2,1 a2,2 . . . a2,n


A =

 
,

.


.

.
  

1 an,1 an,2 . . . an,n

where

ai,j = H(si||zj), 1 ≤ i ≤ n, 1 ≤ j ≤ n, si ∈ S. (2.1)

Svr then solves for a nonzero (n + 1)-dimensional column Fq-vector Y such that

AY = 0. Note that such a nonzero Y always exists as the nullspace of matrix A is

16

nontrivial by construction. Here we require that Svr chooses Y from the nullspace of

A uniformly at random. Svr constructs an (n + 1)-dimensional Fq-vector

X = K · e1
T + Y,

where e1 = (1, 0, . . . , 0) is a standard basis vector of Fq
n+1 , vT denotes the transpose

of vector v, and k is the chosen group key. The vector X is called an ACV , access

control vector. Svr lets PI = (X, (z1, z2, . . . , zn)), and outputs public PI and private

K.

KeyDer(si, PI): Using its secret si and the public information PI, Usri computes

ai,j, 1 ≤ j ≤ n, as in formula (2.1) and sets an (n + 1)-dimensional row Fq-vector

vi = (1, ai,1, ai,2, . . . , ai,n). Usri derives the group key as K ′ = vi · X.

Update(S): It runs the KeyGen(S) algorithm and outputs the new public in­

formation PI ′ and the new group key K ′ .

2.4 Security Analysis

In the security analysis of ACV-BGKM, we will model the cryptographic hash

function H as a random oracle. We further assume q = O(2k) is a sufficiently large

prime power. We first present two lemmas with their proofs and then prove the

theorems introduced in Section 2.1.

The following lemmas are useful for the security analysis of ACV-BGKM. Lemma 1

says that in a vector space V over a large finite field, the probability that a randomly

chosen vector is in a pre-selected subspace, strictly smaller than V , is very small.

Lemma 2 will be used in the proof of Theorem 2.6.1.

Lemma 1 Let F = Fq be a finite field of q elements. Let V be an n-dimensional

F -vector space, and W be an m-dimensional F -subspace of V , where m ≤ n. Let v

be an F -vector uniformly randomly chosen from V . Then the probability that v ∈ W

is 1/qn−m .

� �

� �

17

Proof The proof is straightforward. We show it here for completeness. Let {v1, v2,

. . . , vm} be a basis of W . Then it can be extended to a basis of V by adding another

n − m basis vector vm+1, . . . , vn. Any vector v ∈ V can be written as

v = α1 · v1 + . . . + αn · vn, αi ∈ F, 1 ≤ i ≤ n,

and v ∈ W if and only if αi = 0 for m + 1 ≤ i ≤ n. When v is uniformly randomly

chosen from V , if follows

Pr[v ∈ W] = 1/qn−m .

(2) (n)
Lemma 2 Let F = Fq be a finite field of q elements. Let vi = (1, vi , . . . , vi), i =

(2) (n))1, . . . , m, and 1 ≤ m < n, be n-dimensional F -vectors. Let v = (1, v , . . . , v

be an n-dimensional F -vector with v(j), j ≥ 2 independently and uniformly randomly

chosen from F . Then the probability that v is linearly dependent of {vi, 1 ≤ i ≤ m}

is no more than 1/qn−m .

(2) (n)
Proof Let wi = (vi , . . . , vi), 1 ≤ i ≤ m, and w = (v(2), . . . , v(n)). All wi span

an F -subspace W whose dimension is at most m in an (n − 1)-dimensional F -vector

space. w is a uniformly randomly chosen (n− 1)-dimensional F -vector. By Lemma 1,

1/qn−1−dim(W) ≤ 1/qn−1−mPr[w ∈ W] = .

It follows that

Pr[v is linearly dependent of {vi : 1 ≤ i ≤ m}]

= Pr[v = α1 · v1 + . . . + αm · vm for some αi ∈ F]

m mt t
= Pr αi = 1 ∧ w = αi · vi for some αi ∈ F

i=1 i=1

mt
= Pr αi = 1 · Pr[w ∈ W]

i=1

≤ 1/q · 1/qn−1−m = 1/qn−m .

� �

� �

18

(n+1)
Lemma 3 Let F = Fq be a finite field of q elements. Let vi = eTi + (0, . . . , 0, vi ,

. . . , vi
(2n)

), ei is the i
th standard basis vector of F2

q
n, i = 1, . . . , m, and 1 ≤ m ≤

(n+1) (2n))n, be 2n-dimensional F -vectors. Let v = eT + (0, . . . , 0, v , . . . , v be a 2n­

dimensional F -vector with v(j), j ≥ n + 1 chosen independently and uniformly at

random from F and e from the 2n-dimensional standard basis vectors with the position

of the non-zero element ≤ m. Then the probability that v is linearly dependent of

{vi, 1 ≤ i ≤ m} is no more than 1/qn−m .

(n+1) (2n) (n+1)Proof Let wi = (vi , . . . , vi), 1 ≤ i ≤ m, w = (v , . . . , v(2n)), and ui =

(1) (n)
(vi , . . . , vi). All wi span an F -subspace W whose dimension is at most m in an

n-dimensional F -vector space. w and u are uniformly randomly chosen n-dimensional

F -vectors. By Lemma 1,

1/qn−dim(W) ≤ 1/qn−mPr[w ∈ W] = .

It follows that

Pr[v is linearly dependent of {vi : 1 ≤ i ≤ m}]

= Pr[v = α1 · v1 + . . . + αm · vm for some αi ∈ F]

m m t

αi · ui = e
 T ∧ w =

t

Pr
 αi · vi for some αi ∈ F=

i=1 i=1

m t

αi · ui = e
 T · Pr[w ∈ W]Pr
 =

i=1

≤ 1/qn · 1/qn−m = 1/q2n−m .

Theorem 2.4.1 ACV-BGKM is correct.

Proof The correctness of ACV-BGKM can be easily seen: Knowing its secret si and

the public values z1, z2, . . . , zn, a group member Usri can compute one row of matrix

A as

vi = (1, ai,1, ai,2, . . . , ai,n),

19

where ai,j , 1 ≤ j ≤ n are as in formula (2.1). Therefore vi · Y = 0 for ACV Y , and

thus the group key can be derived with probability 1 as

T T vi · X = vi ·
�
K · e1 + Y

�
= K · vi · e1 = K.

Theorem 2.4.2 ACV-BGKM is sound.

Proof Let Y be a given access control vector. Let {vi, 1 ≤ i ≤ n} be a basis of the

(2) (i+1) nullspace of A. Let v = (1, v , . . . , v(n+1)), where v = H(val||zi), 1 ≤ i ≤ n. Usr

can derive the group key using v by following the KeyDer phase if and only if v is

linearly dependent of vi, 1 ≤ i ≤ n. When val is not a valid IST and H is a random

oracle, v is indistinguishable from a vector whose first entry is 1 and the other entries

are independently and uniformly chosen from Fq. By Lemma 2, the probability that

v is linearly dependent of {vi, 1 ≤ i ≤ n} is no more than 1/qn+1−n = 1/q, which is

negligible. This proves the soundness of ACV-BGKM.

Theorem 2.4.3 ACV-BGKM is key hiding.

Proof Let PubInfo = (X, (z1, . . . , zn)) be the public information broadcast from Svr.

This is the only piece of information seen by the adversary that is related to the group

key. By construction, X must be linearly independent of the standard basis vector

e1
T , i.e., X has a nonzero entry after the first position. For any K ∈ KS = Fq, let

Y = X − K · e T 1 .

Then it is clear that all Fq-vectors v such that v · Y = 0 form an n-dimensional

Fq-vector space, say W . It follows that the n basis vectors of W can be chosen in

such a way that they all have nonvanishing first entries. Therefore, the number of

vectors v with 1 as their first entry such that v · X = K is qn−1, for all K ∈ KS.

When the cryptographic hash function H(·) is modeled as a random oracle and a

valid IST is unknown, every such a vector v assumes the same probability when

20

computed as specified in the KeyDer algorithm. This implies that every K ∈ KS has

the same probability, 1/q, to be the designated group key in the view of the adversary.

The key hiding property of ACV-BGKM follows as a direct consequence. Note that

ACV-BGKM is key hiding against a computationally unbounded adversary.

It is clear that “forward/backward key protecting” is a stronger condition than

“key hiding.” However, we will use the proof of the latter to show the former.

Theorem 2.4.4 ACV-BGKM is forward/backward key protecting.

Proof (Sketch) We first consider the backward key protecting property of ACV­

BGKM. Suppose that after the Update algorithm, an adversary has one secret s from

the previous session S0 which do not propagate to the new session S1. As the choices

of s and the nullspace of the ACV in session S0 can be viewed as (statistically) jointly

independent of the determination of the nullspace of the ACV in session S1, when H is

modeled as a random oracle and by design of the Update algorithm, Usr cannot learn

the group key for session S1 with non-negligible probability due to the key hiding

property of ACV-BGKM. Similarly, ACV-BGKM is forward key protecting.

Other related GKM security aspects mentioned in Section 2.1 are briefly discussed

as follows.

Minimal trust. In order to protect the shared group key from an adversary outside

of the group, ACV-BGKM only requires to use a private channel once between Svr

and each Usr, during the SecGen algorithm. The security of the ephemeral private

channels needs to be guaranteed. Any other communications, including the ones for

key issuance and rekeying, are executed via an open broadcast channel.

Key independence. It is clear that the group keys (of different sessions) are inde­

pendent by ACV-BGKM construction. Furthermore, the secrets are also independent

of each other, because they are randomly generated.

21

Collusion resistance. For BGKM, it only makes sense to consider collusion at­

tacks from outside the group. The case that a valid group member passes its secret

or the derived group key to others is not addressed by BGKM. Similar to the analysis

for ACV-BGKM’s forward/backward key protecting property, ACV-BGKM is resis­

tant to polynomially computationally bounded adversaries. In particular, colluding

group members are not able to get the secrets of other members to derive group keys

of earlier or later sessions.

2.5 Improving the Performance of ACV-BGKM

In this section, we improve the performance of our basic ACV-BGKM scheme

using two techniques: bucketization and subset cover.

2.5.1 Bucketization

The proposed key management scheme works efficiently even when there are thou­

sands of users. However, as the upper bound n of the number of involved users gets

large, solving the linear system AY = 0 over a large finite field Fq becomes the most

computationally expensive operation in our scheme. Solving this linear system with

the method of Gaussian-Jordan elimination [34] takes O(n3) time. Although this

computation is executed at the Svr, which is usually capable of carrying on computa­

tionally expensive operations, when n is very large, e.g., n = 100, 000, the resulting

costs may be too high for the Svr. Due to the non-linear cost associated with solv­

ing a linear system, we can reduce the overall computational cost by breaking the

linear system in to a set of smaller linear systems. We follow a two-level approach.

In this case, the Svr divides all the involved Usrs into multiple “buckets” (say m) of

a suitable size (e.g., 1000 each), computes an intermediate key for each bucket by

executing the KeyGen algorithm, and then computes the actual group key for all the

users by executing the KeyGen algorithm with the intermediate keys as the secrets.

Note that the intermediate key generation can be parallelized as each bucket is inde­

22

pendent. The Svr executes m + 1 KeyGen algorithms of smaller size. The complexity

of the KeyGen algorithm is proportional to O(n3/m2 +m3). It can be shown that the

3/5optimal solution is achieved when m reaches close to n .

Each intermediate key is associated with a marker so that Usrs can identify if they

have derived a valid intermediate key. For deriving the actual group key, Usrs are

required to execute m+1 KeyDer algorithms in the worst case and 2 in the best case.

Since the KeyDer algorithm is linear in n, in general, the bucketization optimization

still improves the performance of the KeyDer algorithm. The complexity of the KeyGen

algorithm is proportional to O(n/m + m), but the average case runs faster.

2.5.2 Subset Cover

The bucketization approach becomes inefficient as the bucket size increases. The

issue is that the bucketization still utilizes the basic ACV-BGKM scheme. In our basic

ACV-BGKM scheme, as each user is given a single secret, it makes the complexity of

PubInfo and all algorithms proportional to n, the number of users in the group. We

utilize the result from previous research on broadcast encryption [35, 36] to improve

the complexity to sub-linear in n. Based on that, one can make the complexity sub-

linear in the number of users by giving more than one secret during SecGen for each

attribute users possess. The secrets given to each user overlaps with different subsets

of users. During the KeyGen, Svr identifies the minimum number of subsets to which

all the users belong and uses one secret per the identified subset. During KeyDer, a

user identifies the subset it belongs to and uses the corresponding secret to derive the

group key. Group dynamics are handled by making some of the secrets given to users

invalid.

We give a high-level description of the basic subset-cover approach. In the basic

scheme, n users are organized as the leaves of a balanced binary tree of height log n.

A unique secret is assigned to each vertex in the tree. Each user is given log n secrets

that correspond to the vertices along the path from its leaf node to the root node.

23

In order to provide backward secrecy when a single user is revoked, the updated tree

is described by log n subtrees formed after removing all the vertices along the path

from the user leaf node to the root node. To rekey, Svr executes Update using the

log n secrets corresponding to the roots of these subtrees. Naor et al. [35] improve

this technique to simultaneously revoke r users and describe the exiting users using

r log (n/r) subtrees. Since then, there have been many improvements to the basic

scheme. We implement Naor et al.’s complete subset scheme [35] in our experiments.

In our experimental results in Section 2.7, we show that combining the bucketi­

zation and the subset cover techniques, we can very efficiently execute ACV-BGKM

algorithms and can support very large user groups.

2.6 ACV-BGKM-2

The modified ACV-BGKM works under similar conditions as ACV-BGKM, but

instead of giving the same key k to all the users, the KeyDer algorithm gives each

Usri a different key ki when the public information tuple PI is combined with their

unique secret si.

The algorithms are executed with a trusted key server Svr and a group of users

Usri, i = 1, 2, · · · , n with the attribute universe A = {attr1, attr2, · · · , attrm}. The

construction is as follows:

Setup(ℓ): Svr initializes the following parameters: an ℓ-bit prime number q, the

maximum group size N (≥ n), a cryptographic hash function H(·) : {0, 1}∗ → Fq,

where Fq is a finite field with q elements, the key space KS = Fq, the secret space

SS = {0, 1}ℓ and the set of issued secret tuples S = ∅. Each Usri is given a unique

secret index 1 ≤ i ≤ N .

SecGen(): The Svr chooses the secret si ∈ SS uniformly at random for Usri such

that si is unique among all the users, adds the secret tuple (i, si) to S, and outputs

(i, si).

24

KeyGen(S, K): Given the set of secret tuples S = {(i, si)|1 ≤ i ≤ N} and a random

set of keys K = {ki|1 ≤ i ≤ N}, it outputs the public information tuple PI which

allows each Usri to derive the key ki using its secret si. The details follow.

Svr chooses N random bit strings z1, z2, . . . , zN ∈ {0, 1}
ℓ and creates an N × 2N

Fq-matrix A where for a given row i, 1 ≤ i ≤ N

ai,j =









1 if i = j

0 if 1 ≤ j ≤ N and i = j

H(si||zj) if N < j ≤ 2N

Like in the ACV-BGKM scheme, Svr computes the null space of A with a set of

its N basis vectors, and selects a vector Y as one of the basis vectors. Svr constructs

an 2N -dimensional Fq-vector

N

ACV = (

t

ki · e

T
i) + Y,

i=1

where ei is the i
th standard basis vector of F2

q
N . Notice that, unlike ACV-BGKM, a

unique key corresponding to Usri, ki ∈ K is embedded into each location correspond­

ing to a valid index i. Like, ACV-BGKM, Svr sets PI = (ACV, (z1, z2, . . . , zN)), and

outputs PI via the broadcast channel.

KeyDer(si, PI): Usri, using its secret si and public PI, derives the 2N -dimensional

row Fq-vector vi which corresponds to a row in A. Then Usri derives the specific key

as ki = vi · ACV .

Update(S, K’): If a user leaves or join the group, a new set of keys K ′ is selected.

KeyGen(S, K’) is invoked to generate the updated public information PI ′ . Notice

that the secrets shared with existing users are not affected by the group change. It

outputs the public PI ′ .

� �

� �

25

2.6.1 Security Analysis

In this section, we prove the security of the modified ACV-BGKM scheme. Specif­

ically we prove the soundness of the modified ACV-BGKM scheme. We will model the

cryptographic hash function H as a random oracle. We further assume that q = O(2ℓ)

is a sufficiently large prime power and N is relatively small. We first present an ad­

ditional lemma with its proof and then prove that the modified ACV-BGKM scheme

is indeed sound.

(n+1)
Lemma 4 Let F = Fq be a finite field of q elements. Let vi = ei

T + (0, . . . , 0, vi ,

. . . , vi
(2n)

), ei is the i
th standard basis vector of F2

q
n, i = 1, . . . , m, and 1 ≤ m ≤

(n+1) (2n))n, be 2n-dimensional F -vectors. Let v = eT + (0, . . . , 0, v , . . . , v be a 2n­

dimensional F -vector with v(j), j ≥ n + 1 chosen independently and uniformly at

random from F and e from the 2n-dimensional standard basis vectors with the position

of the non-zero element ≤ m. Then the probability that v is linearly dependent of

{vi, 1 ≤ i ≤ m} is no more than 1/qn−m .

(n+1) (2n) (n+1)Proof Let wi = (vi , . . . , vi), 1 ≤ i ≤ m, w = (v , . . . , v(2n)), and ui =

(1) (n)
(vi , . . . , vi). All wi span an F -subspace W whose dimension is at most m in an

n-dimensional F -vector space. w and u are uniformly randomly chosen n-dimensional

1/qn−dim(W) ≤ 1/qn−mF -vectors. By Lemma 1, we have Pr[w ∈ W] = . It follows

that

Pr[v is linearly dependent of {vi : 1 ≤ i ≤ m}]

= Pr[v = α1 · v1 + . . . + αm · vm for some αi ∈ F]

m m t

αi · ui = e
 T ∧ w =

t

Pr
 αi · vi for some αi ∈ F=

i=1 i=1

m t

αi · ui = e
 T · Pr[w ∈ W]Pr
 =

i=1

≤ 1/qn · 1/qn−m = 1/q2n−m .

26

Definition 2.6.1 (Soundness of the modified ACV-BGKM scheme) Let Usri

be an individual without a valid secret and Usrj with a valid secret sj, 1 ≤ i, j ≤ N .

The modified ACV-BGKM is sound if

•	 The probability that Usri can obtain the correct key ki by substituting the secret

with a value val that is not one of the valid secrets and then running the key

derivation algorithm KeyDer is negligible.

•	 The probability that Usrj can obtain a correct key kr, where j = r and 1 ≤ r ≤ N ,

by substituting sj and then running the key derivation algorithm KeyDer is

negligible.

Theorem 2.6.1 The modified ACV-BGKM scheme is sound.

Proof Let PI = (ACV, (z1, . . . , zN)) be the public information broadcast from Svr.

Case 1: Usri does not have a valid secret and tries to derive ki.

Let Y be a vector orthogonal to the access control matrix A.

Let {vi, 1 ≤ i ≤ N}, be a basis of the nullspace of Y .

(N+1)	 (i+N)Let v = e T + (0, . . . , 0, v , . . . , v(2N)), where v = H(val||zi), 1 ≤ i ≤ N.

Usri can derive the key using v by running the KeyDer algorithm if and only if v

is linearly dependent from vi, 1 ≤ i ≤ N . When val is not a valid secret and H is

a random oracle, v is indistinguishable from a vector whose first N entries are from

eT and the rest of the N entries are independently and uniformly chosen from Fq.

By Lemma 4, the probability that v is linearly dependent from {vi, 1 ≤ i ≤ N} is

no more than 1/q2N−N = 1/qN , which is negligible. This proves that the modified

ACV-BGKM scheme is sound in case 1.

Case 2: Usrj has a valid secret sj and tries to derive kr, where r = j and 1 ≤ r ≤ N .

Since Usrj has a valid secret sj, it can construct the j
th row of A as follows:

(N+1) (2N) (i+N)
vj = ej

T + (0, . . . , 0, v , . . . , v), where v = H(sj||zi), 1 ≤ i ≤ N. j j j

27

Usrj can obtain the key kj using vj:

kj = ACV · vj.

In order to obtain the key kr, Usrj needs to compute ACV · vr where vr is defined

as follows.

T (N+1) (2N) (i+N)vr = er + (0, . . . , 0, vr , . . . , vr), where vr = H(val||zi), 1 ≤ i ≤ N.

By construction, vr is linearly independent from vj. When val is not a valid secret

and H is a random oracle, vr is indistinguishable from a vector whose first N entries

are from er
T and the rest of the N entries are independently and uniformly chosen

from Fq. Thus, knowing vj does not provide an advantage for Usrj to compute vr.

Therefore, the probability of deriving kr by running the KeyDer algorithm remains

the same negligible value 1/qN as in case 1. This proves that the modified ACV­

BGKM scheme is sound in case 2.

2.7 Experimental Results

In this section, we present experimental results for the optimized ACV-BGKM.

The experiments were performed on a machine running GNU/Linux kernel version

2.6.32 with an Intel R� CoreTM 2 Duo CPU T9300 2.50GHz and 4 Gbytes memory.

Only one processor was used for computation. The code is built with 32-bit gcc

version 4.4.3, optimization flag -O2. For the ACV-BGKM scheme, we use V. Shoup’s

NTL library [37] version 5.4.2 for finite field arithmetic, and SHA-1 implementation

of OpenSSL [38] version 0.9.8 for cryptographic hashing.

We implemented the ACV-GKM scheme with both the bucketization and the

subset cover optimizations. We utilized the complete subset algorithm introduced by

Naor et. al. [35] for the subset cover. We assumed that 5% of the users satisfying a

given Pc are revoked. With the bucketization optimization, we assumed the average

case for the KeyDer algorithm where Usrs require to derive half of the intermediate

28

keys before deriving the group key. For the experiments involving fixed number of

buckets, 10 buckets are utilized. All finite field arithmetic operations in our scheme

are performed in an 512-bit prime field.

Figure 3.1 reports the average time spent to execute the KeyGen algorithm of

the ACV-BGKM scheme without any optimizations, with bucketization, and with

subset cover optimization for different group sizes. The bucketization outperforms

the base scheme as it divides the non-linear KeyGen algorithm into smaller and more

efficient computations. Subset-cover optimization provides even better performance

as it reduces the effective group size considerably by sharing secrets among multiple

Usrs. As shown in Figure 2.2, the KeyDer algorithm has similar results.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(in

 s
ec

on
ds

)

Base
Bucketization
Subset Cover

Group Size

Figure 2.1.: Average time to generate keys

Figure 2.3 shows the average time to execute the KeyGen algorithm for 2500 and

5000 user groups with an increasing number of buckets. When more buckets are

utilized, the size of the problem the KeyGen has to solve reduces and, hence, the

bucketization provides a better performance. However, as mentioned in Section 2.5.1,

the performance starts to degrade as the number of buckets is greater than the the

optimal number of buckets. For n = 2500 and 5000, the optimal number of buckets

are around 100 and 150 respectively. These values are consistent with the theoretical

minimum overhead. Under similar settings, Figure 2.4 shows the time to execute the

29

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(in

 m
s)

Base
Bucketization
Subset Cover

Group Size

Figure 2.2.: Average time to derive keys

KeyDer algorithm. The key derivation time slowly increases as the number of buckets

increases because the complexity of the second level KeyDer function increases.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

T
im

e
(in

 s
ec

on
ds

)

2500 Users
2500 Users

0 50 100 150 200 250 300 350 400

Number of Buckets

Figure 2.3.: Average time to generate keys with different bucket sizes

We closely analyzed the two optimizations. Figure 2.5 shows the average time

to execute the KeyGen algorithm with the bucketization, the subset cover and both

where the bucketization is applied after the subset cover technique. Both techniques

together provides a huge performance improvement. Under the similar setting, as

shown in Figure 2.6, the KeyGen also performs much better compared to the individual

optimizations.

30

 500
5000 Users
2500 Users

0 20 40 60 80 100 120 140 160 180 200

450

 400

 350

 300

 250

 200

Number of Buckets

T
im

e
(in

 m
s)

Figure 2.4.: Average time to derive keys with different bucket sizes

 60
Subset Cover
Bucketization

Both

200 400 600 800 1000 1200 1400 1600 1800 2000

50

 40

 30

 20

 10

 0

T
im

e
(in

 s
ec

on
ds

)

Group Size

Figure 2.5.: Average time to generate keys with the two optimizations

 180
Subset Cover
Bucketization

Both

200 400 600 800 1000 1200 1400 1600 1800 2000

160

 140

 120

 100

 80

 60

 40

 20

 0

T
im

e
(in

 m
s)

Group Size

Figure 2.6.: Average time to derive keys with the two optimizations

31

3 ATTRIBUTE BASED GROUP KEY MANAGEMENT

While BGKM schemes provide efficient rekeying, they do not support expressive

group membership policies over a set of attributes. In their basic form, they can only

support 1-out-of-n threshold policies by which a group member possessing 1 attribute

out of the possible n attributes is able to derive the group key. In order to address this

issue, in this chapter, we develop novel expressive attribute based GKM (AB-GKM)

schemes which allow one to express any threshold or monotonic policies over a set of

attributes.

A possible approach to construct an AB-GKM scheme is to utilize attribute-based

encryption (ABE) primitives [16–18]. Such an approach would work as follows. A

key generation server issues each group member a private key (a set of secret values)

based on the attributes and the group membership policies. The group key, typi­

cally a symmetric key, is then encrypted under a set of attributes using the ABE

encryption algorithm and broadcast to all the group members. The group members

whose attributes satisfy the group membership policy can obtain the group key by

using the ABE decryption primitive. One can use such an approach to implement an

expressive collusion-resistant AB-GKM scheme. However, such an approach suffers

from some major drawbacks. Whenever the group dynamic changes, the rekeying

operation requires to update the private keys given to existing members in order to

provide backward/forward secrecy. This in turn requires establishing private com­

munication channels with each group member which is not desirable in a large group

setting. Further, in applications involving stateless members where it is not possible

to update the initially given private keys and the only way to revoke a member is to

exclude it from the public information, an ABE based approach does not work. An­

other limitation is that whenever the group membership policy changes, new private

32

keys must be re-issued to members of the group. Our constructions address these

shortcomings.

Our AB-GKM schemes are able to support a large variety of conditions over a

set of attributes. When the group changes, the rekeying operations do not affect the

private information of existing group members and thus our schemes eliminate the

need of establishing private communication channels. Our schemes provide the same

advantage when the group membership conditions change. Furthermore, the group

key derivation is very efficient as it only requires a simple vector inner product and/or

polynomial interpolation. Additionally, our schemes are resistant to collusion attacks.

Multiple group members are unable to combine their private information in a useful

way to derive a group key which they cannot derive individually.

Our AB-GKM constructions are based on an optimized version of the ACV-BGKM

(Access Control Vector BGKM) scheme presented in Chapter 2, a provably secure

BGKM scheme, and Shamir’s threshold scheme [29]. In this paper, we construct three

AB-GKM schemes each of which is more suitable over others under different scenarios.

The first construction, inline AB-GKM, is based on the ACV-BGKM scheme. Inline

AB-GKM supports arbitrary monotonic policies over a set of attributes. In other

words, a user whose attributes satisfy the group policies is able to derive the symmetric

group key. However, inline AB-GKM does not efficiently support d-out-of-m (d ≤ m)

attribute threshold policies over m attributes. The second construction, threshold

AB-GKM, addresses this requirement. The third construction, access tree AB-GKM,

is an extension of threshold AB-GKM and is the most expressive scheme. It efficiently

supports arbitrary policies. The second and third schemes are constructed by using

a modified version of ACV-BGKM, also proposed in this paper.

3.1 Scheme 1: Inline AB-GKM

Recall that in its basic form, a BGKM scheme can be considered as a 1-out-of-m

AB-GKM scheme. If Usri possesses the attribute attrj, Svr shares a unique secret

33

si,j with Usri. Usri is thus able to derive the symmetric group key if and only if Usri

shares at least one secret with Svr and that secret is included in the computation

of the public information tuple PI. In order for Svr to revoke Usrj, it only needs

to remove the secrets it shares with Usrj from the computation of PI; the secrets

issued to other group members are not affected. We extend this scheme to support

arbitrary monotonic policies, ACPs, over a set of attributes. A user is able to derive

the symmetric group key if and only if the set of attributes the user possesses satisfy

ACP.

As in the basic BGKM scheme, Usri having attrj is associated with a unique secret

value si,j . However, unlike the basic BGKM scheme, PI is generated by using the

aggregated secrets that are generated combining the secrets issued to users according

to ACP. For example, if ACP is a conjunction of two attributes, that is attrr ∧ attrs,

the corresponding secrets si,r and si,s for each Usri are combined as one aggregated

secret si,r||si,s and PI is computed using these aggregated secrets. By construction,

the aggregated secrets are unique since the constituent secrets are unique. Any Usri is

able to derive the symmetric group key if and only if Usri has at least one aggregated

secret used to compute PI. Notice that multiple users cannot collude to create an

aggregated secret which they cannot individually create since si,j’s are unique and

each aggregated secret is tied to one specific user. Hence, colluding users cannot derive

the group symmetric key. Now we give a detailed description of our first AB-GKM

scheme, inline AB-GKM.

3.1.1 Our Construction

Inline AB-GKM consists of the following five algorithms:

Setup(ℓ): The Svr initializes the following parameters: an ℓ-bit prime number q, a

cryptographic hash function H(·) : {0, 1}∗ → Fq, where Fq is a finite field with q

elements, the keyspace KS = Fq, the secret space SS = {0, 1}ℓ, and the set of issued

secrets S = ∅. The user-attribute matrix UA is initialized with empty elements and

34

the maximum group size N is decided in the KeyGen. It defines the universe of

attributes A = {attr1, attr2, · · · , attrm}.

