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Abstract—Access control mechanisms protect sensitive information from unauthorized users. However, when sensitive informa­
tion is shared and a Privacy Protection Mechanism (PPM) is not in place, an authorized insider can still compromise the privacy 
of a person leading to identity disclosure. A PPM can use suppression and generalization to anonymize and satisfy privacy 
requirements, e.g., k-anonymity and l-diversity, against identity and attribute disclosure. However, the protection of privacy is 
achieved at the cost of precision of authorized information. 
In this paper, we propose a privacy-preserving access control framework. The access control policies define selection predicates 
available to roles while the privacy requirement is to satisfy the k-anonymity or l-diversity. An additional constraint that needs to 
be satisfied by the PPM is the imprecision bound for each selection predicate. The techniques for workload-aware anonymization 
for selection predicates have been discussed in the literature. However, to the best of our knowledge, the problem of satisfying 
the accuracy constraints for multiple roles has not been studied before. In our formulation of the aforementioned problem, we 
propose heuristics for anonymization algorithms and show empirically that the proposed approach satisfies imprecision bounds 
for more permissions and has lower total imprecision than the current state of the art. 

Index Terms—Access Control, Privacy, k-anonymity, Query Evaluation. 
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1 INTRODUCTION 

ORGANIZATIONS collect and analyze consumer 
data to improve services. Access Control Mecha­

nisms (ACM) are used to ensure that only authorized 
information is available to users. However, sensitive 
information can still be misused by authorized in­
siders to compromise the privacy of consumers. The 
concept of privacy preservation for sensitive data can 
require the enforcement of privacy policies or the 
protection against identity disclosure by satisfying 
some privacy requirements [1]. In this paper, we 
investigate privacy preservation from the anonymity 
aspect. The sensitive information, even after the re­
moval of identifying attributes, is still susceptible to 
linking attacks by the authorized insiders [2]. This 
problem has been studied extensively in the area of 
micro data publishing and privacy definitions, e.g., 
k-anonymity [2], l-diversity [3], t-closeness [4]. The 
anonymity techniques can be used with an access 
control mechanism to ensure both security and pri­
vacy of the sensitive information. However, privacy 
is achieved at the cost of accuracy and imprecision 
is introduced in the information provided by per­
missions under an access control policy. We use the 
concept of imprecision bound for each permission to 
set a threshold on the amount of imprecision that can 

•	 Z. Pervaiz and A. Ghafoor are with Department of Electrical and 
Computer Engineering, W. Aref is with Computer Science Department 
and N. Prabhu is with Industrial Engineering Department, Purdue 
University, IN, 47907. 

be tolerated. To exemplify our approach, role-based 
access control is assumed. However, the approach is 
generic and can be applied to any security policy, 
e.g., discretionary access control or mandatory access 
control. The heuristics proposed in this paper for 
privacy-preserving access control are also relevant in 
the context of workload-aware anonymization. 

The issue of protecting the privacy of individuals 
before releasing micro data containing personal infor­
mation has been studied extensively during the last 
decade [5]. Anonymization algorithms use suppres­
sion and generalization of records to satisfy privacy 
requirements, e.g., k-anonymity and l-diversity with 
minimal distortion of micro data. Workload-aware 
anonymization techniques that minimize information 
loss for data mining tasks or for a given set of queries 
have been developed [6], [7]. However, the problem 
of satisfying accuracy constraints set by the multiple 
users of micro data has not been studied. 

Example 1 (Motivating Scenario). Syndromic surveil­
lance systems are used at the state and federal levels 
to detect and monitor threats to public health [8], 
[9]. The department of health in a state collects the 
emergency department data (age, gender, location, 
time of arrival, symptoms, etc.) from county hospitals 
daily. Generally, each daily update consists of a static 
instance that is classified into syndrome categories by 
the department of health. Then, the surveillance data 
is anonymized and shared with departments of health 
at each county. An access control policy is given in 
Figure 1 that allows the roles to execute the authorized 
queries, e.g., Role CE1 can only execute queries under 
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Permission P1. The epidemiologists at the state and 
county level suggest community containment mea­
sures, e.g., isolation or quarantine according to the 
number of persons infected in case of a flu outbreak. 
According to the population density in a county, an 
epidemiologist can advise isolation if the number of 
persons reported with influenza are greater than 1000 
and quarantine if that number is greater than 3000 in 
a single day. The anonymization adds imprecision to 
the query results and the imprecision bound for each 
query ensures that the results are within the tolerance 
required. If the imprecision bounds are not satisfied 
then unnecessary false alarms are generated due to 
the high rate of false positives. 

SE

State Epidemiologist

Designation

SE

Role

County 1 EpidemiologistCE1
CE1 CE2

P1 P2

County 2 EpidemiologistCE2

Location = County 1 ˄ Age = 15-65 ˄ Syndrome = Influenza

Authorized Query Predicate

P1

Permission

Location = County 2 ˄ Age = 15-65 ˄ Syndrome = InfluenzaP2

Fig. 1. Access control policy 

From the perspective of access control, the motiva­
tion for the problem setting is that users are able to 
specify the error tolerance of each permission pred­
icate for a given security policy or query workload. 
The anonymization techniques minimizing impreci­
sion for all queries, e.g., Selection Mondrian [6], [10] 
give no clue about the imprecision that has been 
added to each permission/query in the anonymized 
micro data. Making the privacy requirement more 
stringent (e.g., increasing the value of k or l) results 
in more imprecision for queries. It is observed in the 
experiments in Section 5 that some permissions have 
more than 100% false positives. For some applications, 
when permissions have imprecision more than 50 
to 100% of the size of the query, the access control 
module should either deny the request or give a 
warning. 

The contributions of the paper are as follows. First, 
we introduce the concept of privacy-preserving ac­
cess control. Second, we formulate the accuracy and 
privacy constraints as the problem of k-anonymous 
Partitioning with Imprecision Bounds (k-PIB) and 
give hardness results. Third, we propose heuristics to 
approximate the solution of the k-PIB problem and 
conduct empirical evaluation. 

The rest of this paper proceeds as follows. In Sec­
tion 2, relevant background is discussed. The problem 
formulation and definitions are presented in Section 3. 
Section 4 covers the proposed top-down heuristics for 

multidimensional partitioning to satisfy imprecision 
bounds. Experimental results are in Section 5, and in 
Section 6, an additional step to reduce the number 
of permissions violating imprecision bounds is pro­
posed. The related work is presented in Section 7 and 
Section 8 concludes the paper. 

2 BACKGROUND 

In this section, role-based access control concepts 
and privacy definitions based on anonymity are 
overviewed. Query evaluation semantics, imprecision, 
and the Selection Mondrian algorithm [10] are briefly 