SecGen(γi): For each attribute attrj ∈ γi, where γi ⊂ A and γi is the attribute

set of Usri, the Svr chooses the secret si,j ∈ SS uniformly at random for Usri such

that si,j ∈/ S, adds si,j to S, sets UA(i, j) = si,j, where UA(i, j) is the (i, j)th element

of the user-attribute matrix UA, and finally outputs si,j.

KeyGen(ACP): We first give a high-level description of the algorithm and then

the details. Svr transforms the policy ACP to disjunctive normal form (DNF). For

each disjunctive clause of ACP in DNF, it creates an aggregated secret (s8) from the

secrets corresponding to each of the attributes in the conjunctive clause. s8 is formed

by concatenation only if secrets exist for all the attributes in a given row of the

user-attribute matrix UA. The construction creates a unique aggregated secret 8s
since the corresponding secrets are unique. For example, if the conjunctive clause is

attrp ∧ attrq ∧ attrr, for each row i in UA, the aggregated secret 8si is formed only

if all elements UA(i, p), UA(i, q) and UA(i, r) have secrets assigned. All the aggre­

gated secrets are added to the set AS. Finally, Svr invokes algorithm KeyGen(AS)

from the underlying BGKM scheme to output the public information PI and the

symmetric group key k.

Now we give the details of the algorithm. Svr converts ACP to DNF as follows

α

ACP =
e

conjuncti where there are α conjuncts and
i=1

φi

(i)

conjuncti =
<

condj ,
j=1

where each conjuncti has φi conditions.

A simple multiplication of clauses (x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)) and then

application of the absorption law (x∨ (x∧ y = x)) are sufficient to convert monotone

policies to DNF. Even though there can be an exponential blow up of clauses during

35

multiplication, it has been shown that with the application of the absorption law

the number of clauses in the DNF, at the end, is always polynomially bounded. Svr

selects N such that

α

N ≥
t

NUi = NU

i=1

where NUi is the number of users satisfying conjuncti
1 . Svr creates NU s8i’s and adds

them to AS. Svr picks a random k ∈ KS as the shared group key. Svr chooses N

random bit strings z1, z2, . . . , zN ∈ {0, 1}
ℓ . Svr creates an m × (N + 1) Fq-matrix A

such that for 1 ≤ i ≤ NU


1 if j = 1

ai,j = (3.1)
si||zj) if 2 ≤ j ≤ N ; s8i ∈ AS  H(8

Svr then solves for a nonzero (N + 1)-dimensional column Fq-vector Y such that

AY = 0 and sets

ACV = k · e1
T + Y, and

PI = (ACV, (z1, z2, . . . , zN))

KeyDer(βi, PI): Given βi, the set of secrets for Usri, it computes the aggregated

secret s8. Using s8and the public information PI, it computes ai,j, 1 ≤ j ≤ N, as in for­

mula 3.1 and sets an (N+1)-dimensional row Fq-vector vi = (1, ai,1, ai,2, . . . , ai,N). Usri

derives the group key k ′ by the inner product of the vectors vi and ACV : k ′ = vi ·ACV .

The derived group key k ′ is equal to the actual group key k if and only if the com­

puted aggregated secret s8∈ AS.

Update(S): The composition of the user group changes when one of the follow­

ing occurs:

1It should be noted that NU can be reduced to n, the number of users in the group, by exploiting
the relationships between conjuncts and letting the users know the conjunct, out of the many they
satisfy, they have to use to derive the key. We leave this optimization to keep the scheme simple.

36

• Identity attributes are added or removed resulting in the change in S and UA 2 .

• The underlying policy ACP changes.

When such a change occurs, a new symmetric key k ′ is selected and KeyGen(ACP)

is invoked to generate the updated public information PI ′ . Notice that the secrets

shared with existing users are not affected by the group change. It outputs the public

PI ′ and private k ′ .

3.1.2 Security

We can easily show that if an unbounded adversary A can break the inline AB­

GKM scheme in the random oracle model, a simulator S can be constructed to break

the ACV-BGKM scheme.

Definition 3.1.1 (Security game for AB-GKM)

Setup The challenger runs the Setup algorithm of AB-GKM and gives the public

parameters to the adversary.

Phase 1 The adversary is allowed to request secrets for any set of attributes γi

and the public information tuples for a policy satisfying these attributes. The public

information along with the secrets allows the adversary to derive the private key.

Challenge The adversary declares the set of attributes γ that it wishes to challenged

upon. γ is different from any of the attribute sets γi that the adversary queried earlier.

The adversary submits two keys k0 and k1. The challenger flips a random coin b and

chooses kb. The challenger generates public information for a policy P satisfying γ,

but not any γi, using the KeyGen algorithm and give it to the adversary. The public

information hides the group key kb.

2A change in a user attribute is viewed as two events; removing the existing attribute and adding a
new attribute.

37

Phase 2 Phase 1 is repeated as many times provided that the adversary’s attribute

set does not satisfy P .

Guess The adversary outputs a guess b ′ of b.

The advantage of an adversary A in this game is defined as Pr[b ′ = b]− 1/2.

Definition 3.1.2 (Security under the random oracle model) An AB-GKM

scheme is secure under the random oracle model of security if all adversaries have at

most a negligible advantage in the above game.

Shang et al. [20, 39] have shown that the probability of breaking ACV-BGKM is

a negligible 1/q, where q is the ℓ bit large prime number initialized in Setup. We

capture the hardness of the ACV-BGKM scheme in the following assumption:

Definition 3.1.3 (ACV-BGKM Assumption) No adversary without any valid

secrets in the random oracle model can break the ACV-BGKM scheme with more

than a negligible probability.

Theorem 3.1.1 If an adversary can break the inline AB-GKM scheme in the random

oracle model, then a simulator can be constructed to break the ACV-BGKM scheme

with non-negligible advantage.

Proof Suppose that there exists an adversary A that can break our scheme in the

random oracle model with advantage ǫ. We build a simulator B that can break

the ACV-BGKM scheme with the advantage at most ǫ. The simulation proceeds as

follows:

The challenger runs the setup algorithm of ACV-BGKM and generates secrets for

each attributes per user outside of B’s view. The simulator B runs A. B is given an

instance of ACV-BGKM and gives the public parameters to A. We assume that all

policies are in DNF such that each conjunctive term has only one attribute. The intu­

ition behind the assumption is that inline AB-GKM is an extension of ACV-BGKM

38

to support aggregate secrets and, therefore, in the absent of aggregate secrets, inline

AB-GKM is equivalent to ACV-BGKM.

Phase 1 A submits sets of attributes γi to B and B sends the secrets using the

ACV-BGKM instance.

Challenge A submits the attribute set γ = γi as the challenge and two keys k0

and kb. B flips a random coin b and chooses kb and then using the ACV-BGKM in­

stance, it generates the public information for a policy P that only γ satisfies hiding kb.

Phase 2 A and B repeats Phase 1 as many times provided A’s attribute sets do

not satisfy P .

Guess Using the public information and the information gathered from the two

phases, A outputs a guess b ′ of b. Notice that the view of A when it is run as a

subroutine of B and when it is run directly with the inline AB-GKM scheme is iden­

tical. In other words, B simulates an instance of the inline AB-GKM for A using

an instance of the ACV-BGKM scheme. The simulation is trivial as the aggregate

secrets in AB-GKM is the same the secrets in ACV-BGKM. It should be noted that

A does not have an advantage more than ǫ from the information gather from the re­

peated execution of Phase 1 due to the key indistinguishability and key independence

properties of the ACV-BGKM scheme [39].

It can easily be seen that B has the same advantage of breaking the ACV-BGKM

scheme as A has on the inline AB-GKM scheme. As per the definitions, B breaks the

ACV-BGKM with Pr[b ′ = b] = 1/2+ǫ. According to the assumption on the hardness

of the ACV-BGKM scheme in Theorem 3.1.1, it follows that ǫ must be negligible.

39

3.1.3 Performance

Now, we discuss the efficiency of inline AB-GKM with respect to computational

costs and required bandwidth for rekeying.

For any Usri in the group, deriving the shared group key requires N hashing

operations (evaluations of H(·)) and an inner product computation vi · ACV of two

(N + 1)-dimensional Fq-vectors, where N is the maximum group size. Therefore the

overall computational complexity is O(n).

For every rekeying operation, Svr needs to form a matrix A by performing N2

hashing operations, and then solve a linear system of size N × (N + 1). Solving the

linear system is the most costly operation as N gets large for computation on Svr.

It requires O(n3) field operations in Fq when the method of Gauss-Jordan elimina­

tion [34] is applied. Experimental results about the ACV-BGKM scheme [20] have

shown that this can be performed in a short time when N is small.

When a rekeying process takes place, the new information to be broadcast is

PI = (ACV, (z1, . . . , zN)), where ACV is a vector consisting of (N + 1) elements in

Fq, and without loss of generality we can pick zi to be strings of fixed length. This

gives an overall communication complexity O(n). An advantage of inline AB-GKM

is that no peer-to-peer private channel is needed for any persisting group members

when rekeying is executed.

Nowadays we generally care less about storage costs on both Svr and Usrs. Nev­

ertheless, for a group of maximum N users, in the worst case, inline AB-GKM only

requires each Usr to store (O(|A|)) secrets, one secret per attribute that Usr possesses,

and Svr to keep track of all O(n|A|) secrets.

3.2 Scheme 2: Threshold AB-GKM

Consider now the case of policies by which a user can derive the symmetric group

key k, if it possesses at least d attributes out of the m attributes associated with the

group. We refer to such policies as threshold policies. Under the inline AB-GKM

40

scheme presented in Section 3.1, with such threshold policies the size of the access

control matrix (A) increases exponentially if users are not informed which attributes

to use. Specifically, to support d-out-of -m, the inline AB-GKM scheme may require

creating a matrix of dimension up to O(nmd) where n is the number of users in the

group. Thus, the inline AB-GKM scheme is not suitable for threshold policies. In

this section, we construct a new scheme, threshold AB-GKM, which overcomes this

shortcoming.

An initial construction to enforce threshold policies is to associate each user with

a random d − 1 degree polynomial, q(x), with the restriction that each polynomial

has the same value at x = 0 and q(0) = k, where k is the symmetric group key. For

each attribute users have, they are given a secret value. The secret values given to

a user are tied to its random polynomial q(x). A user having d or more secrets can

perform a Lagrange interpolation to obtain q(x) and thus the symmetric group key

k = q(0). Since the secrets are tied to random polynomials, multiple users are unable

to combine their secrets in any way that makes possible collusion attacks. However,

revocation is difficult in this simple approach and requires re-issuing all the secrets

again.

Our approach to address the revocation problem is to use a layer of indirection be­

tween the secrets given to users and the random polynomials such that revocations do

not require re-issuing all the secrets again. We use a modified ACV-BGKM construc­

tion as the indirection layer. We cannot directly use the ACV-BGKM construction

since, multiple instances of ACV-BGKM allow collusion attacks in which colluding

users can recover the group key which they cannot obtain individually. We first

show the details of the modified ACV-BGKM scheme and then present the threshold

AB-GKM which uses the modified ACV-BGKM scheme and Shamir’s secret sharing

scheme.

41

3.2.1 Our Construction

Now we provide our construction of the threshold AB-GKM scheme which utilizes

the modified ACV-BGKM scheme, ACV-BGKM-2, presented in Section 2.6.

Recall that in this scheme, we wish to allow a user to derive the symmetric group

key k if the user possesses at least d attributes out of m. For each user Usri we associate

a random d − 1 degree polynomial qi(x) with the restriction that each polynomial

has the same value k, the symmetric group key, at x = 0, that is, qi(0) = k. We

associate a random secret value with each user attribute. For each attribute attri,

we generate a public information tuple (PIi) using the modified ACV-BGKM scheme

with the restriction that the temporary key that each Usrj derives is tied to its random

polynomial qj(x), that is qj(i) = ki. Notice that each user obtains different temporary

keys from the same PI. If a user can derive d temporary keys corresponding to d

attributes, it can compute its random function q(x) and obtain the group symmetric

key k. Notice that, since the temporary keys are tied to a unique polynomial, multiple

users are unable to collude and combine their temporary keys in order to obtain the

symmetric group key which they are not allowed to obtain individually. Thus, our

construction prevents collusion attacks.

A detailed description of our threshold AB-GKM scheme follows.

Setup(ℓ) Svr initializes the parameters of the underlying modified ACV-BGKM

scheme: the ℓ-bit prime number q, the maximum group size N (≥ n), the cryp­

tographic hash function H, the key space KS, the secret space SS, the set of is­

sued secrets S, the user-attribute matrix UA and the universe of attributes A =

{attr1, attr2, · · · , attrm}.

Svr defines the Lagrange coefficient Δi,Q for i ∈ Fq and a set, Q of elements in Fq

as

x − j
Δi,Q(x) =

�
.

i− j
j∈Q,j �=i

SecGen(γi) For each attribute attrj ∈ γi, where γi ⊂ A and γi is the attribute set of

42

Usri, Svr invokes SecGen() of the modified ACV-BGKM scheme in order to obtain

the random secret si,j. It returns βi, the set of secrets for all the attributes in γi.

KeyGen(α, d) Taking α, a subset of attributes from the attribute universe A and d,

the threshold value, for each user Usri, Svr assigns a random degree d− 1 polynomial

qi(x) with qi(0) set to the group symmetric key k. For each attribute attrj in the set of

attributes α (α ⊂ A and |α| ≥ d), it selects the set of secrets corresponding to attrj,

Sj and invokes KeyGen(Sj, {q1(j), q2(j), · · · , qN(j)}) of the modified ACV-BGKM

scheme to obtain PIj, the public information tuple for attrj. It outputs the private

group key k and the set of public information tuples PI = {PIj| for each attrj ∈ α}.

KeyDer(βi,PI) Using the set of d secrets βi = {si,j|1 ≤ j ≤ N} for the d attributes

attrj, 1 ≤ j ≤ N , and the corresponding d public information tuples PIj ∈ PI,

1 ≤ j ≤ N , it derives the group symmetric key k as follows.

First, it derives the temporary key kj for each attribute attrj using the underlying

modified ACV-BGKM scheme as KeyDer(si,j, PIj). Then, using the set of d points

Qi = {(j, kj)|1 ≤ j ≤ N}, it computes qi(x) as follows:

x − j
Δj,Qi

(x) =
�

i− j
j∈Qi,j=� i

qi(x) =
t

kjΔj,Qi
(x).

j∈Qi

It outputs the group key k = qi(0).

Update(α, d) The Update algorithm is invoked whenever α, the attribute set consid­

ered, or d, the threshold value, or the group members satisfying the threshold policy

change. The group membership changes due to similar reasons mentioned under the

Update algorithm in Section 3.1.1. In such a situation, a new symmetric group key

k ′ is selected and KeyGen(α, d) is invoked to generate the set of new public infor­

43

mation tuples PI’. Notice that the secrets shared with existing users are not affected

by the group change.

3.2.2 Security

If an unbounded adversary can break our threshold AB-GKM scheme, a simulator

can be constructed to break the modified ACV-BGKM scheme. We only give a high­

level detail of the reduction based proof as the proof is similar to the proof for the

inline AB-GKM scheme.

Proof Suppose that an unbounded adversary A having a set of d − 1 attributes α

can break our scheme in the random oracle model with advantage ǫ. Note that this

is the most powerful adversary as it possesses d− 1 attributes out of the d attributes

required to derive the group key. We build a simulator B that can derive the key kd

from PId corresponding to attrd ∈ α with the same advantage ǫ using A as subroutine.

In other words, we build a simulator to break the modified ACV-BGKM scheme.

The intuition behind our proof is that, by construction, the modified ACV-BGKM

instances corresponding to the attributes are independent. In other words, a user who

can access the key for one attribute only has a negligible advantage in obtaining the

key for another attribute using the known attributes due to the key indistinguisha­

bility and independence properties of the ACV-BGKM scheme.

The challenger creates an instance of the modified ACV-BGKM scheme for each

of the n attributes. A obtains secrets {si|i = 1, 2, · · · , d−1} for the attributes α it has

from B. The challenger constructs the public information tuples {PIi|i = 1, 2, · · · , d},

each having a random key ki and gives them to B. B in turn gives them to A. Notice

that the view of A is identical to that of A interacting directly with an instance

of the threshold AB-GKM scheme, even though it is simulated. The random keys

correspond to a random degree d−1 polynomial q(x). Notice that A possesses secrets

to obtain the random keys ki, 1 ≤ i ≤ d− 1 and can derive the secret key kd with an

advantage ǫ from the public information tuples.

44

We omit the details of the security game defined in the previous section. As men­

tioned in the game, A may execute the threshold AB-GKM scheme for different sets of

attributes that do not satisfy the challenge threshold policy and do not include attrd.

As mentioned earlier, A does not gain any additional advantage by such executions.

After executing the phase 1 of the security game as many times, A outputs k,

which is equal to q(0). This allows B to fully determine q(x) as it now has d points

and derive the key kd = q(d). In other words, it allows B to break the modified ACV-

BGKM scheme to recover the intermediate key kd from the public information tuple

PId without the knowledge of the secret sd. In our technical report [40], we show

that the probability of breaking the modified ACV-BGKM scheme is a negligible

1/qN where q is the ℓ bit prime number and N is the maximum number of users.

Therefore, it follows that ǫ must be negligible.

3.2.3 Performance

We now discuss the efficiency of the threshold AB-GKM with respect to compu­

tational costs and required bandwidth for rekeying.

For any Usri in the group deriving the shared group key requires:
Ld

i=1 Ni hashing

operations (evaluations of H(·)), where Ni is the maximum number of users having

attri; and d inner product computations vi ·ACVi of two (2Ni)-dimensional Fq-vectors

and the Lagrange interpolation O(m log2 m), where m = |A|. Therefore, the over­

all computational complexity is O(dn + m log2 m). Notice that the inner product

computations are independent and can be parallelized to improve performance.

For every rekeying phase, for each attri, Svr needs to form a matrix Ai by perform­

ing Ni
2 hashing operations, and then solve a linear system of size Ni × (2Ni). Solving

the linear system is the most costly operation as Ni gets large for computation on

Svr; it requires O(
Lm

i=1 n
3) field operations in Fq.

When a rekeying process takes place, the new information to be broadcast is

PIi = (ACVi, (z1, . . . , zNi)), i = 1, 2, · · · ,m, where ACVi is a vector consisting of

45

(2Ni) elements in Fq, and without loss of generality we can pick zi to be strings with

a fixed length. This gives an overall communication complexity O(
Lm

i=1 n).

For a group of maximum N users, in the worst case, the threshold AB-GKM only

requires each Usr to store (O(m)) secrets, one secret per attribute that Usr possesses

and Svr to keep track of all O(nm) secrets.

3.3 Scheme 3: Access Tree AB-GKM

In the inline AB-GKM scheme, the policy ACP is embedded into the BGKM

scheme itself. As discussed in Section 3.2, while this approach works for many dif­

ferent types of policies, such an approach is not able to efficiently support threshold

access control policies. Scheme 2, threshold AB-GKM, on the other hand, is able to

efficiently support threshold policies, but it is unable to support other policies. In

order to support more expressive policies, we extend the threshold AB-GKM scheme.

Like threshold AB-GKM, instead of embedding ACP in the BGKM scheme, we con­

struct a separate BGKM instance for each attribute. Then, we embed ACP in an

access structure T . T is a tree with the internal nodes representing threshold gates

and the leaves representing attributes. The construction of T is similar to that of the

approach by Goyal et al. [17]. However, unlike Goyal et al.’s approach, the goal of

our construction is to derive the group key for the users whose attributes satisfy the

access structure T .

3.3.1 Access Tree

Let T be a tree representing an access structure. Each internal node of the tree

represents a threshold gate. A threshold gate is described by its child nodes and a

threshold value. If nx is the number of children of a node x and tx is its threshold

value, then 0 < tx ≤ nx. Notice that when tx = 1, the threshold gate is an OR gate

and when tx = nx, it is an AND gate. Each leaf node x of the tree is described by

46

Table 3.1: Access tree functions

Function Description

index(x) Returns the index of node x

parent(x) Returns the parent node of node x

attr(x) Returns the index of the attribute associated with a leaf node x

qx The polynomial assigned to node x

sat(Tx, α) Returns 1 if the set of attributes α satisfies Tx, the subtree rooted

at node x, and 0 otherwise

an attribute, a corresponding BGKM instance and a threshold value tx = 1. The

children of each node x are indexed from 1 to nx.

We define the functions in Table 3.1 in order to construct our scheme. All the

functions except sat are straightforward to implement. A brief description of sat

follows:

The function sat(Tx, α) works as a recursive function. If x is a leaf node, it returns

1, provided that the attribute associated with x is in the set of attributes α and 0

otherwise. If x is an internal node, if at least tx child nodes of x return 1, then

sat(Tx, α) returns 1 and 0 otherwise.

3.3.2 Our Construction

The access tree AB-GKM scheme consists of five algorithms:

Setup(ℓ): Svr initializes the parameters of the underlying modified ACV-BGKM

scheme: the prime number q, the maximum group size N (≥ n), the cryptographic

hash functionH, the key space KS, the secret space SS, the set of issued secrets S, the

user-attribute matrix UA and the universe of attributes A = {attr1, attr2, · · · , attrm}.

47

Svr defines the Lagrange coefficient Δi,Q for i ∈ Fq and a set, Q of elements in Fq:

x − j
Δi,Q(x) =

�
.

i− j
j∈Q,j �=i

SecGen(γi): Taking γi, the attribute set of Usri, as input, for each attribute attrj ∈

γi, where γi ⊂ A, Svr invokes SecGen() of the modified ACV-BGKM scheme to

obtain the random secret si,j . It returns βi, the set of secrets for all the attributes in

γi.

KeyGen(ACP): Svr transforms the policy ACP into an access tree T . The algo­

rithm outputs the public information which a user can use to derive the group key

if and only if the user’s attributes satisfy the access tree T built for the policy ACP.

The algorithm constructs the public information as follows.

For each user Usri having the intermediate set of keys Ki = {ki,j|1 ≤ j ≤ m},

where ki,j represents the intermediate key for Usri and attrj, the following construction

is performed. For each attribute attri, there is a leaf node in T . The construction of

the tree is performed top-down. Each node x in the tree is assigned a polynomial qx.

The degree dx of the polynomial qx is set to tx − 1, that is, one less than the threshold

value of the node. For the root node r, qr(0) is set to the group key k and dr other

points are chosen uniformly at random so that qr is a unique polynomial of degree dr

fully defined through Lagrange interpolation. For any other node x, qx(0) is set to

qparent(x)(index(x)) and dx other points are chosen uniformly at random to uniquely

define qx. For each leaf node x corresponding to a unique attribute attrj, qx(0) is set

to qparent(x)(1) and ki,j = qx(0).

At the end of the above computation, we have all the sets of intermediate keys

K = {Ki|Usri, 1 ≤ i ≤ N}. For each leaf node x, the modified BGKM algorithm

KeyGen(Sx, Kx), where Sx is the set of secrets corresponding to the attribute as­

sociated with the node x and Kx = {ki,j|1 ≤ i ≤ N, attrj}, j = attr(x), is invoked to

48

generate public information tuple PIx. We denote the set of all the public informa­

tion tuples PI = {PIj|attrj, 1 ≤ j ≤ m}.

KeyDer(βi, PI): Given βi, a set of secret values corresponding to the attributes

of Usri, and the set of public information tuples PI, it outputs the group key k.

The key derivation is a recursive procedure that takes βi and PI to derive k

bottom-up. Note that a user can obtain the key if and only if its attributes satisfy

the access tree T , i.e., sat(Tr, βi) = 1. The high-level description of the key derivation

is as follows.

For each leaf node x corresponding to the attribute with the user’s secret value

sx ∈ βi, the user derives the intermediate key kx using the underlying modified

BGKM scheme KeyDer(sx, P Ix). Using Lagrange interpolation, the user recursively

derives the intermediate key kx for each internal ancestor node x until the root node

r is reached and kr = k. Notice that since intermediate keys are tied to unique

polynomials, users cannot collude to derive the group key k if they are unable to

derive it individually. A detailed description follows.

If x is a leaf node, it returns an empty value ⊥ if attr(x) ∈ βi, otherwise it returns

the key kx = vx · ACVx, where vx is the key derivation vector corresponding to the

attribute attrattr(x) and ACVx the access control vector in PIx.

If x is an internal node, it returns an empty value ⊥ if the number of children

nodes having a non-empty key is less than tx, otherwise it returns kx as follows:

Let the set Qx contain the indices of tx children nodes having non-empty keys

{ki|i ∈ Qx}.

y − i
Δi,Qx

(y) =
�

j − i
i∈Q ,i�=jx

qx(y) =
t

kiΔi,Qx
(y)

i∈Qx

kx = qx(0).

49

The above computation is performed recursively until the root node is reached.

If Usri satisfies T , Usri gets k = qr(0), where r is the root node. Otherwise, Usri gets

an empty value ⊥.

Update(ACP) The group members change due to the similar reasons mentioned

for the Update algorithm in Section 3.1.1. In such a situation, a new symmetric

group key k ′ is selected and KeyGen(ACP) is invoked to generate the set of new

public information tuples PI’. Like the previous two schemes, the secrets shared with

existing users are not affected by the group change.

3.3.3 Security

If an unbounded adversary can break our access tree AB-GKM scheme, a simulator

can be constructed to break the modified ACV-BGKM scheme. Like the previous

scheme, we only give a high-level detail of the reduction based proof.

Proof Suppose that an unbounded adversary A using a set of attributes α as the

challenge set that does not satisfy the access tree T breaks our scheme in the random

oracle model with advantage at most ǫ. Let the root node of T be r and the group key

k = qr(0). Notice that since A does not satisfy T and qr(x) a tr-out-of-nr threshold

scheme, which represents any type of threshold node, A satisfies no more than tr − 1

subtrees rooted at children of r out of the nr subtrees. By inference, it is easy to see

that A does not satisfy at least one leaf node.

The challenger constructs modified ACV-BGKM instances for each of the at­

tributes and gives them to B. A obtains secrets for each of the attributes in α. B

sends the public information tuples and the access tree T to A. Notice that A can

easily derive the keys for any attribute in α, but it can derive the keys for any other

attribute only with an advantage of ǫ. According to the assumption, A does not

satisfy at least one attribute required to satisfy T . Let that attribute be attrx. A

50

derives kx from PIx corresponding to one such unsatisfied leaf node with advantage

ǫ. Therefore, A derives the group key k with an advantage of at most ǫ.

Like the proof in Section 3.2, A derives the group key k, after executing the phase

1 of the security game as many times and give k to B. Now, B works downwards T to

recover the keys for nodes originally unsatisfied by A using Lagrange interpolation.

For example, using k and tr − 1, B obtains the key ktr rfor the tth child node of r.

Finally, B obtains the key kx for an unsatisfied leaf node x corresponding to attrx.

In other words, it allows B to break the modified ACV-BGKM scheme to recover the

key kx from the public information tuple PIx without the knowledge of the secret sx.

As mentioned earlier, the probability of breaking the modified ACV-BGKM scheme

by applying the KeyDer algorithm is a negligible 1/qN where q is the ℓ bit prime

number and N is the maximum number of users. Therefore, it follows that ǫ must be

negligible.

3.3.4 Performance

We now discuss the efficiency of access tree AB-GKM with respect to computa­

tional costs and required bandwidth for rekeying.

For any Usri in the group, deriving the shared group key requires:
Ld

i=1 Ni hashing

operations (evaluations of H(·)), where d = |βi|, Ni is the maximum number of users

having attri, and d inner product computations vi · ACVi of two (2Ni)-dimensional

Fq-vectors and M Lagrange interpolations O(Mm log2 m), where M is equal to the

number of internal nodes in T and m = |A|. Therefore, the overall computational

complexity is O(dn + Mm log2 m). Notice that the inner product computations are

independent and can be parallelized to improve performance.

The cost of rekeying, communication and storage are comparable to those of the

threshold scheme presented in Section 3.2.

51

3.4 Example Application

Among other applications, fine-grained access control in a group setting using

broadcast encryption is an important application of the AB-GKM schemes. We illus­

trate the access-tree AB-GKM scheme using a healthcare scenario [20, 41]. We refer

the reader to our technical report [40] for more examples. A hospital (Svr) supports

fine-grained access control on electronic health records (EHRs) [42,43] by encrypting

and making the encrypted records available to hospital employees (Usrs). Typical

hospital users include employees playing different roles such as receptionist, cashier,

doctor, nurse, pharmacist, system administrator and non-employees such as patients.

An EHR document is divided into data items including BillingInfo, ContactInfo, Med­

ication, PhysicalExam, LabReports and so on. In accordance with regulations such

as health insurance portability and accountability act (HIPAA), the hospital policies

specify which users can access which data item(s). A cashier, for example, need not

have access to data in EHRs except for the BillingInfo, while a doctor or a nurse need

not have access to BillingInfo. These policies can be based on the content of EHRs

itself. An example of such policies is that “information about a patient with cancer

can only be accessed by the primary doctor of the patient”. In addition, patients

define their own privacy policies to protect their EHRs. For example, a patient’s

policy may specify that “only the doctors and nurses who support her insurance plan

can view her EHR”.

In order to support content-based access control, the hospital maintains some

associations among users and data. Table 3.2 shows the insurance plans supported

by each doctor and nurse, identified by the pseudonym “Employee ID”.

The hospital runs Setup algorithm to initialize system parameters and issues

secrets to employees by running the SecGen algorithm. Table 3.3 shows the content

of the user attribute matrix UA that the hospital maintains. (Small numbers are

used for illustrative purposes.)

52

Table 3.2: Insurance plans supported by doctors/nurses

EmployeeID Role/level Insurance Plan(s)

emp1 doctor MedB, ACME

emp2 doctor ACME

emp3 nurse/junior ACME

emp4 nurse/senior MedA

emp5 nurse/senior MedC

emp6 doctor MedA

emp7 doctor MedB, ACME

emp8 nurse/senior MedA

emp9 nurse/senior MedA, MedB, ACME

Table 3.3: User attribute matrix

Emp

ID

doctor nurse senior junior MedA MedB MedC ACME

emp1 100 ⊥ ⊥ ⊥ ⊥ 111 ⊥ 102

emp2 120 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 105

emp3 ⊥ 106 ⊥ 120 ⊥ ⊥ ⊥ 121

emp4 ⊥ 103 150 ⊥ 175 ⊥ ⊥ ⊥

emp5 ⊥ 133 151 ⊥ ⊥ ⊥ 161 ⊥

emp6 129 ⊥ ⊥ ⊥ 141 ⊥ ⊥ ⊥

emp7 119 ⊥ ⊥ ⊥ ⊥ 133 ⊥ 137

emp8 ⊥ 143 152 ⊥ 115 ⊥ ⊥ ⊥

emp9 ⊥ 109 156 ⊥ 117 119 ⊥ 124

53

Now we illustrate the use of the access tree AB-GKM scheme. Consider the

following policy specification on the Medication data item of the EHR. “A senior

nurse supporting at least two insurance plans can access Medication of any patient”.

In order to implement this access control policy, we need to consider attributes role,

level and insurance plan. The access control policy looks as follows:

ACP = (“role = nurse” ∧ “level = senior” ∧ “2-out-of-{MedA, MedB, MedC,

ACME}”)

Table 3.4: List of employees satisfying each insurance plan

Attribute Employee IDs

MedA emp4, emp6, emp8, emp9

MedB emp1, emp7, emp9

MedC emp5

ACME emp1, emp2, emp3, emp7, emp9

In addition to Table 3.4 containing the list of employees satisfying insurance plans,

the hospital maintains the list of employees satisfying the attributes nurse and senior

as shown in Table 3.5.

Table 3.5: List of employees satisfying attributes

Attribute Employee IDs

nurse emp3, emp4, emp5, emp8, emp9

senior emp4, emp5, emp8, emp9

The above policy can be represented using an access tree with two internal nodes

and six leaf nodes. The root node is an AND gate and has three children. The

first and second children of the root node represent the attributes nurse and senior,

54

respectively, and the third child of the root node is a 2-out-of-4 threshold gate which

has four children representing the four insurance plans.

The hospital executes the KeyGen algorithm to generate six PI tuples and en­

crypts the Medication data items with the group symmetric key k:

PIMedA = (ACVMedA, (z1, z2, z3, z4))

PIMedB = (ACVMedB, (z5, z6, z7))

PIMedC = (ACVMedC , (z8))

PIACME = (ACVACME, (z9, z10, z11, z12, z13))

PInurse = (ACVnurse, (z14, z15, z16, z17, z18))

PIsenior = (ACVsenior, (z19, z20, z21, z22))

Expressive access control. Notice that only one employee, emp9, can derive the group

key k using KeyDer algorithm to decrypt Medication data items.

Collusion resistance. Notice that emp4 supports MedA and emp5 supports MedC and

both of them are senior nurses. It may appear that these two employees can collude

to derive the group key k. Since, in this particular example, the access tree AB-GKM

scheme associates each user with two unique polynomials, one for the AND gate and

another for the threshold gate, none of them individually satisfies the access tree and

KeyDer results in an incorrect key.

Handling user dynamics. Assume that emp4 starts to support the insurance plan

ACME in addition to MedA. The hospital re-generates the public information by

adding emp4 to the calculation of PIACME and associating a new group key k
′ . Now

emp4 is able to derive k
′ using KeyDer as its attributes satisfy the access tree.

Notice that the change in the user attributes does not affect the secret information

each existing employees have. A similar approach is taken when one or more of these

attributes are revoked from an existing employee. It should be noted that, like the

55

first two schemes, this scheme has the added flexibility to support changes to the

access tree by requiring only changes to the public information.

3.5 Experimental Results

In this section we provide experimental results for the underlying optimized ACV-

BGKM scheme used with all three AB-GKM schemes presented earlier. We compare

our results with CP-ABE scheme with comparable security parameters.

The experiments were performed on a machine running GNU/Linux kernel version

2.6.32 with an Intel R� CoreTM 2 Duo CPU E8400 3.00GHz and 3.2 Gbytes memory.

Only one processor was used for computation. Our prototype system is implemented

in C/C++. We use V. Shoup’s NTL library [37] version 5.4.2 for finite field arith­

metic, and SHA-1 and AES-128 implementations of OpenSSL [38] version 1.0.0d for

cryptographic hashing and symmetric key encryption. We use Bethencourt et. al.’s

cpabe [44] library to gather experimental results for CP-ABE. The cpabe library uses

PBC library [45] for pairing based cryptography.

We implemented the ACV-BGKM scheme with subset cover optimization. We

utilized the complete subset algorithm introduced by Naor et al. [35] as the subset

cover. All finite field arithmetic operations in ACV-BGKM scheme are performed

in an 512-bit prime field. We used comparable and efficient pairing parameters for

CP-ABE. The size of the base finite field is set to the 512-bit prime number

8780710799663312522437781984754049815806883199414208211028653399266475630

8802229570786251794226622214231558587695823174592777133673174813249251299

98224791

and the group order to the 160-bit number 7307508186654516213611192455715049014

05976559617.

Following the well-known security practice, we generate symmetric keys and use

them for encrypting documents. Then we encrypt such encryption keys with either

the ACV-BGKM generated symmetric keys or the CP-ABE generated public keys.

56

Table 3.6: Average time for CP-ABE algorithms

Algorithm Time (ms)

Setup 34.395

Key generation 26.725

Encryption 24.453

Decryption 13.415

Therefore, in the experiments we measure the time to encrypt and decrypt the doc­

ument encryption keys only. For all the ACV-BGKM experiments, we assume that

5% of users have left the group after executing the setup.

First we give experimental results for the most simplest case where a single at­

tribute condition is considered. Then we provide, experimental results for multiple

attribute conditions.

Table 3.6 shows the average time required to execute setup, key generation, en­

cryption and decryption algorithms of CP-ABE scheme for one attribute condition.

 0

 5

 10

 15

 20

 25

 30

T
im

e
(in

 s
ec

on
ds

)

ACV-BGKM
CP-ABE

100 200 300 400 500 600 700 800 900 1000

Group Size

Figure 3.1.: Average key generation time for different group sizes

Figure 3.1 reports the average time required to execute the key generation algo­

rithm of ACV-BGKM and CP-ABE with different group sizes. In both ACV-BGKM

and CP-ABE the time increases linearly with the group size. However, ACV-BGKM

57

is much more efficient as it does not involve any expensive pairing operations. It only

uses efficient hashing and binary operations over a finite field. Further, the subset

cover technique applied to ACV-BGKM reduces the computational complexity of the

underlying scheme. Without the subset cover optimization, ACV-BGKM has a non­

linear computational complexity and becomes inefficient for large groups. We omit

the comparison experimental result due to lack of space.

 0

 5

 10

 15

 20

 25

 30

 35

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(in

 m
s)

ACV-BGKM encryption
ACV-BGKM decryption

CP-ABE encryption
CP-ABE decryption

Group Size

Figure 3.2.: Average encryption/decryption time for different group sizes

Figure 3.2 reports the average time required to perform encryption and decryption

in ACV-BGKM and CP-ABE schemes for one attribute condition with different group

sizes. The decryption time of ACV-BGKM is taken as the time to derive the key as

well as to decrypt the encryption key. The encryption and decryption times of CP­

ABE remain constant whereas the decryption time of ACV-BGKM increases linearly

with the group size. As the group size increases, the key derivation algorithm of ACV-

BGKM requires to spend more time to build larger KEVs. The encryption time of

ACV-BGKM is negligible and remains constant as it involves an efficient symmetric

encryption only. The average encryption time of ACV-BGKM is 8.8 microseconds (as

these times are very small, the line plotting them is very close to zero in the graph in

Figure 3.2 and thus overlaps with the x-axis). It should be noted that if one caches

the KEVs, the decryption time of ACV-BGKM also becomes negligible as it involves

only modular multiplications.

58

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8 9 10

T
im

e
(in

 m
s)

ACV-BGKM
CP-ABE

Numumber of Attribute Conditions

Figure 3.3.: Average key generation time for varying attribute counts

Figure 3.3 reports the average time required to execute the key generation algo­

rithm with varying number of attribute conditions with the group size set to 1000.

The time of both techniques increases linearly with the number of attribute condi­

tions. However, similar to Figure 3.1, the ACV-BGKM key generation is much more

efficient than the CP-ABE key generation.

As can be seen from the experiments, our constructs are more efficient in handling

scenarios where the key generation algorithm has to be executed frequently due to

changes in user dynamics.

59

4 PRIVACY PRESERVING PULL BASED SYSTEMS: SINGLE LAYER

APPROACH

We apply the GKM schemes constructed in Chapter 3 to build privacy preserving

pull based systems. Consistent with the current technological trends, we refer to the

third party server as the Cloud.

An approach to support fine-grained selective attribute-based access control before

uploading the data to the Cloud is to encrypt each data item to which the same ACP

(or set of ACPs) applies with the same key. One approach to deliver the correct keys to

the users based on the policies they satisfy is to use a hybrid solution where the keys

are encrypted using a public key cryptosystem such as attribute based encryption

(ABE) and/or proxy re-encryption (PRE). However, such an approach has several

weaknesses: it cannot efficiently handle adding/revoking users or identity attributes,

and policy changes; it requires to keep multiple encrypted copies of the same key; it

incurs high computational cost. Therefore, a different approach is required.

It is worth noting that a simplistic group key management (GKM) scheme in

which the Owner directly delivers the symmetric keys to corresponding users has some

major drawbacks with respect to user privacy and key management. On one hand,

user private information encoded in the user identity attributes is not protected in the

simplistic approach. On the other hand, such a simplistic key management scheme

does not scale well as the number of users becomes large and when multiple keys need

to be distributed to multiple users. The goal of this paper is to develop an approach

which does not have these shortcomings.

We observe that, without utilizing public key cryptography and by allowing users

to dynamically derive the symmetric keys at the time of decryption, one can address

the above weaknesses. Based on this idea, in Chapter 2, we first formalized a new

GKM scheme called broadcast GKM (BGKM) and then gave a secure construction

60

of BGKM scheme and formally prove its security. The idea is to give secrets to users

based on the identity attributes they have and later allow them to derive actual sym­

metric keys based on their secrets and some public information. A key advantage

of the BGKM scheme is that adding users/revoking users or updating access control

policies can be performed efficiently and only requires updating the public informa­

tion. As shown in Chapter 2, our BGKM scheme satisfies the requirements of minimal

trust, key indistinguishability, key independence, forward secrecy, backward secrecy

and collusion resistance as described in [15] with minimal computational, space and

communication cost.

In Chapter 3, using the ACV-BGKM scheme as a key building block, we con­

structed a more expressive GKM scheme called AB-GKM. Using our Inline AB-GKM

scheme, we develop an attribute-based access control mechanism whereby a user is

able to decrypt the data if and only if its identity attributes satisfy the Owner’s poli­

cies, whereas the Owner and the Cloud learn nothing about user’s identity attributes.

The mechanism is fine-grained in that different policies can be associated with differ­

ent data items. A user can derive only the encryption keys associated with the data

items that the user is entitled to access.

The rest of the chapter is organized as follows. Section 4.1 provides an overview of

our overall SLE approach. Section 4.2 shows how to preserve the privacy of identity

attributes from both the data owner and the third-party. Section 4.3 provides detailed

description of our scheme. Section 4.4 proposes utilizing incremental unforgeable

encryption to improve the efficiency at the Owner when the re-encryption operation

is performed. Section 4.6 presents experimental results on the OCBE protocols and

key management.

4.1 Overview of the SLE Approach

As shown in Figure 4.1, our scheme for policy based content sharing in the cloud

involves four main entities: the Data Owner (Owner), the Users (Usrs) , the Iden­

61

Owner� Cloud�

User�

(1) Register�
identity tokens�

(2) Secrets�

(3) Selectively encrypt�
& upload�

(5) Download to re-encrypt�

(4) Download &�
decrypt�

User� IdP�

(1) Identity attribute�

(2) Identity token�

Figure 4.1.: Overall system architecture

tity Providers (IdPs), and the Cloud Storage Service (Cloud). The interactions are

numbered in the figure. Our approach is based on three main phases: identity token

issuance, identity token registration, and data management.

1) Identity token issuance

IdPs issue identity tokens for certified identity attributes to Usrs. An identity token is

a Usr’s identity in a specified electronic format in which the involved identity attribute

value is represented by a semantically secure cryptographic commitment. 1 We use the

Pedersen commitment scheme and it is described in Section 4.2.2. Identity tokens are

used by Usrs during the registration phase.

2) Identity token registration

In order to be able to decrypt the data that will be downloaded from the Cloud, Usrs

have to register at the Owner. During the registration, each Usr presents its identity

tokens and receives from the Owner a set of secrets for each identity attribute based

on the SecGen algorithm of the AB-GKM scheme. These secrets are later used by

Usrs to derive the keys to decrypt the data items for which they satisfy the ACP

1A cryptographic commitment allows a user to commit to a value while keeping it hidden and
preserving the user’s ability to reveal the committed value later.

62

using the KeyDer algorithm of the AB-GKM scheme. The Owner delivers the secrets

to the Usrs using a privacy-preserving approach based on the OCBE protocols [46]

with the Usrs. The OCBE protocols ensure that a Usr can obtain secrets if and only

if the Usr’s committed identity attribute value (within Usr’s identity token) satisfies

the matching condition in the Owner’s ACP, while the Owner learns nothing about

the identity attribute value. Note that not only the Owner does not learn anything

about the actual value of Usrs’ identity attributes but it also does not learn which

policy conditions are verified by which Usrs, thus the Owner cannot infer the values

of Usrs’ identity attributes. Thus Usrs’ privacy is preserved in our scheme. We give

more details about the OCBE protocols in Section 4.2.3.

3) Data Management

The Owner groups the ACPs into policy configurations (Pcs). The data are divided

into data items based on the Pcs. The Owner generates the keys based on the ACPs in

each Pc using the KeyGen algorithm of the AB-GKM scheme and selectively encrypts

the data. These encrypted data are then uploaded to the Cloud. Usrs download

encrypted data from the Cloud. The KeyDer algorithm of the AB-GKM scheme allows

Usrs to derive the key K for a given Pc using their secrets in an efficient and secure

manner. With this scheme, our approach efficiently handles new users and revocations

to provide forward and backward secrecy. The system design also ensures that ACPs

can be flexibly updated and enforced by the Owner without changing any information

given to Usrs.

4.2 Preserving the Privacy of Identity Attributes

We observe that by preserving the privacy of the SecGen algorithm of the AB­

GKM scheme we can preserve the privacy of the whole AB-GKM scheme. We utilize

cryptographic techniques to protect the privacy of the identity attributes of the users

from the Svr while executing the SecGen algorithm. Our technique makes sure that

Usrs receive secrets only for valid identity attributes while the Svr does not learn

63

the actual identity attribute values. We now give you an overview of the two crypto­

graphic constructs, Pedersen commitments and oblivious commitment based envelope

protocols, that we use in this regard. Further, we introduce the notion of configurable

privacy for the identity attributes.

4.2.1 Discrete Logarithm Problem and Computational Diffie-Hellman Problem

Definition 4.2.1 Let G be a (multiplicatively written) cyclic group of order q and

let g be a generator of G. The map ϕ : Z → G,ϕ(n) = gn is a group homomorphism

with kernel Zq. The problem of computing the inverse map of ϕ is called the discrete

logarithm problem (DLP) to the base of g.

Definition 4.2.2 For a cyclic group G (written multiplicatively) of order q, with a

generator g ∈ G, the Computational Diffie-Hellman problem (CDH) is the following

problem: Given ga and gb for randomly-chosen secret a, b ∈ {0, . . . , q − 1}, compute

ab g .

4.2.2 Pedersen Commitment

First introduced in [47], the Pedersen Commitment scheme is an unconditionally

hiding and computationally binding commitment scheme which is based on the in­

tractability of the discrete logarithm problem. We describe how it works as follows.

Setup

A trusted third party T chooses a finite cyclic group G of large prime order p so that

the computational Diffie-Hellman problem is hard in G. Write the group operation

in G as multiplication. T chooses two generators g and h of G such that it is hard to

find the discrete logarithm of h with respect to g, i.e., an integer α such that h = gα .

Note that T may or may not know the number α. T publishes (G, p, g, h) as the

system’s parameters.

64

Commit

The domain of committed values is the finite field Fp of p elements, which can be

implemented as the set of integers Fp = {0, 1, . . . , p − 1}. For a party U to com­

mit a value x ∈ Fp, U chooses r ∈ Fp at random, and computes the commitment

c = gxhr ∈ G.

Open

U shows the values x and r to open a commitment c. The verifier checks whether

xhrc = g .

4.2.3 OCBE Protocols

The Oblivious Commitment-Based Envelope (OCBE) protocols, proposed by Li

and Li [46], provide the capability of delivering information to qualified users in an

oblivious way. There are three communications parties involved in OCBE protocols:

a receiver R, a sender S, and a trusted third party T. The OCBE protocols make sure

that the receiver R can decrypt a message sent by S if and only if R’s committed value

satisfies a condition given by a predicate in S’s access control policy, while S learns

nothing about the committed value. Note that S does not even learn whether R is

able to correctly decrypt the message or not. The supported predicates by OCBE are

comparison predicates >,≥, <,≤,= and =.

The OCBE protocols are built with several cryptographic primitives:

1. The Pedersen commitment scheme.

2. A semantically secure symmetric-key encryption algorithm E , for example, AES,

with key length k-bits. Let EKey[M] denote the encrypted message M under the

encryption algorithm E with symmetric encryption key Key.

3. A cryptographic hash function H(·). When we write H(α) for an input α in a

certain set, we adopt the convention that there is a canonical encoding which

65

encodes α as a bit string, i.e., an element in {0, 1}∗, without explicitly specifying

the encoding.

Given the notations as above, we summarize the OCBE protocol for = (EQ­

OCBE) and ≥ (GE-OCBE) predicates as follows. The OCBE protocols for other

predicates can be derived and described in a similar fashion. The protocols’ descrip­

tion is tailored to our work, and is stated in a slightly different way than in [46].

EQ-OCBE Protocol

Parameter generation

T runs a Pedersen commitment setup protocol to generate system parameters Param =

(G, g, h). T outputs the order of G, p, and P = {EQx0 : x0 ∈ Fp}, where

EQa0 : Fp → {true, false}

is an equality predicate such that EQx0 (x) is true if and only if x = x0.

Commitment

T first chooses an element x ∈ Fp for R to commit. T then randomly chooses r ∈ Fp,

xhrand computes the Pedersen commitment c = g . T sends x, r, c to R, and sends c

to S.

Alternatively, in an offline version, T digitally signs c and sends x, r, c together

with the signature of c to R. Then the validity of the commitment c can be ensured

by verifying T’s signature. In this way, after S obtains T’s public key for signature

verification, no further communication is needed between T and S.

Interaction

• R makes a data request to S.

• Based on this request, S sends an equality predicate EQx0 ∈ P .

xhr• Upon receiving this predicate, R sends S a Pedersen commitment c = g .

66

•	 S picks y ∈ F ∗ p at random, computes σ = (cg−x0)y, and sends R a pair (η =

hy, C = EH(σ)[M]), where M is a message containing the requested data.

Open

Upon receiving (η, C) from S, R computes σ ′ = ηr, and decrypts C using H(σ ′).

The GE-OCBE Protocol works in a bit-by-bit fashion, for attribute values of

at most ℓ bits long, where ℓ is a system parameter which specifies an upper bound

for the bit length of attribute values such that 2ℓ < p/2. The GE-OCBE protocol is

more complex in terms of description and computation compared to EQ-OCBE (=).

It works as follows.

GE-OCBE Protocol

Parameter generation

T runs a Pedersen commitment setup protocol to generate system parameters Param =

(G, g, h), and outputs the order of G, p. In addition, T chooses another parameter ℓ,

which specifies an upper bound for the length of attribute values, such that 2ℓ < p/2.

T outputs V = {0, 1, . . . , 2ℓ − 1} ⊂ Fp, and P = {GEx0 : x0 ∈ V}, where

GEx0 : V → {true, false}

is a predicate such that GEx0 (x) is true if and only if x ≥ x0.

Commitment

T chooses an integer x ∈ V for R to commit. T then randomly chooses r ∈ Fp, and

xhrcomputes the Pedersen commitment c = g . T sends x, r, c to R, and sends c to S.

Similarly, an offline alternative also works here.

Interaction

•	 R makes a data request to S.

•	 Based on the request, S sends to R a predicate GEx0 ∈ P .

67

xhr• Upon receiving this predicate, R sends to S a Pedersen commitment c = g .

ℓ−1

• Let d = (x − x0) (mod p). R picks r1, . . . , rℓ−1 ∈ Fp, and sets r0 = r −
L

2iri.
i=1

If GEx0 (x) is true, let dℓ−1 . . . d1d0 be d’s binary representation, with d0 the

lowest bit. Otherwise if GEx0 is false, R randomly chooses dℓ−1, . . . , d1 ∈ {0, 1},
ℓ−1

and sets d0 = d −
L

2idi (mod p). R computes ℓ commitments ci = gdi hri for
i=1

0 ≤ i ≤ ℓ− 1, and sends all of them to S.

ℓ−1

• S checks that cg−x0 =
�

(ci)
2i
. S randomly chooses ℓ bit strings k0, . . . , kℓ−1,

i=0

and sets k = H(k0 � . . . � kℓ−1). S picks y ∈ F ∗ p, and computes η = hy, C =

Ek[M], whereM is the message containing requested data. For each 0 ≤ i ≤ ℓ−1

and j = 0, 1, S computes σi
j = (cig

−j)y, Ci
j = H(σi

j)⊕ ki. S sends to R the tuple

(η, C0
0, C0

1 , . . . , Cℓ
0
−1, Cℓ

1
−1, C).

Open

After R receives the tuple (η, C0
0

0 , . . . , C
0 , Cℓ

1
−1, C) from S as above, R computes , C1

ℓ−1

σi
′ = ηri , and ki

′ = H(σi
′)⊕ Ci

di , for 0 ≤ i ≤ ℓ− 1. R then computes k ′ = H(k0
′ � . . . �

kℓ
′
−1), and decrypts C using key k

′ .

EQ-OCBE protocol is simpler and more efficient compared GE-OCBE protocol.

The OCBE protocol for the ≤ predicates (LE-OCBE) can be constructed in a similar

way as GE-OCBE. Other OCBE protocols (for =, <,> predicates) can be built on

EQ-OCBE, GE-OCBE and LE-OCBE.

All these OCBE protocols guarantee that the receiver R can decrypt the mes­

sage sent by S if and only if the corresponding predicate is evaluated as true at R’s

committed value, and that S does not learn

4.2.4 Configurable Privacy

In order to assure maximum privacy, Usr should register its identity token for

all attribute conditions whose attribute names match the id-tag field in the identity

token. While providing maximum privacy for Usr, it also inevitably increases the

68

number of OCBE protocol executions and the complexity of the AB-GKM algorithms

in almost all cases. However, in an application scenario where it is not crucial for a

Usr to achieve maximum privacy for certain identity attributes, Usrs are allowed to

register as few as possible attribute conditions for an id-tag, while at the same time

feel comfortable about the level of guaranteed privacy. In this way, the complexity of

the AB-GKM algorithms can be effectively reduced. We introduce a notion similar

to the idea of k-anonymity [48]. The following formula (4.1) shows an example of

computing privacy level for an id-tag.

Let privacy be measured by a number from 0 to 1, where 0 means “no privacy” and

1 maximum privacy. Let M ≥ 2 be the total number of attribute conditions which

apply to an id-tag in the system. Suppose all attribute conditions corresponding to

one id-tag has the same level of privacy. Let m be the number of attribute conditions

a Usr registers for an identity token that it holds. Suppose a Usr holding an identity

token always registers for the attribute condition which this identity token satisfies.

Then the level of privacy for this registered identity token of Usr can be calculated as

Formula 1 (Privacy formula)

m − 1
P = . (4.1)

M − 1

The above formula can be easily verified: for example, if there are overall M = 2

attribute conditions “role = doc” and “role = nur” for id-tag = role, then registering

for m = 1 attribute condition reveals the attribute value, i.e., P = 0, and registering

for both (m = 2) attribute conditions gives maximum privacy P = 1. Usrs may use

such a quantitative measure the level of privacy they have and the system may use the

same measure to impose a minimum privacy requirement, for example, to maintain

organizational privacy policies.

4.3 Single Layer Encryption Approach

Section 4.1, our scheme has three phases: identity token issuance, identity token

registration and data management. We did not consider the technical details and

69

privacy in Section 4.1. In this section we make our scheme privacy preserving using

the techniques introduced in Section 4.2. We explain our approach using the AB­

GKM scheme with the subset cover optimization as a key building block.

4.3.1 Identity Token Issuance

The IdP runs a Pedersen commitment setup algorithm to generate system param­

eters Param = (G, g, h). The IdP publishes Param as well as the order p of the finite

group G. The IdP also publishes its public key for the digital signature algorithm it

is using. Such parameters are used by the IdP to issue identity tokens to Usrs. We

assume that the IdP first checks the valid of identity attributes Usrs hold 2 . Usrs

present to the IdP their identity attributes to receive identity tokens as follows. For

each identity attribute shown by a Usr, the IdP encodes the identity attribute value

as x ∈ Fp in a standard way, and issues the Usr an identity token. An identity token

is a tuple

IT = (nym, id-tag, c, σ),

where nym is a pseudonym for uniquely identifying the Usr in the system, id-tag is the

tag of the identity attribute under consideration, c = gxhr is a Pedersen commitment

for the value x, and σ is the IdP’s digital signature for nym, id-tag and c. The IdP

passes values x and r to the Usr for the Usr’s private use. We require that all identity

tokens of the same Usr have the same nym, 3 so that the Usr and its identity tokens

can be uniquely matched with a nym. Once the identity tokens are issued, they are

used by Usrs for proving the satisfiability of the Pub’s ACPs; Usrs keep their identity

attribute values hidden, and never disclose them in clear during the interactions with

other parties.

2The IdP can verify the validity of Usr’s identity either in a traditional way, e.g., through a on-the­
spot registration, or digitally over computer networks. We will not dive into the details of identity
validity check in this thesis.
3In practice, this can be achieved by requesting the Usr to present a strong identifier that correlates
with the identity being registered. Again, we will not discuss this process in this thesis.

70

Example 1

Suppose a Usr Bob presents his driver’s license to IdP to receive an identity token for

his age. IdP assigns Bob a pseudonym pn-1492. IdP deduces from the birth date on

Bob’s driver’s license that Bob’s age is x = 28. The IdP randomly chooses a value

r = 9270, and computes a Pedersen commitment c = gxhr . The IdP then digitally

signs the message containing Bob’s pseudonym, a tag for “age” and the commitment

c. The identity token Bob receives from the IdP may look like this:

IT = (pn-1492, age, 6267292101, 949148425702313975).

4.3.2 Identity Token Registration

We assume that the Owner defines a set of ACPs denoted as ACPB that specifies

which data items Usrs are authorized to access. ACPs are formally defined as follows.

Definition 4.3.1 (Attribute Condition).

An attribute condition cond is an expression of the form: “nameA op l”, where nameA

is the name of an identity attribute A, op is a comparison operator such as =, <, >,

≤, ≥, =, and l is a value that can be assumed by attribute A.

Definition 4.3.2 (Access control policy).

An access control policy (ACP) is a tuple (s, o,D) where: o denotes a set of data

items {D1, . . . , Dt} of data D; and s is a Boolean formula of attribute conditions

cond1, . . . , condn that must be satisfied by a Usr to have access to o. 4

Different ACPs can apply to the same data items because such data items may

have to be accessed by different categories of Usrs. We denote the set of ACPs that

apply to a data item as policy configuration.

Definition 4.3.3 (Policy configuration).

A policy configuration (Pc) for a data item D1 of data D is a set of policies {ACP1, . . . ,

ACPk} where ACPi, i = 1, . . . , k is an ACP (s, o,D) such that D1 ∈ o.

4In what follow we use the dot notation to denote the different components of an ACP.

71

Example 2

The ACP (“level ≥ 58” ∧ “role = nurse”, {physical exam, treatment plan}, “EHR.xml”)

states that a Usr of level no lower than 58 and holding a nurse position has access to

the data items “physical exam” and “treatment plan” of document EHR.xml.

There can be multiple data items in D which have the same Pc. For each Pc of D,

the Owner randomly chooses a key K for a symmetric key encryption algorithm (e.g,

AES), and uses K to encrypt all data items associated with this policy configuration.

Therefore, if a Usr satisfies ACP1, . . . , ACPm, Owner must make sure that the Usr

can derive all the symmetric keys to decrypt those data items to which a policy

configuration containing at least one ACPi(i = 1, . . . ,m) applies.

As in our AB-GKM based scheme the actual symmetric keys are not delivered

along with the encrypted data, a Usr has to register its identity tokens at the Owner

in order to derive the symmetric encryption key from the PubInfo stored at the Cloud.

The SecGen algorithm of the AB-GKM scheme and the OCBE techniques are used to

register user identity tokens in a privacy preserving manner. During the registration,

a Usr receives a set of secrets, based on the identity attribute names corresponding

to the attribute names in the identity tokens. Note that secrets are generated by

the Owner only based on the names of identity attributes and not on their values.

Therefore, a Usr may receive an encrypted set of secrets corresponding to a condition

which has a value that the Usr’ identity attribute does not satisfy. However, in this

case, the Usr will not be able to extract the secrets from the message delivering it as

shown in Section 4.2.3. Proper secrets are later used by a Usr to compute symmetric

decryption keys for particular data items of the encrypted data, as discussed in the

data management phase. The delivery of secrets are performed in such a way that

the Usr can correctly receive secrets if and only if the Usr has an identity token whose

committed identity attribute value satisfies an attribute condition in Owner’s ACP,

while the Owner does not learn any information about the Usr’s identity attribute

value and does not learn whether Usr has been able to obtain the secret.

72

To enable Usrs registration, the Owner first chooses the OCBE parameters: an ℓ ′ ­

bit prime number q, a cryptographic hash function H(·) whose output bit length is no

shorter than ℓ ′ , and a semantically secure symmetric-key encryption algorithm with

key length ℓ ′ bits. The Owner publishes these parameters. The Owner also constructs

a subset cover tree with n leaf nodes corresponding to each Usr for each distinct

attribute condition in ACPs. Let SCj be the subset cover for the attribute condition

condj. Then for an ACP in ACPB that a subscriber Usri under pseudonym nymi

wants to satisfy, it selects and registers an identity token IT = (nymi, id-tag, c, σ)

with respect to each attribute condition condj in ACP. Note that Usri does not

register only for the attribute condition which the Usri’s identity token satisfies; to

assure privacy, Usri registers its identity token for more attribute conditions whose

identity attribute name matches the id-tag contained in the identity token. In this

way, the Owner cannot infer from Usri’s registration which condition Usri is actually

interested in. Such measures greatly reduce the leaking of identity attributes due to

insider threats.

The Owner checks if id-tag matches the name of the identity attribute in condj,

and verifies the IdP’s signature σ using the IdP’s public key. If either of the above

steps fails, the Owner aborts the interaction. Otherwise, the Owner selects the cor­

responding secrets from the subset cover SCj for Usri. The Owner then starts an

OCBE session as a sender (S) to obliviously transfer these secrets to Usri who acts

as a receiver (R). The Owner maintains a matrix T to store if secrets are delivered

to each Usri for each condj. Upon the completion of the OCBE session the Owner

performs the following actions:

• If nymi does not exist in the matrix, it first creates a row for it.

• It sets ri,j cell of T with respect to nymi and condj.

We remark that all secrets are independent, so the above secret delivery process

can be executed in parallel. Matrix T is used by the Owner to execute the KeyGen

algorithm of the AB-GKM scheme.

Example 3

73

Matrix 4.1 shows an example of matrix T . A Usr under pseudonym pn-0012 who has

an identity token with respect to identity tag role registers for all attribute conditions

(“role = doc” and “role = nur” are shown in Table 4.1) involving identity attribute

role. This Usr does not register for attribute conditions “level ≥ 59”, “YoS ≥ 5” 5

and “YoS < 5”, either because it does not hold an identity token with identity tag

level or YoS, thus cannot register, or because it chooses not to register as it only

needs to access data items whose associated ACP does not require conditions for

these attributes. A drawback of registering only for the conditions required is that it

may allow an attacker to infer certain attributes about the Usr with high confidence.

To protect against such attacks the Usr may choose to register for more than one

condition as explained earlier. Note that the Usr under pn-0829 registers for both

conditions YoS ≥ 5 and YoS < 5, which are mutually exclusive and thus both cannot

be satisfied by any Usr. The registration for both conditions is crucial for privacy

in that it prevents the Pub from inferring from the Usr’s registration behavior which

condition the Usr is actually interested in. A Usr under pn-1492 registers for all five

attribute conditions.

Table 4.1: A table of secrets maintained by the Pub

nym level ≥ 59 YoS ≥ 5 YoS < 5 role = doc role = nur . . .

pn-0012 ⊥ ⊥ ⊥ 1 1 . . .

pn-0829 1 1 1 ⊥ ⊥ . . .

pn-1492 1 1 1 1 1 . . .

.

5YoS means “years of service”.

74

4.3.3 Data Management

Recall that the Owner encrypts all data items with the same Pc applicable with

the same symmetric key. Therefore, the Owner execute the KeyGen algorithm of the

AB-GKM for each Pc. For a given Pc, the Owner first identifies the secrets to be

considered as follows.

•	 The Owner first converts each ACP into DNF (Disjunctive Normal Form). For

each unique conjunctive term, it executes the remaining steps.

•	 Let ith conjunctive term be
/φi condj, where the term has φi conditions. The j=1

Owner iterates through the secrets matrix T , and finds the set of users who

satisfy all the conditions in each conjunctive term.

•	 At the end of the previous step, the Owner has the list of Usrs who satisfy the

Pc, their association with the subset covers SCi for each applicable condi. The

Owner identifies the covers in each SCi and the secrets corresponding the covers.

The Owner aggregates by concatenating secrets in the order of the conditions

in the conjunctive terms to produce a single secret for each user satisfying the

conjunctive terms. For example, if the conjunctive term is cond1 ∧ cond3 and

Usr5 satisfies the term, the Owner obtains the cover secrets s1 and s3 from SC1

for Usr5 and SC3 for Usr5 respectively. The aggregated secret is s1||s3.

The set of aggregated secrets from the above algorithm is used as the input to the

KeyGen algorithm which produces the public information PubInfo and the symmet­

ric group key k. The Owner creates an index of the public information tuples and

associate with the encrypted data, and uploads them to the Cloud.

If a Usr with nymi wants to view the data item D1, it first downloads the encrypted

data item along with the PubInfo. It then picks an ACPk that it satisfies and derive

the key using the KeyDer algorithm.

Now we look at how to handle system dynamics such as adding/revoking creden­

tials and ACP updates.

75

When a new user Usr registers at the Owner, the Owner delivers corresponding

secrets to Usr, and updates the matrix T . The Owner then performs a rekey process

for all involved data items (or equivalently, policy configurations) using the Update

algorithm. When Owner uploads new data, it also uploads the updated PubInfo index.

During credential revocations, the conditions under which a Usr needs to be re­

voked is out of the scope of this paper. We assume that the Owner will be notified

when a Usr with a pseudonym nymi is revoked from those who may satisfy condj. In

this case, the Owner simply reset the value ri,j from matrix T , and performs a rekey

process for all involved data items. Allowing particular secrets to be deleted from T

enables a fine-tuned user management.

A Usr’s credentials may have to be updated over time for various reasons such as

promotions, change of responsibilities, etc. In this case, the Usr with a pseudonym

nymi submits updated credential condj to the Owner. The Owner simply resets the

old ri,j entry and set a new entry in the matrix T , and performs a rekey process only

for the data items involved.

When a Usr with a pseudonym nymi needs to be removed, the Owner removes the

row corresponding to nymi from the matrix T , and performs a rekey process only for

the data items involved.

Note that in all cases of new subscription, credential revocation, credential update

and subscription revocation, the rekey process does not introduce any cost to Usrs

in that except for those whose identity attributes are added, updated or revoked, no

Usr needs to directly communicate with the Owner to update secrets–new encryp­

tion/decryption keys can be derived by using the original secrets and updated public

values stored at the Cloud. The ability to derive the secret encryption/decryption keys

using public values is a key point to achieve transparency in subscription handling.

Most of the existing GKM scheme fails to achieve this objective.

76

4.4 Improving Efficiency of Re-Encryption

In the current SLE scheme, the Owner has to download full encrypted data to

perform re-encryption whenever group dynamics changes. In order to improve the

efficiency of the re-encryption operation, in this section, we propose to utilize incre­

mental unforgeable encryption [49, 50] technique. It requires only re-encrypt only

the modified blocks of data instead of all the blocks. We give an overview of the

technique below and later provide experimental results to show that it does improve

the efficiency of the overall system where frequent re-encryptions of data items are

performed.

The main motivation for incremental cryptography [49] is to devise cryptographic

algorithms whose output can be updated very efficiently when the underlying input

changes. Incremental cryptography has been applied to hashing, signing, message

authentication, and encryption. Since in our work we utilize existing incremental

encryption algorithms [50] only, we limit our discussion to incremental encryption.

We view a message M as a set of blocks m1,m2, · · · ,mn, where the block size

b is decided by a security parameter ℓ. Our system should be able to perform the

following modifications operations:

•	 Insert operation: (insert, i, m) inserts the message block m between blocks ith

and (i+ 1)th .

•	 Delete operation: (delete, i) deletes the ith message block.

•	 Replace operation: (replace, i, m) replaces the ith message block with the mes­

sage block m.

Definition 4.4.1 (Modification Space) The modification space, denoted by U , is

defined as the set of all possible modification operations that can be performed on any

block of a message.

Definition 4.4.2 (Incremental Encryption) An incremental (private-key) encryp­

tion scheme
�

defined over modification space U is a symmetric key block cipher

77

scheme that consists of the following four algorithms: KeyGen, Enc, Dec and In­

cEnc. The first three algorithms are defined as in traditional block cipher schemes.

We give an overview of the algorithms below.

KeyGen(ℓ):

The key generation algorithm is a probabilistic poly(ℓ)-time algorithm that takes as

input security parameter ℓ and generates a random symmetric key k. The security

parameter also fixes a block size b.

Enc(k, M):

The encryption algorithm is a probabilistic poly(ℓ, |M |)-time algorithm that takes as

input the symmetric key k and the plaintext message M ∈ ({0, 1}b)+, and produces

the ciphertext C.

Dec(k, C):

The decryption algorithm is a deterministic poly(ℓ, |C|)-time algorithm that takes as

input the symmetric key k and the ciphertext C, and produces either the plaintext

message M or a special symbol ⊥ to indicate that the ciphertext C is invalid.

IncEnc(k, U , C):

The incremental encryption algorithm is a probabilistic poly(ℓ, |C|, |M |)-time algo­

rithm that takes as input the symmetric key k, the modification operation U ∈ U , the

previous ciphertext C corresponding to M , and produces the modified ciphertext C ′

which is the encryption of the plaintext M with the modification operation U applied.

Security requirements for the incremental encryption scheme are as follows:

•	 Indistinguishability: The encryption algorithm should be semantically secure.

•	 Unforgeability (integrity): A malicious adversary who views a sequence of en­

cryptions and incremental update operations should be unable to generate any

new ciphertext which decrypts to a valid plaintext.

78

•	 Obliviousness: The ciphertext should not reveal information about the revision

history of the underlying plaintext.

A practical incremental encryption scheme should at least satisfy the indistin­

guishability and obliviousness requirements. We call such scheme confidentiality only

scheme. If data integrity guarantee is required, the incremental encryption scheme

should satisfy the above three security requirements. We call such scheme confiden­

tiality and integrity scheme.

An incremental encryption scheme
�

is called ideal if the running time of its

incremental encryption algorithm is independent of |M | and |C| and depends on the

type of modification only. In practice, when also data integrity must be verified, it

is not possible to construct an ideal incremental encryption scheme. However, if the

incremental encryption scheme can run in time sublinear to |M |, it is still better

than the conventional encryption schemes which requires time O(|M |) to compute

the ciphertext from scratch. With such incremental schemes, when large messages

change frequently, considerable efficiency improvements are possible.

Algorithm 1 rECB mode

1:	 Break the message M into b-bit blocks m1,m2, · · · ,mn

2:	 Select random value r0 ← {0, 1}
b

3:	 Enc(k, r0)

4:	 for Each block mi, i = 1 to n do

5: ri ← {0, 1}
b

6: ci = (Enc(k, mi ⊕ ri), (k, ri ⊕ r0))

7:	 end for

8:	 Return c1, c2, · · · , cn

In our work, we implement two incremental encryption schemes for confidentiality

only and for both confidentiality and integrity. We use randomized ECB (rECB) and

RPC modes with a block cipher [50] for confidentiality only, and confidentiality and

79

integrity schemes respectively. We give a high-level description of these two modes of

encryption below.

Randomized ECB (rECB) Mode

Recall that rECB mode provides confidentiality only. Algorithm 1 describes en­

crypting with this mode.

Decryption is performed by computing Dec(k, ci), i = 1, 2, · · · , n. It is easy to see

that it supports replace, delete and insert operations. Incremental update operations

result in only small changes to the ciphertext as each block is encrypted independently.

RPC Mode

RPC mode provides both confidentiality and integrity. Algorithm 2 describes

encrypting with this mode.

Algorithm 2 RPC mode

1: Break the message M into b− 2r-bit blocks m1,m2, · · · ,mn

2: for i = 0 to n do

3: Select random value ri ← {0, 1}
r

4: end for

5: c0 = Enc(k, r0||START ||r1)

6: for Each block mi, i = 1 to n − 1 do

7: ci = Enc(k, ri||mi||ri+1)

8: end for

9: cn = Enc(k, rn||mn||r0)

∗ ⊕n10: r = i=1ri

11: c ∗ = Enc(k, r ∗ ⊕ r0||0b−2r||r ∗)

12: Return c0, c1, c2, · · · , cn, c ∗

80

We assume that the keyword ”START” is not part of the valid message space.

c0 identifies the start of the message and c ∗ identifies the end of the message and

also contains the checksum. Decryption is performed by computing Dec(k, ci), i =

0, 1, · · · , n and Dec(k, c ∗). The following checks are performed to verify the integrity:

• The first block contains the keyword ”START”.

• The ri values are chained correctly.

• The decryption of c ∗ contains the correct r0 and the checksum.

If the integrity checks succeed, the decryption algorithm outputs the message M ,

otherwise ⊥.

Similar to rECB mode, this mode supports replace, insert and delete operations.

A main challenge in implementing an incremental encryption scheme is to manage

the blocks in order to efficiently support insert, delete and replace operations.

4.5 An Example Application

We now illustrate how the internals of our inline AB-GKM scheme works through

a simplified example in a healthcare scenario. This discussion is based on the infor­

mation available at [42].

A hospital’s data center Owner has to broadcast an XML file “EHR.xml” which

contains the electronic health record (EHR) of a patient to the hospital’s employees.

<PatientRecord>

<ContactInfo>

... ...

</ContactInfo>

<BillingInfo>

... ...

</BillingInfo>

81

<ClinicalRecord>

<HistoryOfPresentIllness>

... ...

</HistoryOfPresentIllness>

<PastMedicalHistory>

... ...

</PastMedicalHistory>

<Medication>

// This has the current prescription

... ...

<Medication>

<AlergiesAndAdverseReactions>

... ...

</AlergiesAndAdverseReactions>

<FamilyHistory>

... ...

</FamilyHistory>

<SocialHistory>

// Smoking, drinking, etc.

... ...

<SocialHistory>

<PhysicalExams>

// Weight, body temperature, skin tests, etc.

... ...

</PhysicalExams>

<LabRecords>

// X-rays, etc.

... ...

</LabRecords>

82

<Plan>

// What needs to be done, etc.

... ...

</Plan>

</ClinicalRecord>

</PatientRecord>

The subdocuments of “EHR.xml”, marked with different XML tags, need to be

accessed by different employees based on their roles and other identity attributes.

Suppose the roles for the hospital’s employees are: receptionist (rec), cashier (cas),

doctor (doc), nurse (nur), data analyst (dat), and pharmacist (pha). The involved

access control policies for “EHR.xml” are

1. ACP1 = (“role = rec”, {(ContactInfo)}, “EHR.xml”)

2. ACP2 = (“role = cas”, {(BillingInfo)}, “EHR.xml”)

3. ACP3 = (“role = doc”, {(ClinicalRecord)}, “EHR.xml”)

4. ACP4 = (“role = nur ∧ level ≥ 59”, {(ContactInfo), (Medication), (PhysicalExams),

(LabRecords), (Plan)}, “EHR.xml”)

5. ACP5 = (“role = dat”, {(ContactInfo), (LabRecords)}, “EHR.xml”)

6. ACP6 = (“role = pha”, {(BillingInfo), (Medication)}, “EHR.xml”)

“EHR.xml” is divided into subdocuments based on these access control policies:

• (ContactInfo): ACP1, ACP4, ACP5

• (BillingInfo): ACP2, ACP6

• (Medication): ACP3, ACP4, ACP6

• (PhysicalExams): ACP3, ACP4

• (LabReports): ACP3, ACP4, ACP5

83

• (Plan): ACP3, ACP4

• Other stuff: none

The policy configurations and their associated subdocuments are:

• Pc1 = {ACP1,ACP4,ACP5} ↔ (ContactInfo)

• Pc2 = {ACP2,ACP6} ↔ (BillingInfo)

• Pc3 = {ACP3,ACP4,ACP6} ↔ (Medication)

• Pc4 = {ACP3,ACP4} ↔ (PhysicalExams), (Plan)

• Pc5 = {ACP3,ACP4,ACP5} ↔ (LabReports)

• Pc6 = {} ↔ Other XML tags

Assume that the involved hospital employees have already obtained their identity

tokens and have received their secrets through the delivery phase described earlier,

and that the secret table T has been created by Owner. Owner chooses an encryption

key Ki for each policy configuration Pci to encrypt the associated subdocuments.

Without loss of generality, we focus on the case of Pc4 = {ACP3,ACP4} and use

the visible records in Table 4.1 for demonstration. An SQL-styled database query

SELECT * FROM T WHERE ‘role = doc’ <> NULL

returns two rows containing pseudonyms pn-0012 and pn-1492, corresponding to the

employees which can potentially access subdocuments to which ACP3 applies. Simi­

larly, it can be easily seen that an employee under pn-1492 is the only one who may

satisfy ACP4. The Owner then chooses N = 3, and random values z1, z2, z3. For

the employee under pn-0012 whose secret for the attribute condition “role = doc” is

86571, the Owner computes values

a1,1 = H(86571||z1), a1,2 = H(86571||z2), a1,3 = H(86571||z3).

84

The Owner executes a similar computation for the user under pn-1492 thus obtaining

the values

a2,1 = H(13011||z1), a2,2 = H(13011||z2), a2,3 = H(13011||z3).

By now the Owner has computed both required rows of matrix A for ACP3, and

will process ACP4. In this case, for pn-1492 whose secrets corresponding to the two

conditions “role = nur” and “level ≥ 59” are r3,1 and r3,2, respectively, the Owner

computes

a3,1 = H(11109||60987||z1), a3,2 = H(11109||60987||z2),

a3,3 = H(11109||60987||z3).

For simplicity and illustration purpose, assume q = 17, and the resulting matrix over

F17  
1 15 3 4

A =


1 4 13 3


.  
1 12 5 6

The Owner solves AY = 0 for a non-trivial Y = (4, 4, 3, 3)T . Let K4 = 11. The Owner

sets

X = Y + (K4, 0, 0, 0)
T = (15, 4, 3, 3)T .

The Owner publishesX, z1, z2, z3 with the associated subdocuments (PhysicalExams),

(Plan), which are encrypted with a symmetric encryption key K4 = 11.

Suppose that the employee under pn-0012 is a doctor, thus satisfies ACP3 and has

correctly received the secret during the delivery process. To obtain the decryption

key K4, the doctor computes a1,1 = 15, a1,2 = 3 and a1,3 = 4 as the Owner did, then

calculates

K4 = (1, a1,1, a1,2, a1,3) · X = (1, 15, 3, 4) · (15, 4, 3, 3)T = 11.

The doctor can now use this key to decrypt the subdocuments (PhysicalExams),

(Plan).

Suppose that the employee under pn-1492 is a nurse of level 58. Then it satisfies

neither ACP3 nor ACP4; therefore it cannot receive the secrets 11109 or 13001. Al­

85

though this nurse has the correct secret 60987 for attribute condition “role = nur”,

it is not able to compute any of a2,i or a3,i, i = 1, 2, 3, and thus is not able to obtain

a KEV to derive the decryption key K4. Hence it cannot access the subdocuments

(PhysicalExams), (Plan).

The process is similar for the other policy configurations. It is worth remarking,

though, that for the policy configuration Pc6, which is an empty set, the Owner can

just encrypt the associated subdocuments with an encryption key K6 without the

need of publishing X or zi, because in this case no employee is authorized to access

this portion of data.

4.6 Experimental Results

In this section, we present experimental results for various parameters in our

system. We have built a fully functioning system in C/C++ that incorporates our

techniques for privacy preserving secret delivery based on the OCBE protocols, and

efficient key management using the inline AB-GKM scheme.

The experiments were performed on a machine running GNU/Linux kernel version

R2.6.27 with an Intel� CoreTM 2 Duo CPU T9300 2.50GHz and 4 Gbytes memory.

Only one processor was used for computation. The code is built with 64-bit gcc version

4.3.2, optimization flag -O2. The code is built over the G2HEC C++ library [51],

which implements the arithmetic operations in the Jacobian groups of genus 2 curves.

For the secret delivery and group key management phases, we use V. Shoup’s NTL

library [37] version 5.4.2 for finite field arithmetic, and SHA-1 implementation of

OpenSSL [38] version 0.9.8 for cryptographic hashing.

4.6.1 Privacy Preserving Secret Delivery

The secret delivery phase uses the OCBE protocols, which consist of three major

steps: 1) extra commitments generation (OCBE for inequality conditions only) at

86

the Usr, 2) envelope composition at the Owner, and 3) envelope opening at the Usr. 6

In this section, we evaluate the performance of these three steps for both EQ- and

GE-OCBE protocols.

We choose the group G to be the rational points of the Jacobian variety (aka.

Jacobian group) of a genus 2 curve

2 3C : y = x5 + 2682810822839355644900736x

+226591355295993102902116x2 + 2547674715952929717899918x

+4797309959708489673059350

over the prime field Fq, with q = 5 · 1024 + 8503491 (83 bits). The Jacobian group of

this curve has a prime order

p =24999999999994130438600999402209463966197516075699 (164 bits).7

Table 4.2: Average computation time for running one round of the EQ-OCBE protocol

Computation Time (in ms)

Create Extra Commitments (Usr) 0.00

Open Envelope (Usr) 35.25

Compose Envelope (Owner) 11.80

The OCBE parameter generation program chooses non-unit points g and h in the

Jacobian group as the base points for constructing the Pedersen commitments.

We use attribute values that satisfy the attribute conditions in the policy. We

expect a similar running time if the attribute values do not satisfy the attribute

conditions in the policy. For GE-OCBE, we vary the value of the ℓ parameter, which

controls the range of the difference between the committed value x and the value x0

specified in the policy, from 5 to 40, and performed evaluation accordingly. In this

6Interested readers may refer to [46,52] for details.
7The data is taken from [53].

87

experiment, we run both EQ- and GE-OCBE protocols for randomly chosen data, for

50 rounds, and take the average values. Figure 4.2 and Table 4.2 report the average

running time of one round of the GE-OCBE protocol and the EQ-OCBE protocol,

respectively.

The experimental results show that the overall computation takes at most a few

seconds for the privacy preserving registration through the OCBE protocols when all

possible identity attribute values lie within an interval of width up to 240 . Because of

the impact of the values of ℓ on the performance of the secret delivery, it is important

to choose ℓ as small as possible, while at the same time large enough to upper-bound

the attribute values. For example, the identity attribute “age” (in years) usually has

values from 0 to 200 and can be represented using 8 bits. In this case, it is sufficient

to choose ℓ to be 8. We expect other OCBE protocols for inequality predicates to

have a performance similar to that of GE-OCBE, because the design and operations

are similar.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

T
im

e
(in

 m
ill

is
ec

on
ds

)

Create Extra Commitments (Sub)
Compose Envelope (Pub)

Open Envelope (Sub)

5 10 15 20 25 30 35 40

l

Figure 4.2.: Average computation time for running one round of GE-OCBE protocol

4.6.2 Data and Key Management

In Chapter 3, we provided experimental results only for the Access Tree AB­

GKM. In this section, we report experimental results for the Inline AB-GKM which

88

is the AB-GKM scheme used in this work. We perform experiments to evaluate the

performance of generation of the ACVs at the Owner and the key derivation from the

ACVs at the Usr, and the size of the ACVs for different system parameters including

the number of maximum users and the number of attribute conditions. All finite field

arithmetic operations are performed in an 80-bit prime field.

The following experiments are performed with different user configurations. A

user configuration indicates the number of current Usrs and the maximum user limit

N . For example, the configuration ‘25% Usrs’ with N = 1000, has 250 Usrs. We use

25 policies, each on average containing two conditions. Each Usr satisfies the policy

in the policy configuration under consideration. We illustrate the experiments for

one data item, as computations related to different data items are independent and

similar, and thus can be performed in parallel.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

T
im

e
(in

 s
ec

on
ds

)

25% Subs
50% Subs
75% Subs

100% Subs

100 200 300 400 500 600 700 800 900 1000

Maximum Users

Figure 4.3.: Time to generate an ACV for different user configurations

Figure 4.3 reports the average time spent in computing an ACV corresponding to

the matrix A for different user configurations. An ACV is a random vector in the null

space of matrix A. We generate an ACV by first computing a basis of the null space

of A, then choosing the ACV as a random linear combination of the basis vectors. For

a given N , the ACV computation time increases with the number of current users.

This is consistent with the fact that as the number of current users increases, the

number of rows in the matrix A (consequently the rank of A) increases, requiring an

89

increasing amount of elementary matrix operations to compute the null space for the

linear solver of NTL. As shown in Figure 4.3, this computation is efficient (less than

45 seconds on a personal computer) for reasonably large N values.

 0

 1

 2

 3

 4

 5

 6
T

im
e

(in
 m

ill
is

ec
on

ds
)

25% Subs
50% Subs
75% Subs

100% Subs

100 200 300 400 500 600 700 800 900 1000

Maximum Users

Figure 4.4.: Key derivation time for different user configurations

Figure 4.4 reports the average time for Usrs to derive the symmetric keys from

ACVs and KEVs for different user configurations. Key derivation is performed by Usrs

whose computational capabilities may be limited. Therefore, an efficient decryption

key derivation process is desired. As Figure 4.4 shows it not only incurs minimal

computational costs (a few milliseconds), but also increases only linearly with N .

 10

A
C

V
 S

iz
e

(in
 K

by
te

s)

0

 1

 2

 3

 4

 5

 6

 7

 8

 9
25% Subs
50% Subs
75% Subs

100% Subs

100 200 300 400 500 600 700 800 900 1000

Maximum Users

Figure 4.5.: Size of ACV for different user configurations

90

Figure 4.5 shows the average size of ACVs for different user configurations. An­

other design goal of our approach is to keep the additional communication overhead

minimum. In order to achieve this goal, the Owner compresses the ACVs before

broadcasting them with the encrypted data. As Figure 4.5 indicates, our approach

only requires a few kilobytes to transmit these vectors, and the size increases only

linearly with N .

In the following experiment, we measure the time for ACV generation (at Owner)

and key derivation (at Usr) by varying the average number of attribute conditions per

policy, and keeping the number of policies and the maximum number of users fixed

at 25 and 500, respectively.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

T
im

e
(in

 m
ill

is
ec

on
ds

)

ACV generation
Key derviation

1 2 3 4 5 6 7 8 9 10

Avg. No. of Conditions per Policy

Figure 4.6.: ACV generation and key derivation for different number of conditions

per policy

Figure 4.6 shows the average running time for ACVs generation at Owner and

symmetric decryption key derivation at Usr, for different number of conditions per

policy. As the number of conditions per policy increases, the key derivation time

remains almost constant but the ACV generation time slightly increases (by less than

100 milliseconds).

91

4.6.3 Encryption Management

In this section, we compare the incremental encryption proposed as an improve­

ment to the SLE approach against the traditional encryption.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55
T

im
e

(in
 m

ill
is

ec
on

ds
)

rECB
RPC

0 10 20 30 40 50 60 70

Block size (in bytes)

Figure 4.7.: Different incremental encryption modes

Figure 4.7 shows the average overall encryption time as the block size varies while

the size of the document remains at 1K. The RPC mode requires more time as it adds

integrity checks in addition to encrypting each block. The average time decreases as

the size of the block increases since the number of blocks that have to be handled

decreases.

T
im

e
(in

 s
ec

on
ds

)

0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5
rECB
RPC

Conventional

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Data size (in bytes)

Figure 4.8.: Average time to perform insert operation

92

Figure 4.8 reports the average time to perform a random insert operation of data

of different sizes while the block size remains at 16 bytes. The time remains almost

constant for different data sizes. The RPC mode requires more time than the rECB

mode since it additionally has to read additional blocks and update the checksum. It

is clear that with large data, incremental encryption can save a considerable amount

of time. Other modification operations also demonstrate similar pattern.

93

5 PRIVACY PRESERVING PULL BASED SYSTEMS: TWO LAYER

ENCRYPTION APPROACH

In the previous chapter, we proposed an approach called single layer encryption (SLE)

follows the conventional data outsourcing scenario where the Owner enforces all ACPs

through selective encryption and uploads encrypted data to the untrusted Cloud. The

SLE approach supports fine-grained attribute based ACPs and preserves the privacy

of users from the Cloud. However, in such an approach, the Owner is in charge

of encrypting the data before uploading them on the third-party server as well re-

encrypting the data whenever user credentials or authorization policies change and

managing the encryption keys. The Owner has to download all affected data before

before performing the selective encryption. The Owner thus incurs high communi­

cation and computation costs, which then negate the benefits of using a third party

service. A better approach should delegate the enforcement of fine-grained access

control to the Cloud, so to minimize the overhead at the Owner, whereas at the same

time assuring data confidentiality from the third-party server.

In this chapter, we propose an approach, based on two layers of encryption, that

addresses such requirement. Under our approach, referred to as two layer encryption

(TLE), the Owner performs a coarse grained encryption, whereas the Cloud performs a

fine grained encryption on top of the data encrypted by the coarse grained encryption.

A challenging issue in our approach is how to decompose attribute based access

control policies (ACPs) such that the two layer encryption can be performed. In

order to delegate as much access control enforcement as possible to the Cloud, one

needs to decompose the ACPs such that the Owner manages minimum number of

attribute conditions in those ACPs that assures the confidentiality of data from the

Cloud. Each ACP should be decomposed to two sub ACPs such that the conjunction

of the two sub ACPs result in the original ACP. The two layer encryption should

94

be performed such that the Owner first encrypts the data based on one set of sub

ACPs and the Cloud re-encrypts the encrypted data using the other set of ACPs. The

two encryptions together enforce the ACP as users should perform two decryptions

to access the data. For example, if the ACP is (C1 ∧ C2) ∨ (C1 ∧ C3), the ACP can

be decomposed as two sub ACPs C1 and C2 ∨ C3. Notice that the decomposition is

consistent; that is, (C1∧C2)∨(C1∧C3) = C1∧(C2∨C3). The Owner enforces the former

by encrypting the data for the users satisfying the former and the Cloud enforces the

latter by re-encrypting the Owner encrypted data for the users satisfying the latter.

Since the Cloud does not handle C1, it cannot decrypt Owner encrypted data and thus

confidentiality is preserved. Notice that users should satisfy the original ACP to access

the data by performing two decryptions. We show that the problem of decomposing

ACPs for coarse and fine grained encryption while assuring the confidentiality of

data from the third party and the two encryptions together enforcing the ACPs is

NP-complete. We propose novel optimization algorithms to construct near optimal

solutions to this problem. Under our approach, the third party server supports two

services - the storage service, which stores encrypted data, and the access control

service, which performs the fine grained encryption.

We utilize the efficient Access Tree AB-GKM scheme introduced in Chapter 3

allows users whose attributes satisfy a certain ACP to derive the group key and de­

crypt the content they are allowed to access from the Cloud. Our system assures the

confidentiality of the data and preserves the privacy of users from the access control

service as well as the cloud storage service while delegating as much of the access

control enforcement as possible to the third party through the two layer encryption

technique.

The TLE approach has many advantages. When the policy or user dynamics

changes, only the outer layer of the encryption needs to be updated. Since the outer

layer encryption is performed at the third party, no data transmission is required

between the Owner and the third party. Further, both the Owner and the third party

service utilize the AB-GKM scheme introduced in Chapter 3 for key management

95

whereby the actual keys do not need to be distributed to the users. Instead, users

are given one or more secrets which allow them to derive the actual symmetric keys

for decrypting the data.

The rest of the chapter is organized as follows. An overview of the TLE approach

is given in Section 5.1. Section 5.2 provides a detailed treatment of the policy de­

composition for the purpose of two layer encryption. Section 5.3 gives a detailed

description of the TLE approach. We briefly analyze the trade-offs, the security and

the privacy of the overall systems in Section 5.4. Section 5.5 reports experimental

results for policy decomposition algorithms and the SLE vs. the TLE approaches.

5.1 Overview

We now give an overview of our solution to the problem of delegated access control

to outsourced data in the cloud. A detailed description is provided in Section 4.3. Like

the SLE system described in Section 4.3, the TLE system consists of the four entities,

Owner, Usr, IdP and Cloud. However, unlike the SLE approach, the Owner and the

Cloud collectively enforce ACPs by performing two encryptions on each data item.

This two layer enforcement allows one to reduce the load on the Owner and delegates

as much access control enforcement duties as possible to the Cloud. Specifically, it

provides a better way to handle data updates, user dynamics, and policy changes.

Figure 5.1 shows the system diagram of the TLE approach. The system goes through

one additional phase compared to the SLE approach. We give an overview of the six

phases below:

Identity token issuance: IdPs issue identity tokens to Usrs based on their identity

attributes.

Policy decomposition: The Owner decomposes each ACP into at most two sub

ACPs such that the Owner enforces the minimum number of attributes to assure con­

fidentiality of data from the Cloud. It is important to make sure that the decomposed

96

User� IdP�

(1) Identity attribute�

(2) Identity token�

(1) Decompose�	 (5) Re-encrypt to�
policies� enforce policies�

(4) Selectively encrypt�

decrypt twice�

Owner� Cloud�

User�

(2) Register�

modified policies�

identity tokens�

(3) Secrets�

& upload docs &�

(6) Download &�

(2) Register�
identity tokens�

(3) Secrets�

Figure 5.1.: Two layer encryption approach

ACPs are consistent so that the sub ACPs together enforce the original ACPs. The

Owner enforces the confidentiality related sub ACPs and the Cloud enforces the re­

maining sub ACPs.

Identity token registration: Usrs register their identity tokens in order to ob­

tain secrets to decrypt the data that they are allowed to access. Usrs register only

those identity tokens related to the Owner’s sub ACPs and register the remaining

identity tokens with the Cloud in a privacy preserving manner. It should be noted

that the Cloud does not learn the identity attributes of Usrs during this phase.

Data encryption and uploading: The Owner first encrypts the data based on

the Owner’s sub ACPs in order to hide the content from the Cloud and then uploads

them along with the public information generated by the AB-GKM::KeyGen algo­

rithm and the remaining sub ACPs to the Cloud. The Cloud in turn encrypts the data

97

based on the keys generated using its own AB-GKM::KeyGen algorithm. Note that

the AB-GKM::KeyGen at the Cloud takes the secrets issued to Usrs and the sub ACPs

given by the Owner into consideration to generate keys.

Data downloading and decryption: Usrs download encrypted data from the Cloud

and decrypt the data using the derived keys. Usrs decrypt twice to first remove the

encryption layer added by the Cloud and then by the Owner. As access control is

enforced through encryption, Usrs can decrypt only those data for which they have

valid secrets.

Encryption evolution management: Over time, either ACPs or user credentials

may change. Further, already encrypted data may go through frequent updates. In

such situations, data already encrypted must be re-encrypted with a new key. As

the Cloud performs the access control enforcing encryption, it simply re-encrypts the

affected data without the intervention of the Owner.

5.2 Policy Decomposition

Recall that in the SLE approach, the Owner incurs a high communication and

computation overhead since it has to manage all the authorizations when user dy­

namics or ACPs change. If the access control related encryption is somehow delegated

to the Cloud, the Owner can be freed from the responsibility of managing authoriza­

tions through re-encryption and the overall performance would thus improve. Since

the Cloud is not trusted for the confidentiality of the outsourced data, the Owner has

to initially encrypt the data and upload the encrypted data to the cloud. Therefore, in

order for the Cloud to allow to enforce authorization policies through encryption and

avoid re-encryption by the Owner, the data may have to be encrypted again to have

two encryption layers. We call the two encryption layers as inner encryption layer

(IEL) and outer encryption later (OEL). IEL assures the confidentiality of the data

98

with respect to the Cloud and is generated by the Owner. The OEL is for fine-grained

authorization for controlling accesses to the data by the users and is generated by the

Cloud.

An important issue in the TLE approach is how to distribute the encryptions be­

tween the Owner and the Cloud. There are two possible extremes. The first approach

is for the Owner to encrypt all data items using a single symmetric key and let the

Cloud perform the complete access control related encryption. The second approach

is for the Owner and the Cloud to perform the complete access control related en­

cryption twice. The first approach has the least overhead for the Owner, but it has

the highest information exposure risk due to collusions between Usrs and the Cloud.

Further, IEL updates require re-encrypting all data items. The second approach has

the least information exposure risk due to collusions, but it has the highest overhead

on the Owner as the Owner has to perform the same task initially as in the SLE ap­

proach and, further, needs to manage all identity attributes. An alternative solution

is based on decomposing ACPs so that the information exposure risk and key manage­

ment overhead are balanced. The problem is then how to decompose the ACPs such

that the Owner has to manage the minimum number of attributes while delegating

as much access control enforcement as possible to the Cloud without allowing it to

decrypt the data. In what follow we propose such an approach to decompose and we

also show that the policy decomposition problem is hard.

5.2.1 Policy Cover

We define the policy cover problem as the the optimization problem of finding the

minimum number of attribute conditions that “covers” all the ACPs in the ACPB.

We say that a set of attribute conditions covers the ACPB if in order to satisfy any

ACP in the ACPB, it is necessary that at least one of the attribute conditions in the

set is satisfied. We call such a set of attribute conditions as the attribute condition

cover. For example, if ACPB consists of the three simple ACPs {C1∧C2, C2∧C3, C4},

99

the minimum set of attributes that covers ACPB is {C2, C4}. C2 should be satisfied

in order to satisfy the ACPs C1 ∧ C2 and C2 ∧ C3. Notice that satisfying C2 is not

sufficient to satisfy the ACPs. The set is minimum since the set obtained by removing

either C2 or C4 does not satisfy the cover relationship.

Algorithm 3 GEN-GRAPH

1: C = φ

2: for Each ACPi ∈ ACPB, i = 1 to Np do

3: ACP ′ i ← Convert ACPi to DNF

4: for Each conjunctive term c of ACP ′ i do

5: Add c to C

6: end for

7: end for

8: //Represent the conditions as a graph

9: G = (E, V), E = φ, V = φ

10: for Each conjunctive term ci ∈ C, i = 1 to Nc do

11: Create vertex v, if v ∈ V , for each AC in ci

12: Add an edge ei between vi and each vertex already added for ci

13: end for

14: Return G

We define the related decision problem as follows.

Definition 5.2.1 (POLICY-COVER) Determine whether ACPB has a cover of

k attribute conditions.

The following theorem states that this problem is NP-complete.

Theorem 5.2.1 The POLICY-COVER problem is NP-complete.

Proof We first show that POLICY-COVER ∈ NP. Suppose that we are given a

set of ACPs ACPB which contains the attribute condition set AC, and integer k.

100

For simplicity, we assume that each ACP is a conjunction of attribute conditions.

However, the proof can be trivially extended to ACPs having any monotonic Boolean

expression over attribute conditions. The certificate we choose has a cover of attribute

conditions AC ′ ⊂ AC. The verification algorithm affirms that |AC ′ | = k, and then it

checks, for each policy in the ACPB, that at least one attribute condition in AC ′ is

in the policy. This verification can be performed trivially in polynomial time. Hence,

POLICY-DECOM is NP.

Now we prove that the POLICY-COVER problem is NP-hard by showing that

the vertex cover problem, which is NP-Complete, is polynomial time reducible to the

POLICY-COVER problem. Given an undirected graph G = (V,E) and an integer k,

we construct a set of ACPs ACPB that has a cover set of size k if and only if G has

a vertex cover of size k.

Suppose G has a vertex cover V ′ ⊂ V with |V ′ | = k. We construct a set of ACPs

ACPB that has a cover of k attribute conditions as follows. For each vertex vi ∈ V ,

we assign an attribute condition Ci. For each vertex vj ∈ V ′ , we construct an access

control policy by obtaining the conjunction of attribute conditions as follows.

•	 Start with the attribute condition Cj as the ACP Pj

•	 For each edge (vj, vr), add Cr to the ACP as a conjunctive literal (For example,

if the edges are (vj, va), (vj, vb) and (vj, vc), we get Pj = Cj ∧ Ca ∧ Cb ∧ Cc)

At the end of the construction we have a set of distinct access control policies

ACPB with size k. We construct the attribute condition set AC = {C1, C2, · · · , Ck}

such that Ci corresponds to each vertex in V
′ . In order to satisfy all access control

policies, the attribute conditions in AC must be satisfied. Hence, AC is an attribute

condition cover of size k for the ACPs ACPB.

Conversely, suppose that ACPB has an attribute condition cover of size k. We

construct G such that each attribute condition corresponds to a vertex in G and an

edge between vi and vj if they appear in the same access control policy. Let this

vertex set be V1. Then we add the remaining vertices to G corresponding to other

101

attribute conditions in the access control policies and add the edges similarly. Since

the access control policies are distinct there will be at least one edge (vi, u) for each

vertex vi in attribute condition cover such that u ∈ V1. Hence G has a vertex cover

of size V1 = k.

Since the POLICY-COVER problem is NP-complete, one cannot find a polynomial

time algorithm for finding the minimum attribute condition cover. In the following

section we present two approximation algorithms for the problem.

The APPROX-POLICY-COVER1 algorithm 4 takes as input the set of ACPs

ACPB and returns a set of attribute conditions whose size is guaranteed to be no

more than twice the size of an optimal attribute condition cover. APPROX-POLICY­

COVER1 utilizes the GEN-GRAPH algorithm 3 to first represent ACPB as a graph.

Algorithm 4 APPROX-POLICY-COVER1

1: G = GEN-GRAPH(ACPB)

2: ACC = φ

3: for Each disconnected subgraph Gi = (Vi, Ei) of G do

4: if |Vi| == 1 then

5: Add ACi corresponding to the vertex to ACC

6: else

7: while Ei = φ do

8:	 Select a random edge (u, v) of Ei

9:	 Add the attribute conditions ACu and ACv corresponding to {u, v} to

ACC.

10:	 Remove from Ei every edge incident on either u or v

11: end while

12: end if

13: end for

14: Return ACC

102

We give a high-level overview of the GEN-GRAPH algorithm 3. It takes the

ACPB as the input and converts each ACP into DNF (disjunctive normal form). The

unique conjunctive terms are added to the set C. For each attribute condition in

each conjunctive term in C, it creates a new vertex in G and adds edges between the

vertices corresponding to the same conjunctive term. Depending on the ACPs, the

algorithm may create a graph G with multiple disconnected subgraphs.

As shown in the APPROX-POLICY-COVER1 algorithm 4, it takes the ACPB as

the input and outputs a near-optimal attribute condition cover ACC. First the algo­

rithm converts the ACPB to a graph G as shown in the GEN-GRAPH algorithm 3.

Then for each disconnected subgraph Gi of G, it finds the near optimal attribute con­

dition cover and add to the ACC. The attribute condition to be added is related at

random by selecting a random edge in Gi. Once an edge is considered, all its incident

edges are removed from Gi. The algorithm continues until all edges are removed from

each Gi. The running time of the algorithm is O(V + E) using adjacency lists to

represent G. It can be shown that the APPROX-POLICY-COVER1 algorithm is a

polynomial-time 2-approximation algorithm as follows.

Theorem 5.2.2 APPROX-POLICY-COVER1 is a polynomial-time 2-approximation

algorithm.

Proof The above running time analysis already shows that the algorithm runs in

polynomial time. We prove that the AC cover ACC returned by the algorithm is at

most twice the size of an optimal AC cover ACC∗.

Let Ei
′ denote the set of edges picked at random by the algorithm for each discon­

nected subgraph Gi. In order to cover the edges in Ei
′ , any AC cover must include at

least one endpoint of each edge in Ei
′ . Since once an edge is selected, all the incident

edges are removed, no two edges in Ei
′ share an endpoint. Therefore, no two edges in

Ei
′ are covered by the same vertex from ACC∗ and we have the following lower bound

103

on the size of the optimal AC cover. Note that if Ei
′ is empty, i.e., Gi has only one

vertex, the only attribute condition is included in the AC cover.

|ACC ∗ | ≥
t

(|Ei| + 1)

Each execution of the random edge selection picks an edge for which neither of its

endpoints are already in ACC. Thus, it gives an upper bound on the size of the AC

cover.

|ACC| ≤ 2(
t
|Ei|) + 1

Combining equations and , we get

|ACC| ≤ 2|ACC ∗ |

Hence, we prove the theorem.

We now present the idea behind our second approximation algorithm, APPROX­

POLICY-COVER2, which uses a heuristic to select the attribute conditions. This

algorithm is similar to the APPROX-POLICY-COVER1 algorithm 4 except that

instead of randomly selecting the edges to be included in the cover, it selects the

vertex of highest degree and removes all of its incident edges.

Example 4

A hospital (Owner) supports fine-grained access control on electronic health records

(EHRs) and makes these records available to hospital employees (Usrs) through a

public cloud (Cloud). Typical hospital employees includes Usrs playing different roles

such as receptionist (rec), cashier (cas), doctor (doc), nurse (nur), pharmacist (pha),

and system administrator (sys). An EHR document consists of data items includ-

ing BillingInfo (BI), ContactInfo (CI), MedicationReport (MR), PhysicalExam (PE),

LabReports (LR), Treatment Plan (TP) and so on. In accordance with regulations

such as health insurance portability and accountability act (HIPAA), the hospital

policies specify which users can access which data item(s). In our example system,

104

there are four attributes, role (rec, cas, doc, nur, pha, sys), insurance plan, denoted

as ip, (ACME, MedA, MedB, MedC), type (assistant, junior, senior) and year of service,

denoted as yos, (integer). The following is the re-arranged set of ACPs of the hospital

such that each data item has a unique ACP.

(“role = rec” ∨ (“role = nur” ∧ “type ≥ junior”), CI)

(“role = cas” ∨ “role = pha”, BI)

(“role = doc” ∧ “ip = 2-out-4”, CR)

((“role = doc” ∧ “ip = 2-out-4”) ∨ “role = pha”, TR)

((“role = doc” ∧ “ip = 2-out-4”) ∨ (“role = nur” ∧ “yos ≥ 5”) ∨ “role = pha”, MR)

((“role = nur” ∧ “type ≥ junior”) ∨ (“role = dat” ∧ “type ≥ junior”) ∨ (“role = doc” ∧ “yos

≥ 2”), LR)

((“role = nur” ∧ “type = senior”) ∨ (“role = dat” ∧ “yos ≥ 4”), PE)

role�
=�

cas� role�
=�

nur�

type�
=�

senior�

type�
>=�

 junior�

Type�
 >=�

junior�

role�
=�

pha�

role�
=�

dat�

yos�
 >=�
4�

yos�
 >=�
5�

role�
=�

rec�

role�
=�

doc�

ip�
 =�

2-out-4�

yos�
 >=�

2�

Figure 5.2.: The example graph

Figure 5.2 shows the graph generated by the GEN-GRAPH algorithm for our run­

ning example. Notice that there are 5 disconnected graphs. Assume that APPROX­

POLICY-COVER2 algorithm is used to construct the AC cover. As mentioned in

the approximation algorithm, single vertex graphs are trivially included in the AC

cover. The remaining attribute conditions are selected using the greedy heuristic.

105

That gives us the AC cover ACC = { “role = rec”, “role = cas”, “role = pha”, “role

= doc”, “role = nur”, “role = dat”}.

5.2.2 Policy Decomposition

The Owner manages only those attribute conditions in ACC. The Cloud handles

the remaining set of attribute conditions, ACB/ACC. The Owner re-writes its ACPs

such that they cover ACC. In other words, the Owner enforces the parts of the ACPs

related to the ACs in ACC and Cloud enforces the remaining ACs along with some

ACs in ACC. The POLICY-DECOMPOSITION algorithm 5 shows how the ACPs

are decomposed into two sub ACPs based on the attribute conditions in ACC.

Algorithm 5 takes the ACPB and ACC as input and produces the two sets of

ACPs ACPBOwner and ACPBCloud that are to be enforced at the Owner and the Cloud

respectively. It first converts each policy into DNF and decompose each conjunctive

term into two conjunctive terms such that one conjunctive term has only those ACs in

ACC and the other term may or may not have the ACs in ACC. It can be easily shown

that the policy decomposition is consistent. That is, the conjunction of corresponding

sub ACPs in ACPBOwner and ACPBCloud respectively produces an original ACP in

ACPB.

Example 5

For our example ACPs, the Owner handles the following sub ACPs.

(“role = rec” ∨ “role = nur” , CI)

(“role = cas” ∨ “role = pha”, BI)

(“role = doc”, CR)

(“role = doc” ∨ “role = pha”, TR)

(“role = doc” ∨ “role = nur” ∨ “role = pha”, MR)

(“role = nur” ∨ “role = dat” ∨ “role = doc”, LR)

(“role = nur” ∨ “role = dat”, PE)

106

Algorithm 5 POLICY-DECOMPOSITION

1: ACPBOwner = φ

2: ACPBCloud = φ

3: for Each ACPi in ACPB do

4: Convert ACPi to DNF

5: ACPi(owner) = φ

6: ACPi(cloud) = φ

7: if	 Only one conjunctive term then

8:	 Decompose the conjunctive term c into c1 and c2 such that ACs in c1 ∈ ACC,

ACs in c2 ∈ ACC and c = c1 ∧ c2

9:	 ACPi(owner) = c1

10:	 ACPi(cloud) = c2

11: else if At most one term has more than one AC then

12:	 for Each single AC term c of ACP ′ i do

13:	 ACPi(owner) ∨= c

14:	 ACPi(cloud) ∨= c

15:	 end for

16:	 Decompose the multi AC term c into c1 and c2 such that ACs in c1 ∈ ACC,

ACs in c2 ∈ ACC and c = c1 ∧ c2

17:	 ACPi(owner) ∨= c1

18:	 ACPi(cloud) ∨= c2

19: else

20:	 for Each conjunctive term c of ACP ′ i do

21:	 Decompose c into c1 and c2 such that ACs in c1 ∈ ACC, ACs in c2 ∈ ACC

and c = c1 ∧ c2

22:	 ACPi(owner) ∨= c1

23:	 end for

24:	 ACPi(cloud) = ACP ′ i

25: end if

26: Add ACPi(owner) to ACPBOwner

27: Add ACPi(cloud) to ACPBCloud

28: end for

29: Return ACPBOwner and ACPBCloud

107

As shown in Algorithm 5, the Owner re-writes the ACPs that the Cloud should

enforce such that the conjunction of the two decomposed sub ACPs yields an original

ACP. In our example, the sub ACPs that the Cloud enforces look like follows.

(“role = rec” ∨ “type ≥ junior”, CI)

(“role = cas” ∨ “role = pha”, BI)

(“ip = 2-out-4”, CR)

(“ip = 2-out-4” ∨ “role = pha”, TR)

((“role = doc” ∧ “ip = 2-out-4”) ∨ (“role = nur” ∧ “yos ≥ 5”) ∨ “role = pha”, MR)

((“role = nur” ∧ “type ≥ junior”) ∨ (“role = dat” ∧ “type ≥ junior”) ∨ (“role = doc” ∧ “yos

≥ 2”), LR)

((“role = nur” ∧ “type = senior”) ∨ (“role = dat” ∧ “yos ≥ 4”), PE)

5.3 Two Layer Encryption Approach

In this section, we provide a detailed description of the six phases of the TLE

approach introduced in Section 5.1. The system consists of the four entities, Owner,

Usr, IdP and Cloud. Let the maximum number of users in the system be N , the

current number of users be n (< N), and the number of attribute conditions Na.

5.3.1 Identity Token Issuance

IdPs are trusted third parties that issue identity tokens to Usrs based on their

identity attributes. It should be noted that IdPs need not be online after they issue

identity tokens. An identity token, denoted by IT has the format { nym, id-tag, c,

σ }, where nym is a pseudonym uniquely identifying a Usr in the system, id-tag is

the name of the identity attribute, c is the Pedersen commitment for the identity

attribute value x and σ is the IdP’s digital signature on nym, id-tag and c.

108

5.3.2 Policy Decomposition

Using the policy decomposition algorithm 5, the Owner decomposes each ACP into

at most two sub ACPs such that the Owner enforces the minimum number of attributes

to assure confidentiality of data from the Cloud. The algorithm produces two sets of

sub ACPs, ACPBOwner and ACPBCloud. The Owner enforces the confidentiality related

sub ACPs in ACPBOwner and the Cloud enforces the remaining sub ACPs in ACPBCloud.

5.3.3 Identity Token Registration

Usrs register their IT s to obtain secrets in order to later decrypt the data they are

allowed to access. Usrs register their IT s related to the attribute conditions in ACC

with the Owner, and the rest of the identity tokens related to the attribute conditions

in ACB/ACC with the Cloud using the AB-GKM::SecGen algorithm.

When Usrs register with the Owner, the Owner issues them two sets of secrets for

the attribute conditions in ACC that are also present in the sub ACPs in ACPBCloud.

The Owner keeps one set and gives the other set to the Cloud. Two different sets are

used in order to prevent the Cloud from decrypting the Owner encrypted data.

5.3.4 Data Encryption and Upload

The Owner encrypts the data based on the sub ACPs in ACPBOwner and uploads

them along with the corresponding public information tuples to the Cloud. The Cloud

in turn encrypts the data again based on the sub ACPs in ACPBCloud. Both parties

execute AB-GKM::KeyGen algorithm individually to first generate the symmetric

key, the public information tuple PI and access tree T for each sub ACP. We now

give a detailed description of the encryption process.

The Owner arranges the sub ACPs such that each data item has a unique ACP.

Note that the same policy may be applicable to multiple data items. Assume that

the set of data items D = {d1, d2, · · · , dm} and the set of sub ACPs ACPBOwner =

109

{ACP1,ACP2, · · · ,ACPn}. The Owner assigns a unique symmetric key, called an ILE

key, Ki
ILE for each sub ACPi ∈ ACPBOwner, encrypts all related data with that

key and executes the AB-GKM::KeyGen to generate the public PIi and Ti. The

Owner uploads those encrypted data (id, EKILE (di), i) along with the indexed public
i

information tuples (i, PIi, Ti), where i = 1, 2, · · · , n, to the Cloud. The Cloud handles

the key management and encryption based access control for the ACPs in ACPBCloud.

For each sub ACPj ∈ ACPBCloud, the Cloud assigns a unique symmetric key Kj
OLE ,

called an OLE key, encrypts each affected data item EKILE (di) and produces the tuple
i

(id, EKOLE (EKILE (di)), i, j), where i and j gives the index of the public information
j i

generated by the Owner and the Cloud respectively.

5.3.5 Data Downloading and Decryption

Usrs download encrypted data from the Cloud and decrypt twice to access the

data. First, the Cloud generated public information tuple is used to derive the OLE

key and then the Owner generated public information tuple is used to derive the ILE

key using the AB-GKM::KeyDer algorithm. These two keys allow a Usr to decrypt a

data item only if the Usr satisfies the original ACP applied to the data item.

For example, in order to access a data item di, Usrs download the encrypted data

item EKOLE (EKILE (di)) and the corresponding two public information tuples PIi and
j i

PIj. PIj is used to derive the key of the outer layer encryption Kj
OLE and PIi used to

derive the key of the inner layer encryption Ki
ILE . Once those two keys are derived,

two decryption operations are performed to access the data item.

5.3.6 Encryption Evolution Management

After the initial encryption is performed, affected data items need to be re-

encrypted with a new symmetric key if credentials are added/removed or ACPs are

modified. Unlike the SLE approach, when credentials are added or revoked or ACPs

are modified, the Owner does not have to involve. The Cloud generates a new sym­

110

metric key and re-encrypts the affected data items. The Cloud follows the following

conditions in order to decide if re-encryption is required.

1. For any ACP, the new group of Usrs is a strict superset of the old group of Usrs,

and backward secrecy is enforced.

2. For any ACP, the new group of Usrs is a strict subset of the old group of Usrs,

and forward secrecy is enforced for the already encrypted data items.

5.4 Analysis

In this section, we first compare the SLE and the TLE approaches, and then give

a high level analysis of the security and the privacy of both approaches.

5.4.1 SLE vs. TLE

Recall that in the SLE approach, the Owner enforces all ACPs by fine-grained

encryption. If the system dynamics change, the Owner updates the keys and en­

cryptions. The Cloud merely acts as a storage repository. Such an approach has the

advantage of hiding the ACPs from the Cloud. Further, since the Owner performs

all access control related encryptions, a Usr colluding with the Cloud is unable to

access any data item that is not allowed to access. . However, the SLE approach

incurs high overhead. Since the Owner has to perform all re-encryptions when user

dynamics or policies change, the Owner has incurs a high overhead in communication

and computation. Further, it is unable to perform optimizations such as delayed AB-

GKM::ReKey or re-encryption as the Owner has to download, decrypt, re-encrypt

and re-upload the data, which could considerably increase the response time if such

optimizations are to be performed.

The TLE approach reduces the overhead incurred by the Owner during the initial

encryption as well as subsequent re-encryptions. In this approach, the Owner handles

only the minimal set of attribute conditions and most of the key management tasks are

111

performed by the Cloud. Further, when identity attributes are added or removed, or

the Owner updates the Cloud’s ACPs, the Owner does not have to re-encrypt the data

as the Cloud performs the necessary re-encryptions to enforce the ACPs. Therefore, the

TLE approach reduces the communication and computation overhead at the Owner.

Additionally, the Cloud has the opportunity to perform delayed encryption during

certain dynamic scenarios as the Cloud itself manages the OEL keys and encryptions.

However, the improvements in the performance comes at the cost of security and

privacy. In this approach, the Cloud learns some information about the ACPs.

5.4.2 Security and Privacy

The SLE approach correctly enforces the ACPs through encryption. In the SLE

approach, the Owner itself performs the attribute based encryption based on ACPs.

The AB-GKM scheme makes sure that only those Usrs who satisfy the ACPs can

derive the encryption keys. Therefore, only the authorized Usrs are able to access the

data.

The TLE approach correctly enforces the ACPs through two encryptions. Each

ACP is decomposed into two ACPs such that the conjunction of them is equivalent

to the original ACP. The Owner enforces one part of the decomposed ACPs through

attribute based encryption. The Cloud enforces the counterparts of the decomposed

ACPs through another attribute based encryption. Usr can access a data item only

if it can decrypt both encryptions. As the AB-GKM scheme makes sure that only

those Usrs who satisfy these decomposed policies can derive the corresponding keys,

a Usr can access a data item by decrypting twice only if it satisfies the two parts of

the decomposed ACPs, that is, the original ACPs.

In both approaches, the privacy of the identity attributes of Usrs is assured. Recall

that the AB-GKM::SecGen algorithm issues secrets to users based on the identity

tokens which hide the identity attributes. Further, at the end of the algorithm neither

the Owner nor the Cloud knows if a Usr satisfies a given attribute condition. Therefore,

112

neither the Owner nor the Cloud learns the identity attributes of Usrs. Note that the

privacy does not weaken the security as the AB-GKM::SecGen algorithm makes sure

that Usrs can access the issued secrets only if their identity attributes satisfy the

attribute conditions.

5.5 Experimental Results

In this section we first present experimental results concerning the policy decom­

position algorithms. We then present an experimental comparison between the SLE

and TLE approaches.

The experiments were performed on a machine running GNU/Linux kernel version

2.6.32 with an Intel R� CoreTM 2 Duo CPU T9300 2.50GHz and 4 Gbytes memory.

Only one processor was used for computation. Our prototype system is implemented

in C/C++. We use V. Shoup’s NTL library [37] version 5.4.2 for finite field arith­

metic, and SHA-1 and AES-256 implementations of OpenSSL [38] version 1.0.0d for

cryptographic hashing and incremental encryption. We use boolstuff library [54] ver­

sion 0.1.13 to convert policies into DNF. Adjacency list representation is used to

construct policy graphs used in the two approximation algorithms for finding a near

optimal attribute condition cover.

We utilized the AB-GKM scheme with the subset cover optimization. We used

the complete subset algorithm introduced by Naor et. al. [35] as the subset cover.

We assumed that 5% of attribute credentials are revoked for the AB-GKM related

experiments. All finite field arithmetic operations in our scheme are performed in an

512-bit prime field.

For our experiments, we selected the total number of attribute conditions and

the number of attribute conditions per policy based on past case studies [55, 56].

According to the case studies, the number of attribute conditions varies from 50 for

a web based conference management system to 1300 for a major European bank.

These real systems have upto about 20 attribute conditions per policy. We set the

113

total attribute condition count between 100-1500 and the the attribute conditions

per policy count between 2-20. We generate random Boolean expressions consisting

of conjunctions and disjunctions as policies. Each term in the Boolean expression

represents a attribute condition.

 100

 95

 90

 85

 80

 75

 70

 65

 60

Num. of ACs per policy

Figure 5.3.: Size of ACCs for 100 attributes

C
ov

er
 s

iz
e

Random
Greedy

2 4 6 8 10 12 14 16 18 20

300

 320

 340

 360

 380

 400

 420

 440

 460

 480

 500

C
ov

er
 s

iz
e

Random
Greedy

2 4 6 8 10 12 14 16 18 20

Num. of ACs per policy

Figure 5.4.: Size of ACCs for 500 attributes

Figures 5.3 5.4 5.5 5.6 show the size of the attribute condition cover, that is, the

number of attribute conditions the data owner enforces, for systems having 100, 500,

1000 and 1500 attribute conditions as the number of attribute conditions per policy

is increased. In all experiments, the greedy policy cover algorithm performs better.

114

 1000

 950

 900

 850

 800

 750

 700

 650

 600

Num. of ACs per policy

Figure 5.5.: Size of ACCs for 1000 attributes

Random
Greedy

2 4 6 8 10 12 14 16 18 20

C
ov

er
 s

iz
e

900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 1450

C
ov

er
 s

iz
e

Random
Greedy

2 4 6 8 10 12 14 16 18 20

Num. of ACs per policy

Figure 5.6.: Size of ACCs for 1500 attributes

As the number of attribute conditions per policy increases, the size of the attribute

condition cover also increases. This is due to the fact that as the number of attribute

conditions per policy increases, the number of distinct disjunctive terms in the DNF

increases.

Figures 5.7 5.8 shows the break down of the running time for the complete policy

decomposition process for the random and greedy cover algorithms respectively. In

this experiment, the number of attribute condition is set to {100, 500, 1000} and the

maximum number of attribute conditions per policy is set to 5. The total execution

time is divided into the execution times of three different components of our scheme.

115

DNF + Graph
Cover

Decompose

T
im

e
(m

s)

100

80

 60

 40

 20

 0
100 500 1000

Num. of ACs

Figure 5.7.: Policy decomposition time breakdown with the random cover algorithm

The“DNF + Graph” time refers to the time required to convert the policies to DNF

and construct a in-memory graph of policies using an adjacency list. The “Cover”

time refers to the time required to to find the optimal cover and the “Decompose”

time refers to time required to to create the updated policies for the data owner and

the cloud based on the cover. As can be seen from the graphs, most of the time is

spent on finding a near optimal attribute condition cover. It should be noted that the

random approximation algorithm runs faster than the greedy algorithm. One reason

for this behavior is that each time the latter algorithm selects a vertex it iterates

through all the unvisited vertices in the policy graph, whereas the former algorithm

simply picks a pair of unvisited vertices at random. Consistent with the worst-cast

running times, the“DNF + Graph” and “Decompose” components demonstrate near

linear running time, and ‘the ‘Cover” component shows a non-linear running time.

Figure 5.9 reports the average time spent to execute the AB-GKM::KeyGen with

SLE and TLE approaches for different group sizes. We set the number of attribute

116

 0

 20

 40

 60

 80

 100

 120

T
im

e
(m

s)

DNF + Graph
Cover

Decompose

100 500 1000

Num. of ACs

Figure 5.8.: Policy decomposition time breakdown with the greedy cover algorithm

 0

 1

 2

 3

 4

 5

 6

 7

T
im

e
(in

 s
ec

on
ds

)

SLE Owner
TLE Owner
TLE Cloud

100 200 300 400 500 600 700 800 900 1000

Group Size

Figure 5.9.: Average time to generate keys for the two approaches

conditions to 1000 and the maximum number of attribute conditions per policy to

5. We utilize the greedy algorithm to find the attribute condition cover. As seen in

the diagram, the running time at the Owner in the SLE approach is higher since the

Owner has to enforce all the attribute conditions. Since the TLE approach divides

117

 5

 10

 15

 20

 25

 30

 35

 40

 45

T
im

e
(in

 m
ill

is
ec

on
ds

)

SLE Owner
TLE Owner
TLE Cloud

0
 100 200 300 400 500 600 700 800 900 1000

Group Size

Figure 5.10.: Average time to derive keys for the two approaches

the enforcement cost between the Owner and the Cloud, the running time at the

Owner is lower compared to the SLE approach. The running time at the Cloud in the

TLE approach is higher than that at the Owner since the Cloud performs fine grained

encryption whereas the Owner only performs coarse grained encryption. As shown in

Figure 5.10, a similar pattern is observed in the AB-GKM::KeyDer as well.

118

6 PRIVACY PRESERVING SUBSCRIPTION BASED SYSTEMS

In the last two chapters, our focus was on pull based systems where users pull the con­

tent from the third party server. Another popular dissemination model is subscription

based publish subscribe systems. The solutions we propose for pull based systems

cannot directly be applied to subscription based system as they have the additional

requirement of letting the third party server perform content based filtering.

Many systems, including online news delivery, stock quote report dissemination

and weather channels, have been or can be modeled as Content-Based Publish-

Subscribe (CBPS) systems. Full decoupling of the involved parties, that is, Con­

tent Publishers (Pubs), Content Brokers (Brokers) and Subscribers (Subs), in time,

space, and synchronization has been the key [57] to seamlessly scale these systems

on demand. Hence, CBPS systems have the huge potential to be enabled over cloud

computing infrastructures. In a CBPS system, each Sub selectively subscribes to

some Brokers to receive different messages. In the most common setting, when Pubs

publish messages to some Brokers, these Brokers, in turn, selectively distribute these

messages to other Brokers and finally to Subs based on their subscriptions, that is,

what they subscribed to. These systems, in general, follow a push based dissemination

approach, that is, whenever new messages arrive, Brokers selectively distribute the

messages to Subs. Figure 6.1 shows an example CBPS system.

It is not feasible to have a private Broker network for each CBPS system and most

CBPS systems utilize third-party Broker networks which may not be trusted for the

confidentiality of the content flowing through them. Because content represents the

critical resource in many CBPS systems, its confidentiality from third-party Brokers

is important. Consider the popular example of publishing stock market quotes where

Subs pay Pub, that is the stock exchange, either for the types of quotes they wish to

receive or per usage basis. In such a domain, whenever a new stock quote, referred to

119

Third party broker network�

Notification�

Subscription�

Pub�1�

Pub2�

Bro�1�

Bro2�

Bro3�

Bro4�

Bro5� Sub1�

Sub2�

Sub3�

Data owners� Users�

Figure 6.1.: An example CBPS system

in general as a notification, is published, Brokers selectively send such a notification

only to authorized Subs. Confidentiality is important here because Pubs want to make

sure that only paying customers have access to the quotes. We say that a CBPS

system provides publication confidentiality if Brokers can neither identify the content

of the messages published by Pubs nor infer the distribution of attribute values of the

message 1 . For the stock quote example, in the absence of publication confidentiality,

Brokers may collect stock quotes, re-sell to others, and/or sell derived market data

without any economic incentive to Pubs.

At the same time, the privacy of subscribers is also crucial for many reasons, like

business confidentiality or personal privacy. We say that a CBPS system provides

subscription privacy if Brokers can neither identify what subscriptions Subs made nor

relate a set of subscriptions to a specific Sub. Consider again the stock quote example.

Suppose for example that Sub subscribes to some Brokers for receiving stock quotes

characterized by certain attribute values (e.g. bid price < 2438, 1000 < bid size

< 2000, symbol = “MSFT”, etc.). In the absence of subscription privacy, such a

1We assume that a message consists of a set of attribute-value pairs.

120

subscription can reveal the business strategy of Sub. Further, Brokers may profile

subscriptions of each Sub and sell them to third parties.

Privacy and confidentiality issues in CBPS have long been identified [6], but little

progress has been made to address these issues in a holistic manner. Most of prior

work on data confidentiality techniques in the context of CBPS systems is based on the

assumption that Brokers are trusted with respect to the privacy of the subscriptions

by Subs [7–9]. However, when such an assumption does not hold, both publication

confidentiality and subscription privacy are at risk; in the absence of subscription

privacy, subscriptions are available in clear text to Brokers. Brokers can infer the con­

tent of the notifications by comparing and matching notifications with subscriptions

since CBPS systems must allow them to make such decisions to route notifications.

As more subscriptions become available to Brokers, the inference is likely to be more

accurate. It should also be noted that the above approaches restrict Brokers’ ability

to make routing decisions based on the content of the messages and thus fail to pro­

vide a CBPS system as expressive as a CBPS system that do not address security or

privacy issues. Approaches have also been proposed to assure confidentiality/privacy

in the presence of untrusted third-party Brokers. These approaches however suffer

from one or two major limitations [12–14, 58]: inaccurate content delivery, because

of the limited ability of Brokers to make routing decisions based on content; weak

security protocols; lack of privacy guarantees. For example, some of these approaches

are prone to false positives, that is, sending irrelevant content to Subs.

In this chapter, we propose a novel cryptographic approach along with our AB­

GKM scheme to addresses those shortcomings in CBPS systems. To the best of

our knowledge, no existing cryptographic solution is able to protect both publication

confidentiality and subscription privacy in CBPS systems that address the above

shortcomings. A key design goal of our privacy-preserving approach is to design a

system which is as expressive as a system that does not consider privacy or security

issues. We implement our scheme on top of a popular CBPS system, SIENA [19],

and provide several experimental results in order to show our approach is practical.

121

In summary, our CBPS system exhibits the following properties:

•	 Notifications and subscriptions are randomized and hidden from Brokers and

secure under chosen-ciphertext attacks.

•	 Both publication confidentiality and subscription privacy are assured as Brokers

are able to make routing decisions without decrypting subscriptions and notifi­

cations. It is the first system to achieve these properties without sharing keys

with Brokers or Subs.

•	 It supports any type of subscription queries including equality, inequality and

range queries at Brokers.

•	 The computational cost at Brokers are minimized by judiciously distributing

the work among Pubs and Subs.

The rest of the chapter is organized as follows. Section 6.1 overviews the CBPS

model and the protocols supported by our system. Section 6.2 provides some back­

ground knowledge about the main cryptographic primitives used. Section 6.3 provides

a detailed description of the proposed protocols. Section 6.4 reports experimental re­

sults for the main protocols as well as the system developed on top of SIENA using

the main protocols.

6.1 Overview

In this section we give an overview of our proposed scheme by showing the interac­

tions between Pubs, Subs and Brokers, and the trust model. Unless otherwise stated,

we describe our approach for one Pub, mainly for brevity. However, our approach can

be trivially applied to a system with any number of Pubs. In practice, all the parties

in a CBPS system are software programs that act on behalf of real entities like actual

organizations or end users, and therefore many of the operations of the protocols we

propose are performed transparently to real entities.

122

Each notification is characterized by a set of Attribute-Value Pairs (AVPs). It

consists of two parts: the actual message in the encrypted form, which we call the

payload message, and a set of blinded AVPs derived from the payload message. As

mentioned earlier, payload message also consists of a set of AVPs. In a blinded

AVP, the value is blinded, but the attribute name remains in clear text. The blinding

encrypts the value in a special way such that it is computationally infeasible to obtain

the value from the blinded values, and that the blinded values are secure under

chosen-ciphertext attacks. We provide details on the blind operation in Section 6.3.

The payload is encrypted using the AB-GKM scheme based on the acps of the Pub.

The AB-GKM scheme makes sure that only those Subs that have valid credentials

can access payload messages. The blinded AVPs are placed in the header and the

payload message is in the body of the notification. There is a one-to-one mapping

between the AVPs in the payload message and the blinded AVPs. Depending on the

representation, each attribute name and its corresponding value may be interpreted

differently.

In an XML-like syntax, a notification has the following format:

<notification>

<header> -- blinded AVPs -- </header>

<body> -- enc. payload message -- </body>

</notification>

Depending on the representation, each attribute name and its corresponding

value may be interpreted differently. For example, the payload could be in a sim­

ple property-value format or a complex XML format. If the payload is in XML,

attribute names could be the XPaths and values could be the immediate child nodes

of XPaths. We use the latter for the examples.

A subscription specifies a condition on one of the attributes 2 of the AVPs associ­

ated with the notifications. It is an expression of the form (attr, bval1, bval2, bval3,

op) where attr is the name of the attribute, bval1, bval2, bval3 are the blinded values

2Note that our approach can easily be extended to subscriptions having multiple attributes.

123

derived from the actual content v and its additive inverse,3 and op is a comparison

operator, either ≥ or <. All the other comparison operators are derived from op.

Note that our approach supports a wide array of conditions including range queries

for numerical attributes and keyword queries for numerical and string attributes.

Example 6

In the stock market quote dissemination system, a payload message, that is, a quote,

looks like:

<q>

<symbol>MSFT</symbol>

<bid>

<price>2328</price>

<size>10000</size>

...

</bid>

<offer>

<price>2355</price>

<size>5000</size>

...

</offer>

</q>

The set of AVPs, as a collection of pairs,

(“/q/symbol”, “MSFT”), (“/q/bid/price”, 2328),

(“/q/bid/size”, 10000), (“/q/offer/price”, 2355),

(“/q/offer/size”, 5000)

from the payload message is blinded and placed in the header of the notification.

The notification for the above quote includes these blinded values and the encrypted

quote.

3The additive inverse of a number v ∈ Zm can be represented by the number m − v.







 


124

6.1.1 Interactions

We now present an overview of the protocols proposed in our CBPS system. The

motivation behind constructing a set of protocols is that they can easily be imple­

mented on top an existing CBPS infrastructure in order to satisfy privacy and security

requirements. In summary, Initialize protocol initializes the system parameters.

Register protocol registers Subs with Pubs. Subscribe protocol subscribes Subs

to Brokers. Publish protocol publishes notifications from Pubs to Brokers. Match

protocol matches notifications with subscriptions at Brokers. Cover protocol finds re­

lationships among subscriptions at Brokers. An important property of the two most

frequently used protocols, Match and Cover, is that they are non-interactive. The

following gives more details of each protocol.

Initialize:

There is a set of system defined public parameters that all Pubs, Brokers and Subs

use. In addition to these parameters, Pubs also generate some public and private pa­

rameters that are used for subsequent protocols and publish the public parameters.

If there are several Pubs, each Pub generates its own public and private parameters.

Register:

Subs register themselves with the Pub to obtain a secret value and access tokens. An

access token includes Sub’s identity (id) and allows a Sub to subsequently authenti­

cate itself to the Broker from which it intends to request notifications. An identity is

a pseudonym that uniquely identifies a Sub in the system. The secret value allows a

Sub to derive the key using the KeyDer algorithm of AB-GKM and then decrypt the

payload of notifications.

Subscribe:

In order to assure confidentiality and privacy, unlike in a typical CBPS system, Subs

125

need to perform an additional communication step with Pub to get the subscription

blinded before submitting the subscription to Broker 4 .

After authenticating themselves using access tokens to Pubs, Subs receive the con­

tent in their subscriptions blinded by the corresponding Pubs. In this step, Subs

perform as much computation as it can before sending the subscriptions to Pub so

that the overhead on Pubs is minimized. Further, this overhead on Pubs is negligible

as subscriptions are fairly stable and the rate of subscriptions is usually way less than

that of notifications in a typical CBPS system. Once this step is done, Subs au­

thenticate themselves to Brokers without revealing their identities and present these

blinded subscriptions to Brokers. These subscriptions are blinded in such a way that

Brokers do not learn the actual subscription criteria, that is, Brokers cannot decrypt

the blinded values. However, they can perform Match (or Filter),5 and Cover pro­

tocols based on the blinded subscriptions. Furthermore, no two subscriptions for the

same value are distinguishable by Brokers. In order to prevent Brokers from linking

different subscriptions from the same Sub, Subs may request for multiple access tokens

such that all these access tokens have the same identity but are indistinguishable. For

each subscription, Subs may present these different valid access tokens so that Subs’

identities are further protected from Brokers.

Publish:

Using the counterparts of the secret values used to blind subscriptions, Pubs blind the

notifications and publish them to some Brokers. A blinded notification has a set of

blinded AVPs and an encrypted payload message. These notifications are blinded in

such a way that Brokers do not learn actual values in the messages, but can perform

Match and Cover protocols based on the subscriptions. Further, no two notifications

for the same content are distinguishable by Brokers.

4Instead of Pub, a trusted third party may be utilized to blind subscriptions in order to reduce the

load on Pub.

5We use the terms Match and Filter interchangeably.

126

Match:

For each notification from Pubs, Brokers compare it with Subs’ subscriptions. If there

is a match, that is, the subscription satisfies the notification, Brokers forward the

notification to the correct Subs. The outcome of the Match protocol allows Brokers

to learn neither the notification nor the publication values. It also prevents Brokers

from learning the distribution of the values.

Cover:

For each subscription received from Subs, Brokers check if covering relationship holds

with the existing subscriptions. A subscription S1 covers another subscription S2 if

all notifications that match S2 also match S1. Finding covering relationships among

subscriptions allows to reduce the size of the subscription tables maintained by each

Broker, and hence improves the efficiency of matching. Like the Match protocol, the

outcome of the Cover protocol does not allow the Brokers to learn the subscription

values nor their distribution.

6.1.2 Trust Model

In the system design, we consider threats and assumptions from the point of

view of Pubs and Subs with respect to third-party Brokers. We assume that Brokers

are honest but curious; they perform PS protocols correctly, but curious to know

what Pubs publish and Subs consume. In other words, they are trusted for these PS

protocols but not for the content in the notifications and subscriptions nor for the

privacy of Subs if they make one or more subscription requests. Further, Brokers may

collude. Pubs are trusted to maintain the privacy of Subs. However, our approach can

be easily modified to relax this trust assumption. Pubs are also trusted to correctly

perform PS protocols and not to collude with any other parties.

127

6.2 Background

Some of the mathematical notions and the cryptographic building blocks which

inspired our approach are described below.

6.2.1 Pedersen Commitment

A cryptographic “commitment” is a piece of information that allows one to com­

mit to a value while keeping it hidden, and preserving the ability to reveal the value

at a later time. The Pedersen commitment [47] is an unconditionally hiding and

computationally binding commitment scheme which is based on the intractability of

the discrete logarithm problem.

Pedersen Commitment

Setup A trusted third party T chooses a multiplicatively written finite cyclic group

G of large prime order p so that the computational Diffie-Hellman problem is hard in

G. 6 T chooses two generators g and h of G such that it is hard to find the discrete

logarithm of h with respect to g, i.e., an integer x such that h = gx . It is not required

that T know the secret number x. T publishes (G, p, g, h) as the system parameters.

Commit The domain of committed values is the finite field Fp of p elements, which

can be represented as the set of integers Fp = {0, 1, . . . , p − 1}. For a party U to

commit a value α ∈ Fp, U chooses β ∈ Fp at random, and computes the commitment

c = gαhβ ∈ G.

Open U shows the values α and β to open a commitment c. The verifier checks

αhβwhether c = g .

6For a multiplicatively written cyclic group G of order q, with a generator g ∈ G, the Computational
Diffie-Hellman problem (CDH) is the following problem: Given ga and gb for randomly-chosen secret

ab a, b ∈ {0, . . . , q − 1}, compute g .

128

6.2.2 Zero-Knowledge Proof of Knowledge (Schnorr’s Scheme)

The zero-knowledge proof of knowledge (ZKPK) protocol used in this paper can

be viewed a natural extension of Schnorr’s scheme [11]. In our proposed approach, we

use ZKPK as a privacy-preserving means of subscriber authentication to the brokers.

As in the case of the Pedersen commitment scheme, a trusted party T generates

public parameters G, p, g, h. A Prover which holds private knowledge of values α and

αhββ can convince a Verifier that Prover can open the Pedersen commitment c = g as

follows.

1. Prover randomly chooses y, s ∈ F ∗ p, and sends Verifier the element d = gyhs ∈ G.

2. Verifier picks a random value e ∈ F p
∗, and sends e as a challenge to Prover.

3. Prover sends u = y + eα, v = s + eβ, both in Fp, to Verifier.

uhv4. Verifier accepts the proof if and only if g = d · ce in G.

6.2.3 Euler’s Totient Function φ(·) and Euler’s Theorem

Let Z be the set of integers. Let Z+ denote all positive integers. Let m ∈ Z+ . The

Euler’s totient function φ(m) is defined as the number of integers in Z+ less than or

equal to m and relatively prime to m.

Theorem 6.2.1 (Euler’s Theorem) Let m ∈ Z+ . If

gcd(a,m) = 1, then aφ(m) ≡ 1 (mod m).

6.2.4 Composite Square Root Problem

Definition 6.2.1 (Composite square root problem) Let n = pq be a product of

two distinct large primes. The composite square root problem the computational

problem defined as follows: given w ∈ QR, where QR = {y|y = x2 (mod n), x ∈ Z×},

compute x ∈ {1, 2, . . . , n − 1} such that w = x2 (mod n).

129

It is well known that for each w ∈ QR, there are four x ∈ {1, 2, . . . , n − 1} such

that x2 = w (mod n). If the prime factorization of n is known, then there are efficient

algorithms to solve the above problem [59]. However, the problem seems difficult if

the factorization of n is hard. In the construction of our CBPS system, we make use

of the composite square root assumption which is based on this difficulty.

Conjecture 1 (Composite square root assumption) There exists no polynomial

time algorithm to solve the composite square root problem.

6.2.5 Paillier Homomorphic Cryptosystem

The Paillier homomorphic cryptosystem is a public key cryptosystem by Pail­

lier [10] based on the “Composite Residuosity assumption (CRA).” The Paillier cryp­

tosystem is homomorphic in that, by using public key, the encryption of the sum

m1 + m2 of two messages m1 and m2 can be computed from the encryption of m1

and m2. Our approach and protocols are inspired by how the Paillier cryptosystem

works. Hence, we provide some internal details of the cryptosystem below so that

readers can follow the rest of the paper.

Key generation

Set n = pq, where p and q are two large prime numbers. Set λ = lcm(p−1, q−1), i.e.,

the least common multiple of p − 1 and q − 1. Randomly select a base g ∈ Z/(n2)×

such that the order of gp is a multiple of n. Such a gp can be efficiently found by

randomly choosing gp ∈ Z/(n2)×, then verifying that

gcd(L(gp
λ (mod n 2), n)) = 1, where L(u) = (u − 1)/n (6.1)

λfor u ∈ Sn = {u < n2|u = 1 (mod n)}. In this case, set µ =
�
L(gp (mod n2))

�−1

(mod n). The public encryption key is a pair (n, gp). The private decryption key is

(λ, µ), or equivalently (p, q, µ).

130

Encryption E(m, r)

Given plaintext m ∈ {0, 1, . . . , n − 1}, select a random r ∈ {1, 2, . . . , n − 1}, and

m nencrypt m as E(m, r) = gp · r (mod n2). When the value of r is not important to

the context, we sometimes simply write a short-hand E(m) instead of E(m, r) for the

Paillier ciphertext of m.

Decryption D(c)

Given ciphertext c ∈ Z/(n2)×, decrypt c as

D(c) = L(c λ (mod n 2)) · µ (mod n). (6.2)

More specifically, the homomorphic properties of Paillier cryptosystem are:

D(E(m1, r1)E(m2, r2) (mod n 2)) = m1 + m2 (mod n),

D(g m2 E(m1, r1) (mod n 2)) = m1 + m2 (mod n),

D(E(m1, r1)
k (mod n 2)) = km1 (mod n).

Also note that the Paillier cryptosystem described above is semantically secure against

chosen-plaintext attacks (IND-CPA).

In the construction of our CBPS system, the Paillier homomorphic cryptosystem

is used in a way that public and private keys are judiciously distributed among Pubs,

Subs, and Brokers such that the confidentiality and privacy are assured based on

homomorphic encryption. A detailed description of the construction is presented in

Section 6.3.

6.3 Proposed Scheme

In this section, we provide a detailed description of the privacy preserving CBPS

system we propose. As introduced in Section 6.1, the system consists of 6 protocols:

1) Initialize, 2) Register, 3) Subscribe, 4) Publish, 5) Match, and 6) Cover.

131

6.3.1 Initialize

A trusted party, which could be one of the Pubs, runs a Pedersen commitment

setup algorithm [47] to generate system wide parameters (G, p, g, h). These parame­

ters have the same meaning and purpose as mentioned in Section 6.2. The same party

also runs a key generation algorithm similar to Paillier [10] to generate the parameters

(n, p, q, gp, λ, µ). Only Pubs know the parameters (p, q, λ). The parameters (n, gp, µ)

are public. Note that unlike in Paillier, µ is public in our scheme. The system pa­

rameter l is the upper bound on the number of bits required to represent any data

values published, and we refer to it as domain size. For example, if an attribute can

take values from 0 up to 500 (< 29), l should be at least 9 bits long. For reasons that

will soon become clear in this section we choose l such that 22l ≪ n. 7 In addition

to these parameters, each Pub has a key pair (Kpub, Kpri) where Kpri is the private

key used to sign access tokens of Subs and Kpub is the public key used by Brokers to

verify authenticity and integrity of them. Each Pub also runs the Setup algorithm of

the AB-GKM scheme to initialize the key management system for encrypting payload

messages to Subs. Each Pub computes two pairs of secret values (em, dm) and (ec,

dc) such that em + dm ≡ 0 (mod φ(n2)), and ec + dc ≡ 0 (mod φ(n2)), where φ(·)

is Euler’s totient function and em = ec. Note that we have g
em gdm ≡ gec gdc ≡ 1

(mod n2). Pub uses em to blind Paillier encrypted notifications and dm, dc, ec to blind

Paillier encrypted subscriptions.8 Let s be the largest number ∈ Z such that 2s <

n and u ∈ Z such that l < u < s − 1. Finally, each Pub chooses two secret random

values rm, rc ∈ Z such that 1 < rm, rc < 2u−l and rm = rc. These values are used to

prevent Brokers from learning the distribution of the difference of the values that are

being matched. In summary, (G, p, g, h, n, gp, µ,Kpub) are the public parameters that

all the parties know, (p, q, λ,Kpri, rm, rc, (em, dm), (ec, dc)) are private parameters of

Pubs. Note that in a practical implementation, most of these parameters can be auto­

7We use notation a ≪ b to denote that “a is sufficiently smaller than b.”
8The “blind” operation will be introduced in Section 6.3.3.

132

generated by a computer program which usually only requires Pub to pre-determine

l depending on the domain of the content of notifications.

6.3.2 Register

As shown in Figure 6.2, each Sub registers itself with Pub by presenting an id

(identity), a pseudonym uniquely identifying Sub. In a real-world system, registra­

tion may involve Subs presenting other credentials and/or making payment. Upon

successful registration, Sub executes the SecGen algorithm of the AB-GKM scheme

to obtain a secret s. We omit the details of the AB-GKM based key management

as a detailed application of it is provided in the previous two chapters. During this

protocol, each Sub also obtains its initial access token, a Pedersen commitment signed

by Pub.

An access token allows Sub to authenticate itself to Broker from which it intends

to request notifications as well as to create additional access tokens in consultation

with Pub. To create the first access token, Sub encodes its id as an element (id) ∈ Fp,

chooses a random a ∈ Fp, and sends the commitment com((id)) = g�id�ha and the val­

ues ((id), a). The Pub signs com((id)) and sends the digital signature Kpri(com((id)))

back to the Sub.

Figure 6.2.: Sub registering with Pub

133

6.3.3 Subscribe

During this protocol, Subs inform their interests to Brokers as subscriptions. Before

subscribing to messages, as Figure 6.3 illustrates, Subs must authenticate themselves

to Brokers. Sub gives a zero-knowledge proof of knowledge (ZKPK) of the ability to

open the commitment com((id)) signed by Pub:

�id�ha}ZKPK{((id), a) : com((id)) = g

Figure 6.3.: Sub authenticating itself to Broker

Notice that the ZKPK of the commitment opening does not reveal the identity

of Sub. Further, Sub may use different access tokens by having different random a

values for different subscriptions to prevent Brokers from linking its subscriptions to

one access token 9 10 .

If the ZKPK is successful, Sub may submit one or more subscriptions. Recall

that subscriptions are blinded by Pub before sending to Broker. The subscription

“blinding” functions, bvalm, bval c1 , bval c2 are defined as follows:

9One may use a randomized signature scheme on a committed value [60] to achieve the same objective
at the expense of additional computation cost.
10Our scheme only provides application level privacy, but not network level privacy. For example,
it does not hide IP addresses. In order to provide network level privacy/anonymity, one needs to
utilize other orthogonal techniques such as Tor [61]

134

Let v be the original subscription.

E(v) = gp
v · r1

n (mod n 2)

bvalm(E(−v)) = g dm · (E(−v))rmλ (mod n 2) (6.3)

bval c1 (E(−v)) = g dc · (E(−v))rcλ (mod n 2) (6.4)

bval c2 (E(v)) = g ec · (E(v))rcλ · (E(r))λ (mod n 2) (6.5)

where dm, em, rm, dc, ec, rc are generated during Initialize, r in Formula 6.5 is a

random number such that r ≤ min{rc, 2
(s−1−u)}.

Sub sends E(v) and E(−v), where v is the original subscription for the attribute

attr, to Pub. Pub sends back the blinded subscription to Sub and Sub sends the

tuple (attr, bval c1 (E(−v)), bval c2 (E(v)), bvalm(E(−v)), op) to Broker. The first two

blinded values in the subscription are used by Broker for Cover protocol and the third

one for Match protocol. Note that Sub performs these encryptions to reduced the load

on Pubs. It should also be noted that equality filters in our protocols are treated as

range filters preventing Brokers from distinguishing equality filters from range filters.

For example, in order to subscribe for v = 5, Sub subscriber for a range filter where

v ≤ 5 and v > 4. Except for range filters, each subscription from the same Sub are

treated as disjunctive conditions.

Example 7

Sub wants to get all the notifications with bid price less than 22. The subscription

has the format (“/quote/bid/price”, 346213, 152311, 453280, <) where the second and

third parameters are the blind values of 22 and −22, respectively, for Cover protocol

to use, and the fourth is the blinded value of −22 for Match protocol to use.

6.3.4 Publish

Using em, the counterpart of dm which is used to blind subscriptions for Match

protocol, and other private parameters, Pubs blind the notifications using the function

bvaln as defined below.

135

Let x be one value in the notification.

embvaln(x) = g · (E(x))rmλ · E(r)λ (mod n 2)

em= g · E((rmx + r)λ) (mod n 2),

where em and rm are generated during Initialize, r is selected uniformly at random

such that r ≤ min{rm, 2
(s−1−u)}.

Pubs publish the blinded notifications to Brokers. A notification has a set of

blinded AVPs and an encrypted payload message. For an illustration purpose, let us

assume these AVPs are numbered from 1 to t, where t is the number of attributes

of the payload message M being considered. The blinded notification looks like

((attr1, bvaln(x1)), . . . , (attrt, bvaln(xt))), where attri and xi are the i
th attribute name

and value respectively.

6.3.5 Match

For each notification from Pub, Broker compares it with Subs’ subscriptions to

make routing decisions. We explain the Match operation for one attribute in the

message, but it can be naturally extended to perform on multiple attributes. If at

least one of the attributes in the message matches, we say that the subscription

matches the notification, and in this case Broker forwards the notification to the

corresponding Subs. For range filters, the conjunction of two corresponding Match

operations is taken.

Let the blinded values be bvaln(x) and bvalm(E(−v)) that Broker has received

from Pub and Sub, respectively, for an attribute attr with subscription value being v

and notification value being x. Broker computes the following value diff as follows.

diff = L(bvaln(x) · bvalm(E(−v)) (mod n 2)) · µ (mod n),

where L, µ are public parameters derived from Paillier. Using the diff , Broker makes

the matching decision based on Table 6.1.

136

Table 6.1: Matching decision

diff Decision

< n/2 x ≥ v

> n/2 x < v

Before we show that the above computation gives a diff equal to rm · (x − v) + r,

we describe how Match protocol gives the correct matching decision while outputting

a (controlled) random diff value to Broker. Recall that in Initialize, the domain of

the input values is set to 0 ∼ 2l . Therefore, 0 ≤ x, v ≤ 2l . Notice that the difference of

any two values x and v is either between 0 ∼ 2l if the difference is positive, or between

(n−2l) ∼ n if the difference is negative. Also, notice that the range 2l ∼ (n−2l) is not

utilized. In order to randomize the difference, we take advantage of this unused range

and multiply the actual difference with a random secret value rm and add another

random value r both selected by Pub. The idea behind rm and r are to first expand

0 ∼ 2l range to 0 ∼ 2u and (n − 2l) ∼ n to n − 2s ∼ n − nm, and then expand

them to 0 ∼ n/2 and n/2 ∼ n respectively. Thus the difference is randomized, yet it

allows Broker to make correct matching decisions without resulting in false positives

or negatives.

During Match protocol, Broker does not learn the content under comparison. This

is achieved due to the fact that without knowing λ, Broker cannot perform decryption

freely, but is forced to engage into the protocol described below. Not knowing the

values rm and r, Broker does not learn the exact difference of the two values under

comparison as well.

The following shows the correctness of diff . Let

y = bvaln(x) · bvalm(E(−v)) (mod n 2).

137

em dm λ y = g · (E((rmx + r)λ) · g · (E(−v))rm

(mod n 2)

em+dm= g · {E(rmx + r)) · E(−rmv)}
λ (mod n 2)

= (E(rm(x − v) + r))λ (mod n 2)

diff = L(y) · µ (mod n) = rm(x − v) + r. (6.6)

6.3.6 Cover

Subscriptions are categorized into groups based on the covering relationships so

that Brokers can perform Match protocol efficiently. For each subscription received

from Subs, Brokers check if covering relationship holds within the existing subscrip­

tions. If it exists, they add the new subscription to the group with the covering

subscription, otherwise a new group is created for the new subscription.

Notice that we have not used the blinded values bval c1 (E(−v)) and bval c2 (E(v)) in

subscriptions yet. These two values are used in the Cover protocol. In what follows,

we explain how the Cover protocol works.

Let S1 and S2 be two subscriptions for the same attr and compatible op. Two

op’s are compatible if either both of them are of the same type. bval c1 (E(v1)) and

bval c2 (E(−v1)) refer to the so far unused blinded values of v1 and of its additive

inverse, respectively, of the subscription S1. The blinded values bval c1 (E(v2)) and

bval c2 (E(−v2)) have similar interpretations.

Broker computes one of the following two values in order to decide the covering

relationship.

diff 1 = L(bvalc2 (E(v1)) · bvalc1 (E(−v2))

(mod n 2)) · µ (mod n)

diff 2 = L(bvalc2 (E(v2)) · bvalc1 (E(−v1))

(mod n 2)) · µ (mod n) (6.7)

138

diff 1 and diff 2 give results rc · (v1 − v2) + r and rc · (v2 − v1) + r ′ respectively, where

r, r ′ are random numbers. Broker uses the same matching Table 6.1 that is used for

making matching decision to make the covering decision. The covering decision for

range filters is performed in a similar way, but we omit the details due to lack of

space. Similar to Match, Brokers do not learn the actual subscription values.

6.3.7 The Distribution of Load

We now briefly explain the rationale behind the distribution of work load among

Pubs, Subs and Brokers. If there are O(N) notifications and O(S) subscriptions, in

the worst case, Broker needs to perform O(NS) Match protocols. Thus, Brokers have

to perform significantly more work compared to Pubs and Subs in a typical CBPS

system. This is one of the key reasons why the performance of Brokers degrades as the

number of notifications and/or subscriptions in the system increases. By optimizing

for the frequent case, one can achieve a significant overall system improvement. We

followed this well-known design principle to redistribute the load on Brokers partly to

Pubs and Subs. Notice that there are no exponentiation operations in both Match and

Cover protocols. Hence, these protocols can be performed very efficiently. This is

made possible at the cost of extra work at Pubs and Subs. Since the protocols at Pubs

and Subs are executed less frequently compared to those at Brokers, our distribution

leads to a better overall system performance. The experimental results show that the

protocols at Brokers are very efficient and those at Pubs and Subs also run fast.

6.4 Experimental Results

In this section, we present experimental results for various operations and the two

main protocols, Match and Cover, in our system as well as our privacy preserving

CBPS (PP-CBPS) system itself which extends an enhanced SIENA system by im­

plementing privacy preserving matching and covering using our protocols. For the

protocol experiments, we have built a prototype system in Java that incorporates

139

our techniques for privacy preserving Match and Cover protocols as described in Sec­

tion 6.3.

The experiments are performed on an Intel R� CoreTM 2 Duo CPU T9300 2.50GHz

machine running GNU/Linux kernel version 2.6.27 with 4 Gbytes memory. We utilize

only one processor for computation. The code is built with Java version 1.6.0. along

with Bouncy Castle lightweight APIs [62] for most cryptographic operations including

the symmetric-key encryption. The Paillier cryptosystem is implemented as in the

paper [10], except that we modified the algorithms to fit our scheme. We first look at

the experiments mainly on the two important protocols, Match and Cover, and then

describe the system experiments performed on PP-CBPS system.

6.4.1 Protocol Experiments

Table 6.2: Average computation time for general operations

Computation Time (in ms)

Create access token (Sub) 4.21

Open access token (Pub) 4.17

Sign access token (Pub) 4.10

Verify token signature (Broker) 0.36

ZKP of access token (Sub) 4.18

ZKP of access token (Broker) 6.31

Encrypt payload message (Pub) 34.56

Decrypt payload message (Sub) 0.36

In our experiments we vary values of n in Paillier cryptosystem and the domain

size l, and fix the parameters for Pedersen commitment generation, digital signature

generation/verification, zero-knowledge proof of knowledge protocol, and symmetric

key encryption/decryption. In all our experiments we only measure computational

http:version2.6.27

140

cost, and assume the communication cost to be negligible. All data obtained by

our experiments correspond to the average time taken over 1000 executions of the

protocols with varying values for the bit length of n in the Paillier cryptosystem and

the domain size l. We first show the computation time for the general operations in

order to provide a comparative assessment of our protocols.

We compare our protocol results with the well established computations to show

that our approach is efficient and practical.

Table 6.2 shows the average running time for various operations for which we kept

the system parameters constant. Access token creation, opening, signing are per­

formed during Register protocol and based on Pedersen commitment scheme. Pub

signs the access token using SHA-1 and RSA with 1024-bit long private key Kpri.

Verification of the signature on the access token using the public key Kpub, and the

ownership proof of the access token via the ZKPK are performed during Subscribe

protocol. Zero-Knowledge Proof (ZKP) protocols are generally considered time con­

suming, but in our approach ZKP computation is comparable to other operations in

the system, in that it takes merely a few milliseconds. For the experiments, we set the

payload size to 4 Kbytes and used AES-128 as the symmetric key algorithm. These

performance results demonstrate that the constructs we use and the computations

are very efficient.

In the experiment shown in Figure 6.4, we vary the bit length of n in the Paillier

cryptosystem. Figure 6.4 shows the time to generate blinded subscriptions and no­

tifications whose values are less than 2l where l, the domain size, is fixed at 100, a

reasonably large value. The time to generate blinded values increases as the bit length

of n increases, but even for large bit lengths, it takes only a few milliseconds. The

time required to blind subscription is split into two tasks with the Sub performing

the encryption and the Pub performing the blinding, but to blind notifications, the

Pub performs both operations as one task. We remark that the overall computational

cost can be reduced by employing well-known caching techniques.

141

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

T
im

e
(in

 m
s)

Encrypt Subscription (Sub)
Blind Encrypted Subscription (Pub)

Blind Notification (Pub)

Bit length of n (Paillier)

Figure 6.4.: Time to blind subscriptions/notifications for different bit lengths of n

We measure in our experiment the performance impact on blinding when l, the

domain size, is changed. We fix n to be of length 1024 bits and measure the time to

blind subscriptions and notifications for l = 10, 20, · · · , 100. As shown in Figure 6.5,

the domain size does not significantly affect the performance of the blinding opera­

tions. Further, as indicated by both Figure 6.4 and Figure 6.5, the time for either

component of the subscription blinding is less than that for notification blinding.

Since for each subscription, the overhead at the Pub is less compared to the time

required to blind a notification, our decision to blind part of the subscription at the

Pub is comparable to blinding additional notifications.

In a CBPS, Match is the most executed protocol. Hence, it should be very efficient

so as not to overload Brokers. For each Subscribe protocol, Brokers may need to

invoke the Cover protocol and, therefore, we want to have a very efficient Cover

protocol as well. In the following two experiments, we observe the time to perform

these protocols.

Figure 6.6 shows the execution time of Match and Cover protocols as the bit

length of n in the Paillier cryptosystem is changed while the domain size l is fixed

at 100 bits. The time for both protocols increases approximately linearly with the

142

 20
Encrypt Subscription (Sub)

Blind Encrypted Subscription (Pub)
Blind Notification (Pub)

10 20 30 40 50 60 70 80 90 100

15

 10

 5

 0

Bit length of content (l)

T
im

e
(in

 m
s)

Figure 6.5.: Time to blind subscriptions/notifications for different l

bit length of n. Note that they take only a fraction of a millisecond (less than 100

microseconds) even for large bit lengths of n. This indicates that our Match and

Cover protocols are very efficient for large bit lengths of n.

 400
Match (Broker)
Cover (Broker)

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

350

 300

 250

 200

 150

 100

 50

 0

Bit length of n (Paillier)

T
im

e
(in

 m
ic

ro
se

co
nd

s)

Figure 6.6.: Time to perform match/cover for different bit lengths of n

143

Figure 6.7 shows the time to execute Match and Cover protocols as the domain

size l is changed while the bit length of n is fixed at 1024. Similar to the blind

computations, computational times remain largely unchanged for different l values.

 90

 95

 100

 105

 110

 10 20 30 40 50 60 70 80 90 100

T
im

e
(in

 m
ic

ro
se

co
nd

s)

Match (Broker)
Cover (Broker)

Bit length of content (l)

Figure 6.7.: Time to perform match/cover for different l

An observation made through all our protocol experiments is that the domain size

l does not significantly affect the computational time of the key protocols Publish,

Subscribe, Match and Cover, but the bit length n of the Paillier cryptosystem does.

However, even for large bit lengths of n, our protocols take only a few microseconds

or milliseconds and thus they are very efficient and practical.

6.4.2 System Experiments

In this section, we provide the experiments performed on our PP-CBPS system.

PP-CBPS is constructed by a freely available popular wide-area event notification

implementation SIENA. SIENA provides a pluggable-architecture that allows to in­

corporate our protocols to provide Match and Cover operations. All the testing data

are generated uniformly at random. In all the experiments, the average time to match

a notification with a subscription is measured where 1000 notifications are generated

144

each time and the system groups the subscriptions according to the covering relation­

ships at the time of subscription. It should be noted that the matching time does not

include the time to create notifications and subscriptions which is measured in our

protocol experiments in Section 6.4.1.

Figure 6.8 shows the time to perform equality filtering in PP-CBPS (secure match­

ing) and SIENA (plain matching) for different number of subscriptions in the system.

Notifications and subscriptions are drown uniformly from 10 bit random integers. We

use a small domain size to demonstrate the effect of covering on the overall system

with and without security. As can be seen, PP-CBPS performs the matching within

10x of that of SIENA and is still quite efficient to match thousands of subscriptions

within 10 ms. In both cases, the increase in matching time with the number of sub­

scriptions is sub-linear since the covering operation groups the similar subscriptions

together, reducing the number of Match protocols needs to be executed.

 0

 2

 4

 6

 8

 10

 12

T
im

e
(in

 m
s)

SIENA
PP-CBPS

1000 1500 2000 2500 3000 3500 4000 4500 5000

No. of subscriptions

Figure 6.8.: Equality filtering time

Figure 6.9 shows the time to perform equality filtering in PP-CBPS for two dif­

ferent domain sizes, 10 and 25 bits, of notifications and subscriptions for different

number of subscriptions in the system. It should be noted that SIENA currently does

not support domain sizes larger than 27 bits, but our protocols can work under much

145

larger domains. As can be seen, the matching is more efficient with smaller domains.

This is due to the fact that smaller domains create more covering relationships than

larger domains and, hence, less matching protocols need to be executed to match a

notification against all the subscriptions. Further, observe that the rate of increase

of the overall matching cost decreases as the number of subscriptions increases. This,

again, is due to the covering protocol.

 0

 10

 20

 30

 40

 50

 60

T
im

e
(in

 m
s)

l = 25 bits
l = 10 bits

1000 1500 2000 2500 3000 3500 4000 4500 5000

No. of subscriptions

Figure 6.9.: Equality filtering time for different domain sizes

Figure 6.10 shows the time to perform inequality filtering in PP-CBPS for two

different domain sizes, 10 and 25 bits, of notifications and subscriptions for different

number of subscriptions in the system. We observe results similar to that of equality

filtering in Figure 6.9. However, notice that the inequality filtering is much more

efficient than equality filtering for the same domain size. This is due to the fact that

inequality subscriptions create more covering relationships than equality subscriptions

requiring much less matching operations.

Even though, according to the protocol experiments in Section 6.4.1, the time to

perform individual Match or Cover operations remains largely constant for different

domain sizes, the overall system performs better with smaller domain sizes. As the

domain size is reduced, there is a higher probability of having subscriptions satis­

146

 0

 20

 40

 60

 80

 100

 120

 140

 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
(in

 m
ic

ro
se

c)

l = 25 bits
l = 10 bits

No. of subscriptions

Figure 6.10.: Inequality filtering time for different domain sizes

fying covering relationships. Hence, the number of matching operations need to be

performed reduces considerably leading to a better performance.

147

7 SURVEY OF RELATED WORK

Approaches closely related to our work have been investigated in different areas: group

key management, functional encryption, selective publication of documents, secure

data outsourcing, secret sharing schemes, proxy re-encryption systems, searchable

encryption, secure multiparty computation, and private information retrieval. We

compare our work with these areas below.

7.1 Group Key Management (GKM)

GKM is a widely investigated topic in the context of group-oriented multicast

applications [15,28]. Early work on GKM relied on a key server to share a secret with

users to distribute keys to decrypt documents [22, 23]. Such approaches suffer from

the drawback of sending O(n) rekey information, where n is the number of users, in

the event of join or leave to provide forward and backward secrecy. Hierarchical key

management schemes [24, 25], where the key server hierarchically establishes secure

channels with different sub-groups instead of with individual users, were introduced to

reduce this overhead. However, they only reduce the size of the rekey information to

O(log n), and furthermore each user needs to manage at worst O(log n) hierarchically

organized redundant keys. Similar to the spirit of our approach, there have been

efforts to make rekey a one-off process [27, 28]. It should be noted that the secure

lock approach [26] based on the Chinese Remainder Theorem (CRT) is not a true

broadcast key management scheme. Even though the session key can be updated with

a single broadcast, the scheme still incurs O(n) communication cost for rekeying. To

the best of our knowledge, the approach based on ”n out of m” secret sharing [29,30]

proposed by Berkovits [27] is the first true broadcast scheme. The paper presents

two variants. In both variants, each of the n users are given a secret share and

148

another n + r (where r > 0) shares are given to all the users in the system. In

other words, it creates a n + r + 1 out of 2n + r + 1 secret sharing scheme. A valid

user who has n + r + 1 shares can recover the secret, but others cannot. In the first

variant, each user evaluates n+r+1 equations [29] whereas, in the second variant, the

common n + r shares are pre-evaluated and given only the results to reduce the load

on users [30]. Both variants are correct, but it is not clear what security penalties

proposed variants have due to certain assumptions made about the properties of secret

shares. A recent research effort introduces a related BGKM approach based on access

control polynomials [28]. This approach encodes secrets given to users at registration

phase in a special polynomial of order at least n in such a way that users can derive

the secret key from this polynomial. The special polynomials used in this approach

represent only a small subset of domain of all the polynomials of order n, and the

security of the approach is neither fully analyzed nor proven. Further, it appears that

the security of the scheme weakens as n increases.

7.2 Functional Encryption

Functional encryption [63] is a popular public key cryptographic construct used

to support fine-grained encryption on data. Functional encryption allows to encode

an arbitrary complex access control policy with the encrypted message and allow to

decrypt the message only for those satisfying the policy encoded. There are two sub­

classes of functional encryption: predicate encryption with public index [16, 64, 65]

and predicate encryption without public index [66,67].

In predicate encryption with public index schemes, the policy under which the

encryption is performed is public. Unlike the public key cryptosystems, public is not

a random string but some publicly known values that binds to users. The simplest

scheme is called identity based encryption (IBE) where user identity (e.g. email

address) is used as the public key. The idea of IBE was proposed by Shamir [68],

but the first practical constructs proposed by Boneh and Cocks [64, 65]. Attribute

149

based encryption (ABE) is a more expressive predicate encryption with public index

scheme. The concept of ABE, introduced by Sahai and Waters [16], can be considered

as a generalization of IBE. In ABE, the public keys of a user is described by a set of

identity attributes the user has. ABE has two popular variations: Key Policy ABE

(KP-ABE) where encrypted documents are associated with attributes and user keys

with policies [17]; Ciphertext Policy ABE (CP-ABE) where user keys are associated

with attributes and encrypted documents with policies [18]. In either cases the cost

of key management is minimized by using attributes that can be associated with

users. Further, an ABE based approach supports expressive ACPs. However, such an

approach suffers from some major drawbacks. Whenever the group dynamic changes,

the rekeying operation requires to update the private keys given to existing members

in order to provide backward/forward secrecy. This in turn requires establishing

private communication channels with each group member which is not desirable in a

large group setting.

In predicate encryption without pubic index schemes, the policy under which the

encryption is performed is hidden from users. In other words, such schemes preserves

the privacy of the access control policies. Anonymous IBE [69, 70], Hidden Vector

Encryption [66], and Inner product predicate [67] are all fall under such schemes.

Even though they preserve the privacy of the policy, they have limited expressibility

compared to the former schemes and also suffer from the same limitations as the

former approach. Our AB-GKM schemes address this limitation.

7.3 Selective Publishing of Documents

The database and security communities have carried out extensive research con­

cerning techniques for the selective dissemination of documents based on access con­

trol policies [71–73]. These approaches fall in the following two categories.

150

1. Encryption of different subdocuments with different keys, which are provided to

users at the registration phase, and broadcasting the encrypted subdocuments

to all users [71, 72].

2. Selective multicast of different subdocuments to different user groups [73], where

all subdocuments are encrypted with one symmetric encryption key.

The latter approaches assume that the users are honest and do not try to ac­

cess the subdocuments to which they do not have access authorization. Therefore,

these approaches provide neither backward nor forward key secrecy. In the former

approaches, users are able to decrypt the subdocuments for which they have the keys.

However, such approaches require all [71] or some [72] keys be distributed in advance

during user registration phase. This requirement makes it difficult to assure forward

and backward key secrecy when user groups are dynamic with frequent join and leave

operations. Further, the rekey process is not transparent, thus shifting the burden of

acquiring new keys on existing users when others leave or join. Having identified these

problems, our preliminary work [20], proposes an approach to make rekey transparent

to users by not distributing actual keys during the registration phase. However, the

security of the approach is not analyzed and it cannot handle large user groups.

7.4 Secure Data Outsourcing

With the increasing utilization of cloud computing services, there has been a real

need to access control the encrypted data stored in an untrusted third party. Our

work falls into this category. There has been some recent research efforts [74, 75] to

construct privacy preserving access control systems by combining oblivious transfer

and anonymous credentials. The goal of such work is similar to ours but we identify

the following limitations. Each transfer protocol allows one to access only one record

from the database, whereas our approach does not have any limitation on the number

of records that can be accessed at once since we separate the access control from the

authorization. Another drawback is that the size of the encrypted database is not

151

constant with respect to the original database size. Redundant encryption of the same

record is required to support ACPs involving disjunctions. However, our approach

encrypts each data item only once as we have made the encryption independent of

ACPs. Yu et al. [76] proposed an approach based on ABE utilizing PRE (Proxy Re-

Encryption) to handle the revocation problem of ABE. While it solves the revocation

problem to some extent, it does not preserve the privacy of the identity attributes as

in our approach.

7.5 Secret Sharing Schemes

Secret sharing schemes split a shared secret among a group of users by giving

secret shares to users and allow them to combine their secrets in a specific way and

obtain the shared secret. Shamir [29] proposed the first secret sharing scheme, (n, k)­

threshold scheme, where k users out of n can construct a unique polynomial f(x) of

degree k − 1 and recover the shared secret f(0). Since the definition of such scheme,

several extensions have been proposed [30,77,78]. A major difference between GKM

protocols and secret sharing schemes is that the former are designed to allow any

individual group member to obtain a shared secret by itself, and no persistent secure

communication channel is assumed between valid group members, whereas the latter

are to prevent a single group member from gaining the secret alone, and require a

secure communication channel, when group members combine the secret shares, to

protect the shared secret from being learned by parties outside the group.

7.6 Proxy Re-Encryption Systems

In a proxy re-encryption system one party A delegates its decryption rights to

another party B via a third party called a “proxy.” More specifically, the proxy

transforms a ciphertext computed under party A’s public key into a different cipher­

text which can be decrypted by party B with B’s private key. In such a system

neither the proxy nor party B alone can obtain the plaintext. A direct application of

152

the proxy re-encryption system does not solve the problem of CBPS: with the proxy

as the Broker, it does not by default have the capability of selectively making content-

based routing decisions. However, it might still be possible to use proxy re-encryption

as a building block in the construction of a CBPS system for data confidentiality.

7.7 Searchable Encryption

Search in encrypted data is a privacy-preserving technique used in the outsourced

storage model where a user’s data are stored on a third-party server and encrypted

using the user’s public key. The user can use a query in the form of an encrypted

token to retrieve relevant data from the server, whereas the server does not learn any

more information about the query other than whether the returned data matches the

search criteria. There have been efforts to support simple equality queries [79, 80]

and more recently complex ones involving conjunctions and disjunctions of range

queries [81]. These approaches cannot be applied directly to the CBPS model.

7.8 Secure Multiparty Computation (SMC)

SMC allows a set of participants to compute the value of a public function using

their private values as input, but without revealing their individual private values to

other participants. The problem was initially introduced by Yao.Since then improve­

ments have been proposed to the initial problem [82,83]. SMC solutions rely on some

form of zero-knowledge proof of knowledge (ZKPK) or oblivious transfer protocols

which are in general interactive. Interactive protocols are not suitable for the CBPS

model. Hence SMC solutions do not work for the CBPS model. Further, these so­

lutions usually have a higher computational and/or communication cost which may

not be acceptable for a CBPS system.

153

7.9 Private Information Retrieval (PIR)

A PIR scheme allows a client to retrieve an item from a database server without

revealing which item is retrieved. Approaches of PIR assume either the server is

computationally bounded, where the problem reduces to oblivious transfer, or there

are multiple non-cooperating servers each having the same copy. Having only two

communication parties, PIR schemes are not directly applicable to the Pub-Sub-Broker

architecture of the CBPS model. Moreover, similar to SMC solutions, PIR schemes

in general have a higher communication complexity which may not be acceptable for

a CBPS system.

154

8 SUMMARY

In this dissertation, we defended our thesis that with novel group key management

and cryptographic techniques we can construct privacy preserving fine grained access

control on third party data management systems while assuring the confidentiality

of data and preserving the privacy of users. We proposed solutions under two of

the most popular dissemination models: pull based service model and subscription

based publish-subscribe model. Having identified the drawbacks and issues in the

existing key management systems for supporting privacy preserving attribute based

access control, we first proposed a novel key management scheme called AB-GKM.

Using the AB-GKM scheme along with existing and new cryptographic constructs,

we constructed privacy preserving access control on both pull and subscription based

models based on encryption.

While this dissertation provides an extensive investigation of privacy preserving

access control for pull and subscription based dissemination systems, there are a num­

ber of problems and challenges that needs to be solved. We briefly look at some of

them below:

Privacy preserving in the relational model:

Under the relational model, generally referred to as Database-as-a-service (DBaaS),

the third party server provides a relational database to store data. With the popu­

larity of third party services such as Amazon RDS and Microsoft SQL Azure there is

a timely need to assure the confidentiality of sensitive data and the privacy of users

while supporting relational functions. The challenge is to use encryption that enforces

acps as well as allows to perform relational queries on encrypted data.

155

Content based access control in the pull model:

In the pull based model, we investigated mechanisms supporting only content inde­

pendent ACPs. More expressive systems support access control based on both identity

and content attributes. An example policy may look like “A doctor can access the

data belonging to her patients only”. Additional mechanisms are required to support

content based ACPs while assuring the confidentiality of sensitive data and the pri­

vacy of users.

Providing accountability while preserving privacy:

Another important issue is how to build accountability in to third party dissemina­

tion systems while preserving the privacy. The problem is challenging as it involves

the conflicting goals of privacy and traceability. In order to balance the privacy and

accountability, we need new traitor tracing schemes. The solution to the problem

should preserve the privacy of benign users (i.e. writes cannot be traced to the user

who made them) as long as they follow the third party service provider’s terms of use.

However users should become traceable (i.e. an illegal write can be traced to a user)

if they deviate from those terms of use. Previous research addressing this problem is

very limited [84, 85]. Further, these approaches rely on a trusted third-party (TTP)

which escrows the identity of the user to the service provider. For example, each user

write is accompanied with the identity encrypted with TTP’s public key. If the service

provider finds an illegal write, it asks the TTP to escrow the identity by decrypting

the message. In such a setting, users need to trust the TTP to reveal their identity

to service provider only if their writes violate the terms of use and need to trust the

service provider not to make false identity escrow requests to the TTP. Having a TTP

(or a set of TTPs) is the ideal model and it is well known that relying on this ideal

model is vulnerable if the above trust assumptions cease to hold (for example, one of

the parties is controlled by an adversary). Answers need to be found to the questions

“How to identify a breach of terms of use and encode it as a well-defined rule?” and

“How to preserve the privacy of good users while providing accountability?”.

156

Exploiting the relationship among acps/attribute conditions:

In many systems, acps and attribute conditions exhibit partial order relationships. For

example, hierarchical policies are used in many domains. The most common example

of such hierarchies is Role Based Access Control (RBAC) models [86]. Our AB-GKM

scheme does not consider relationship among acps or attribute conditions. Due to

the non-linear cost associated with KeyGen algorithm of AB-GKM, one can improve

the efficiency of KeyGen by breaking the problem into a set of smaller problems and

using the relationship among ACPs to derive keys. It is challenging to exploit the

relationships among ACPs while preserving the privacy of users.

Privacy preserving access control on big data systems:

Big Data technologies such as Apache Hadoop are increasingly being used to store

and/or analyze sensitive data. In order to comply with various regulations and or­

ganizational policies, such data needs to be stored encrypted and the access to them

needs to be controlled based on the identity attributes of users. However, most of

the existing third party systems utilizing traditional key management schemes pro­

vide either no or limited assurance of confidentiality and privacy. The challenge is to

handle large volume of data and many users in an efficient manner while assuring the

confidentiality of data and preserving the privacy of users who use such services.

LIST OF REFERENCES

157

LIST OF REFERENCES

[1] Liberty Alliance. http://www.projectliberty.org/ [Last accessed: July 18,
2012].

[2] OpenID. http://openid.net/ [Last accessed: July 18, 2012].

[3] Microsoft Windows CardSpace. http://windows.microsoft.com/en-us/
windows-vista/Windows-CardSpace [Last accessed: July 18, 2012].

[4] Higgins Open Source Identity Framework. http://www.eclipse.org/higgins/
[Last accessed: July 18, 2012].

[5] R. Richardson. CSI Computer Crime and Security Survey. Technical report,
Computer Security Institute, 2008.

[6] W. Chenxi, A. Carzaniga, D. Evans, and A.L. Wolf. Security issues and require­
ments for internet-scale publish-subscribe systems. In HICSS 2002: Proceedings
of the 35th Annual Hawaii International Conference on System Sciences, pages
3940–3947, Jan 2002.

[7] E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, and A. Gupta. Selective
and authentic third-party distribution of XML documents. IEEE Transactions
on Knowledge and Data Engineering, 16(10):1263–1278, Oct. 2004.

[8] M. Srivatsa and L. Liu. Securing publish-subscribe overlay services with event-
guard. In CCS 2005: Proceedings of the 12th ACM conference on Computer and
Communications Security, pages 289–298, 2005.

[9] M. Nabeel and E. Bertino. Secure delta-publishing of XML content. In ICDE,
2008. Proceedings of the IEEE 24th International Conference on Data Engineer­
ing, pages 1361–1363, Apr 2008.

[10] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT 1999: Proceeding of the 18th International Confer­
ence on the Theory and Application of Cryptographic Techniques, pages 223–238,
1999.

[11] C.P. Schnorr. Efficient identification and signatures for smart cards. In Proceed­
ings of the 8th CRYPTO Conference on Advances in Cryptology, pages 239–252,
1989.

[12] C. Raiciu and D. S. Rosenblum. Enabling confidentiality in content-based pub­
lish/subscribe infrastructures. In Proceedings of the Securecomm and Workshops,
pages 1–11, 2006.

http://www.eclipse.org/higgins
http://windows.microsoft.com/en-us
http:http://openid.net
http:http://www.projectliberty.org

158

[13] M. Srivatsa and L. Liu. Secure event dissemination in publish-subscribe networks.
In ICDCS 2007: Proceedings of the 27th International Conference on Distributed
Computing Systems, pages 22–33, 2007.

[14] K. Minami, A. J. Lee, M. Winslett, and N. Borisov. Secure aggregation in a
publish-subscribe system. In WPES 2008: Proceedings of the 7th ACM workshop
on Privacy in the electronic society, pages 95–104, 2008.

[15] Y. Challal and H. Seba. Group key management protocols: A novel taxonomy.
International Journal of Information Technology, 2(2):105–118, 2006.

[16] A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT
2005: Procedings of the 25th Annual International Cryptology Conference on
Advances in Cryptology, pages 457–473, 2005.

[17] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In CCS 2006: Proceedings of the
13th ACM Conference on Computer and Communications Security, pages 89–98,
2006.

[18] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based
encryption. In SP 2007: Proceedings of the 28th IEEE Symposium on Security
and Privacy, pages 321–334, 2007.

[19] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transaction on Computer Systems,
19(3):332–383, 2001.

[20] N. Shang, M. Nabeel, F. Paci, and E. Bertino. A privacy-preserving approach
to policy-based content dissemination. In ICDE 2010: Proceedings of the 2010
IEEE 26th International Conference on Data Engineering, 2010.

[21] M. Nabeel, N. Shang, and E. Bertino. Privacy preserving policy based content
sharing in public clouds. IEEE Transactions on Knowledge and Data Engineer­
ing, 2012.

[22] H. Harney and C. Muckenhirn. Group key management protocol (GKMP) spec­
ification. Technical report, Network Working Group, United States, 1997.

[23] H. Chu, L. Qiao, K. Nahrstedt, H. Wang, and R. Jain. A secure multicast pro­
tocol with copyright protection. SIGCOMM Computer Communication Review,
32(2):42–60, 2002.

[24] C.K. Wong and S.S. Lam. Keystone: A group key management service. In ICT
2000: Proceedings of the International Conference on Telecommunications, 2000.

[25] A.T. Sherman and D.A. McGrew. Key establishment in large dynamic groups
using one-way function trees. IEEE Transactions on Software Engineering,
29(5):444–458, May 2003.

[26] G. Chiou and W. Chen. Secure broadcasting using the secure lock. Software
Engineering, IEEE Transactions on, 15(8):929–934, Aug 1989.

[27] S. Berkovits. How to broadcast a secret. In EUROCRYPT 1991: Proceedings
of the 10th annual international conference on Advances in Cryptology, pages
535–541, 1991.

159

[28] X. Zou, Y. Dai, and E. Bertino. A practical and flexible key management mech­
anism for trusted collaborative computing. In INFOCOM 2008: The 27th Con­
ference on Computer Communications, pages 538–546, 2008.

[29] A. Shamir. How to share a secret. ACM Communications, 22(11):612–613, 1979.

[30] E. F. Brickell. Some ideal secret sharing schemes. In EUROCRYPT 1989: Pro­
ceedings of the workshop on the theory and application of cryptographic techniques
on Advances in cryptology, pages 468–475, 1990.

[31] O. Goldreich. Foundations of cryptography: Basic tools. Cambridge University
Press, New York, NY, USA, 2000.

[32] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for de­
signing efficient protocols. In CCS 1993: Proceedings of the 1st ACM conference
on Computer and communications security, pages 62–73, 1993.

[33] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive
proof-systems. In STOC 1985: Proceedings of the seventeenth annual ACM
symposium on Theory of computing, pages 291–304, 1985.

[34] D. Dummit and R. Foote. Gaussian-Jordan elimination. In Abstract Algebra,
page 404. Wiley, 2nd edition, 1999.

[35] D. Naor, M. Naor, and J. B. Lotspiech. Revocation and tracing schemes for state­
less receivers. In CRYPTO 2001: Proceedings of the 21st Annual International
Cryptology Conference on Advances in Cryptology, pages 41–62, 2001.

[36] D. Halevy and A. Shamir. The LSD broadcast encryption scheme. In CRYPTO
2001: Proceedings of the 22nd Annual International Cryptology Conference on
Advances in Cryptology, pages 47–60, 2002.

[37] V. Shoup. NTL library for doing number theory. http://www.shoup.net/ntl/
[Last accessed: July 18, 2012].

[38] OpenSSL the open source toolkit for SSL/TLS. http://www.openssl.org/
[Last accessed: July 18, 2012].

[39] N. Shang, M. Nabeel, E. Bertino, and X. Zou. Broadcast group key management
with access control vectors. Technical report, Department of Computer Science,
Apr 2010.

[40] M. Nabeel and E. Bertino. Attribute based group key management. Technical
Report CERIAS TR 2010, Purdue University, 2010.

[41] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters. Secure attribute-based
systems. In CCS 2006: Proceedings of the 13th ACM Conference on Computer
and Communications Security, pages 99–112, 2006.

[42] XML in clinical research and healthcare industries. http://xml.coverpages.
org/healthcare.html [Last accessed: July 18, 2012].

[43] M. Eichelberg, T. Aden, J. Riesmeier, A. Dogac, and G. B. Laleci. A survey
and analysis of electronic healthcare record standards. ACM Computer Survey,
37(4):277–315, 2005.

http://xml.coverpages
http:http://www.openssl.org
http://www.shoup.net/ntl
http:efficientprotocols.In

160

[44] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext policy attribute based en­
cryption library. http://http://acsc.cs.utexas.edu/cpabe/ [Last accessed:
July 18, 2012].

[45] B. Lynn. Pairing based cryptography library. http://crypto.stanford.edu/
pbc/ [Last accessed: July 18, 2012].

[46] J. Li and N. Li. OACerts: Oblivious attribute certificates. IEEE Transactions
on Dependable and Secure Computing, 3(4):340–352, 2006.

[47] T.P. Pedersen. Non-interactive and information-theoretic secure verifiable se­
cret sharing. In CRYPTO 1991: Proceedings of the 11th Annual International
Cryptology Conference on Advances in Cryptology, pages 129–140, 1992.

[48] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal
on Uncertainity Fuzziness Knowledge-Based Systems, 10(5):557–570, 2002.

[49] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography:
The case of hashing and signing. In Proceedings of the 14th Annual International
Cryptology Conference on Advances in Cryptology, pages 216–233, 1994.

[50] Enrico Buonanno, Jonathan Katz, and Moti Yung. Incremental unforgeable
encryption. In FSE 2001: Revised Papers from the 8th International Workshop
on Fast Software Encryption, pages 109–124, 2001.

[51] N. Shang. G2HEC: A Genus 2 Crypto C++ Library. http://www.math.purdue.
edu/~nshang/libg2hec.html [Last accessed: July 18, 2012].

[52] F. Paci, N. Shang, E. Bertino, K. Steuer Jr., and J. Woo. Secure transactions’
receipts management on mobile devices. In Symposium on Identity and Trust on
the Internet (IDtrust Symposiums), Apr 2009.

[53] P. Gaudry and ´ E. Schost. Construction of secure random curves of genus 2 over
prime fields. In EUROCRYPT 2004: Advances in Cryptology, pages 239–256,
2004.

[54] Boolstuff, A boolean expression tree toolkit. http://sarrazip.com/dev/
boolstuff.html [Last accessed: July 18, 2012].

[55] A. Schaad, J. Moffett, and J. Jacob. The role-based access control system of a
european bank: a case study and discussion. In SACMAT 2001: Proceedings of
the sixth ACM symposium on Access control models and technologies, pages 3–9,
2001.

[56] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification
and change-impact analysis of access-control policies. In ICSE 2005: Proceedings
of the 27th international conference on Software engineering, pages 196–205,
2005.

[57] P. Eugster, P.A. Felber, R. Guerraoui, and A. Kermarrec. The many faces of
publish/subscribe. ACM Computing Survey, 35(2):114–131, 2003.

[58] S. Choi, G. Ghinita, and E. Bertino. A privacy-enhancing content-based pub­
lish/subscribe system using scalar product preserving transformations. In DEXA
2010: Proceedings of the 21st Conference on Database and Expert Systems Ap­
plications, 2010.

http://sarrazip.com/dev
http://www.math.purdue
http:http://crypto.stanford.edu
http://http://acsc.cs.utexas.edu/cpabe

161

[59] H. Cohen. A course in computational algebraic number theory, chapter 1.5, pages
31–36. Springer-Verlag, 1993.

[60] J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In Proceedings of the 23rd CRYPTO Conference on Advances
in Cryptology, pages 56–72, 2004.

[61] Roger D., Nick M., and Paul S. Tor: The second-generation onion router. In
USENIX 2004: In Proceedings of the 13th Usenix Security Symposium, 2004.

[62] Bouncycastle. Bouncy Castle Crypto APIs. http://www.bouncycastle.org/
[Last accessed: July 18, 2012].

[63] D. Boneh, A. Sahai, and B. Waters. Functional encryption: definitions and
challenges. In TCC 2011: Proceedings of the 8th conference on Theory of cryp­
tography, pages 253–273, 2011.

[64]	 D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In
CRYPTO 2001: Proceedings of the 21st Annual International Cryptology Con­
ference on Advances in Cryptology, pages 213–229, 2001.

[65] C. Cocks. An identity based encryption scheme based on quadratic residues.
In Proceedings of the 8th IMA International Conference on Cryptography and
Coding, pages 360–363, 2001.

[66] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. In TCC 2007: Proceedings of the 4th conference on Theory of cryptography,
pages 535–554, 2007.

[67] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In EUROCRYPT 2008: Proceedings
of the theory and applications of cryptographic techniques 27th annual interna­
tional conference on Advances in cryptology, pages 146–162, 2008.

[68] A. Shamir. Identity-based cryptosystems and signature schemes. In Proceedings
of CRYPTO 84 on Advances in cryptology, pages 47–53, 1985.

[69] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-
Lee, G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consis­
tency properties, relation to anonymous ibe, and extensions. Jurnal of Cryptol­
ogy, 21(3):350–391, March 2008.

[70] C. Gu, Y. Zhu, and H. Pan. Information security and cryptology. In Dingyi
Pei, Moti Yung, Dongdai Lin, and Chuankun Wu, editors, Inscrypt, chapter
Efficient Public Key Encryption with Keyword Search Schemes from Pairings,
pages 372–383. 2008.

[71] E. Bertino and E. Ferrari. Secure and selective dissemination of XML documents.
ACM Transaction Information System Security, 5(3):290–331, 2002.

[72] G. Miklau and D. Suciu. Controlling access to published data using cryptography.
In VLDB ’2003: Proceedings of the 29th international conference on Very large
data bases, pages 898–909. VLDB Endowment, 2003.

http:http://www.bouncycastle.org

162

[73] A. Kundu and E. Bertino. Structural signatures for tree data structures. Pro­
ceeding of VLDB Endowment, 1(1):138–150, 2008.

[74] S. Coull, M. Green, and S. Hohenberger. Controlling access to an oblivious
database using stateful anonymous credentials. In Irvine: Proceedings of the 12th
International Conference on Practice and Theory in Public Key Cryptography,
pages 501–520, 2009.

[75] J. Camenisch, M. Dubovitskaya, and G. Neven. Oblivious transfer with access
control. In CCS 2009: Proceedings of the 16th ACM conference on Computer
and communications security, pages 131–140, 2009.

[76] S. Yu, C. Wang, K. Ren, andW. Lou. Attribute based data sharing with attribute
revocation. In ASIACCS 2010: Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, pages 261–270, 2010.

[77] J.C. Benaloh and J. Leichter. Generalized secret sharing and monotone func­
tions. In CRYPTO 1988: Proceedings of the 8th Annual International Cryptology
Conference on Advances in Cryptology, pages 27–35, 1990.

[78] T. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In CRYPTO 1991: Proceeding of 1991 CRYPTO Conference on Ad­
vances in Cryptology, volume 576 of Lecture Notes in Computer Science, pages
129–140, 1992.

[79] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on
encrypted data. In SP 2000: Proceedings of the 2000 IEEE Symposium on
Security and Privacy, pages 44–55, 2000.

[80] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano. Public-key encryption
with keyword search. In EUROCRYPT 2004: Proceedings of the 2004 EURO­
CRYPT on Advances in Cryptology, 2004.

[81] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted
data. Theory of Cryptography, pages 535–554, May 2007.

[82] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and
set intersection. In EUROCRYPT 2004: Proceeding of the 2004 EUROCRYPT
Conference on Advances in Cryptology, 2004.

[83] I. Damg̊ard, M. Geisler, and M. Kroigard. Homomorphic encryption and secure
comparison. International Journal on Applied Cryptology, 1(1):22–31, 2008.

[84] L. Buttyán and J. Hubaux. Accountable anonymous access to services in mobile
communication systems. In SRDS 1999: Proceedings of the 18th IEEE Sympo­
sium on Reliable Distributed Systems, pages 384–394, 1999.

[85] M. Backes, J. Camenisch, and D. Sommer. Anonymous yet accountable access
control. In WPES 2005: Proceedings of the 4th ACM Workshop on Privacy in
the Electronic Society, 2005.

[86] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access control
models. IEEE Computer, 29(2):38–47, 1996.

VITA

163

VITA

Contact Information

Department of Computer Science Voice: 765-337-2645 (Mobile)

Purdue University Email: nabeel(at)cs.purdue.edu

305 N. University St., W. Lafayette, Indi­ http://www.cs.purdue.edu/ nabeel

ana 47907

Research/Development Interests

Data privacy, Context-aware security, distributed systems & security, database

systems & security, information security and applied cryptography in general

Education

Purdue University, West Lafayette, IN, Aug. 2008 - Aug. 2012

Ph.D. in Computer Science

Advisor: Elisa Bertino

Dissertation: Privacy Preserving Access Control for Third-Party Data Management

Systems

Purdue University, West Lafayette, IN, Aug. 2006 - May 2008

M.S. in Computer Science, GPA: 3.8/4.0

Advisor: Elisa Bertino

University of Moratuwa, Moratuwa, Sri Lanka, Feb. 2000 - Mar. 2004

B.Sc. with Honors in Computer Science & Engineering, GPA: 4.0/4.0, Rank:1/500

164

Honors and Awards

• Recipient of Purdue Research Foundation grant. 2011 - 2012

• Recipient of Purdue Cyber Center research grant. 2010 - 2011

• Fulbright Fellow at Purdue University. 2006 - 2008

•	 PHP PECL Axis2/C Committer, (Later the project was moved to wso2.org).

2006

•	 Apache Committer for the Axis2/C project. 2006

•	 UNESCO Team Gold Medal Award for the Highest Class Average in B.Sc.

Engineering. 2004

•	 TP De S Munasinghe Award for the Highest Class Average in B.Sc. Com­

puter Sci. & Eng. 2004

•	 Silver Medal, National Best Quality Software Competition, Sri Lanka. 2005

•	 Gold Medal Award for the All-Island Highest Aggregate (rank = 1) in Math­

ematics Stream, G.C.E A/L, Sri Lanka. 1998

Publications

Conference Publications

1. Mohamed Nabeel, Elisa Bertino, Privacy Preserving Delegated Access Control in

the Data-as-a-Service Model. In IEEE International Conference on Information

Reuse and Integration (IRI), 2012.

2. Mohamed Nabeel, Ning Shang, Elisa Bertino, Efficient Privacy-Preserving Pub­

lish Subscribe Systems. In ACM Symposium on Access Control Models and

Technologies (SACMAT), 2012.

3. Mohamed Nabeel, David Stork, Oblivious Tree-based Classification in the Cloud.

Under Review.

http:AverageinB.Sc
http:wso2.org

165

4. Mohamed Nabeel, Elisa Bertino, Murat Kantarcioglu, Bhavani Thuraisingham,

Towards Privacy Preserving Access Control in the Cloud. In IEEE International

Conference on Collaborative Computing (CollaborateCom), 2011.

5. Mohamed Nabeel, Elisa Bertino, Towards Attribute Based Group Key Manage­

ment. In ACM Conference on Computer and Communication Security (CCS),

2011 (Poster paper).

6. Mohamed Nabeel, Ning Shang, John Zage, Elisa Bertino, Mask: A System for

Privacy-Preserving Policy-Based Access to Published Content. In ACM Inter­

national Conference on Management of Data (SIGMOD), 2010 (Demo paper).

7. Ning Shang, Mohamed Nabeel, Federica Paci, Elisa Bertino, A Privacy-Preserving

Approach to Policy-Based Content Dissemination. International Conference on

Data Engineering (ICDE), 2010.

8. Mohamed Nabeel, Elisa Bertino, Secure Delta-Publishing of XML Content. In

International Conference on Data Engineering (ICDE), 2008 (Poster paper).

Journal Publications

1. Mohamed Nabeel, Elisa Bertino, Privacy Preserving Delegated Access Control

in the Cloud. Under Review In IEEE Transaction on Knowledge and Data

Engineering (TKDE).

2. Mohamed Nabeel, Elisa Bertino, Attribute Based Group Key Management.

Under Review In IEEE Transactions on Dependable and Secure Computing

(TDSC).

3. Mohamed Nabeel, Elisa Bertino, Privacy Preserving Policy Based Content Shar­

ing in Public Clouds. Under Review In IEEE Transaction on Knowledge and

Data Engineering (TKDE).

166

Projects

Secure Advanced Metering Infrastructure Project Current

An industry collaborated project to secure the communication links in Advanced Me­

tering Infrastructure (AMI).

CloudMask Project Current

A research project to build a privacy preserving cloud based storage/data service that

protects the privacy of the users who access the service as well as the data stored in

the cloud.

Ionomics Atlas 2011

Ionomics Atlas is a research project that provides a Google map based interface to find

relationship among ionomic, genetic and environmental information for Arabidopsis

Thaliana plant population. It is available to the public at http://ibnkhaldun.cs.

purdue.edu:8348/ionomicsatlas/.

Mask Project 2010

A research project to build the first system addressing the seemingly-unsolvable prob­

lem of how to selectively share contents among a group of users based on access control

policies expressed as conditions against the identity attributes of these users while

at the same time assuring the privacy of these identity attributes from the content

publisher. (C/C++/Java/Abstract Algebra)

Cancer Care Engineering Project 2010

A research project to model cancer-care systems, build educational tools and an in­

teractive community. Have been involved in the project as a research assistant to

build certain components of the project.

http:http://ibnkhaldun.cs

167

Smart Pump Informatics 2009

A research project to mine patterns in sensitive information collected from infusion

devices (smart pumps) installed in different hospitals. Involved in the project as a

summer intern 2009 to build certain components.

An Efficient Group Key Management (GKM) Scheme 2009

Designed and Implemented a new GKM scheme which is efficient and secure under

frequent join and leave operations. C/C++, NTL library for implementing a novel

GKM scheme, OpenSSL for cryptographic functions. Developed as part of a research

paper for ICDE 2010.

A Scalable Routing Protocol to Distribute Hierarchically Organized Data

2008 - 2009

Designed and implemented a complete system which introduces the novel concept of

hierarchically organized routing tables. Java, XML and related technologies, overlay

networks. Developed as part of a research paper for DocEng 2009.

Secure Delta-Publishing of XML Documents 2008

Designed and implemented a complete Publish-Subscribe system to incrementally dis­

seminate XML documents while preserving confidentiality and integrity. Java, XML

and related technologies including XML encryption and digital signatures, overlay

networks. Developed as part of the ICDE 2008 conference paper.

Apache Axis2/C 2006 - 2007

A high-performance open source Web Services middleware in C. Was part of the team

in 2006 (Earned the Apache committership for my work). C, Web Services standards,

middleware.

WSO2 WSF/PHP 2006

168

A high-performance open source Web Services middleware for PHP built on Apache

Axis2/C in C. Initiated the project in early 2006 and was part of the team in 2006.

C, PHP, Web Services standards, middleware, extension development for PHP.

Electronic Trading System 2004 - 2005

Responsible for design and development of several components of a trading system

which is deployed in multiple high-profile stock exchanges. C/C++, various data

specification used to disseminate trades and quotes, trading business logic.

PHPlus Web Application Development Framework 2004

A PHP based web application development framework which allow to design and

develop application logic in parallel. Developed as an undergraduate research project

and was part of the team of 4 in 2004. C/C++, PHP, XML, HTML, framework

development.

Work Experience

Purdue University, West Lafayette, IN, USA.

Research Assistant Aug. 2011 - Present

Have been involved in projects on privacy preserving group key management, secure

and privacy preserving cloud storage services, and privacy preserving publish sub­

scribe systems.

Rosen Center for Advanced Computing, West Lafayette, IN, USA.

Research & Development Intern. May 2011 - Aug. 2011

Involved in devising policies to make a healthcare project HIPAA complaint and im­

plementing the policies for the project. Also involved in research projects to analyze

efficiency of the electric vehicles in Indiana and analyze recent earthquakes in Chile.

169

Cyber Center, West Lafayette, IN, USA.

Graduate Research Assistant Aug. 2010 - May 2011

Designed and developed a web-based system to find correlations among ionomic, ge­

netic and environmental information of plant populations. The system is available at

http://ibnkhaldun.cs.purdue.edu:8348/ionomicsatlas/.

Ricoh Innovations Inc., Menlo Park, CA, USA.

Research & Development Intern. May 2010 - Aug. 2010

Designed and developed techniques and complete systems to obliviously perform clas­

sification of data on an untrusted remote third-party server.

Rosen Center for Advanced Computing, West Lafayette, IN, USA.

Graduate Research Assistant Aug. 2009 - May 2010

Involved in a health-care research project called ccehub.org, the goal of which is to

model cancer-care systems, build educational tools and an interactive community.

Rosen Center for Advanced Computing, West Lafayette, IN, USA.

Research & Development Intern. May 2009 - Aug. 2009

Involved in a health-care research project called Smart Pump Informatics to mine

patterns in sensitive information collected from infusion devices (smart pumps) in­

stalled in different hospitals in Indiana.

Purdue University, West Lafayette, IN, USA.

Teaching Assistant Aug. 2008 - May 2009

Conducted labs, designed assignments and graded assignments for the courses CS 426

(Computer Security), CS 251 (Data Structures & Algorithms), and CS 541 (Database

Management Systems) under different instructors.

http:ccehub.org
http://ibnkhaldun.cs.purdue.edu:8348/ionomicsatlas

170

Purdue University, West Lafayette, IN, USA.

Research Assistant May 2008 - Aug. 2008

Conducted research to find an efficient and scalable approach to selectively dissemi­

nate portions of XML documents to different users confirming to access control poli­

cies. Developed a prototype to demonstrate the approach.

WSO2 Inc., Colombo, Sri Lanka.

Senior Software Engineer Jan. 2006 - Jul. 2006

Actively participated in the development of popular open source Apache Axis2/CWeb

Services engine. Earned Apache committership for my work. Initiated the project of

PHP Web Services (WSF/PHP).

Millennium Information Technologies Inc., Malabe, Sri Lanka.

Software Engineer Mar 2004 - Dec. 2005

Actively participated in the design and development of back-end software for interna­

tional capital markets. Was mainly responsible for designing and developing external

feed gateways which need to handle high volume of data and very high data rates.

Guided several employees in this area.

Colombo University, Colombo, Sri Lanka.

Part-time Instructor Mar 2004 - Dec. 2005

Taught undergraduate level courses Network & System Administration and Object

Oriented Programming for an external bachelor’s program by Colombo university for

several groups of students.

CodegenIT Inc., Colombo, Sri Lanka.

Software Engineering Intern Jan. 2003 - Jun. 2003

Actively participated in the design and development of back-end software for travel

and hospitality industry.

171

Organizations and Clubs

•	 Fulbright Association, Purdue University. Aug. 2006 - Present

Secretary/Web Master Aug. 2007 - May 2008

Treasurer/Web Master Aug. 2006 - May 2007

•	 Graduate Student Board (GSB), Purdue University.

First year representative Aug. 2006 - May 2007

•	 Web Team, University of Moratuwa, Sri Lanka.

Web Developer Jan. 2002 - Dec. 2002

•	 Computer Society, University of Moratuwa , Sri Lanka.

Committee member Jan. 2003 - Dec. 2003

Professional Activities

•	 ACM, student member

•	 IEEE, student member

•	 CODASPY poster track committee member

•	 Conference and Jouranl reviewer

–	 ACM Symposium on Access Control Models and Technologies (SACMAT)

–	 International Conference on Distributed Computing Systems (ICDCS)

–	 Very Large Data Bases (VLDB)

–	 International Conference on Data Engineering (ICDE)

–	 Annual International Conference on Financial Cryptography and Data Se­

curity (FC)

–	 ACM Symposium on Information, Computer and Communications Security

(ASIACCS)

–	 Annual Computer Security Applications Conference (ACSAC)

–	 Extending Database Technology (EDBT)

172

–	 ACMConference on Data and Application Security and Privacy (CODASPY)

–	 IEEE International Symposium on Policies for Distributed Systems and Net­

works (POLICY)

–	 IEEE Transaction on Knowledge and Data Engineering (TKDE)

–	 IEEE Transactions on Dependable and Secure Computing (TDSC)

–	 IEEE Transactions on Information Forensics and Security

–	 International Journal of Information Security

	ETDForm9_2
	GSForm20_1
	thesis (1)

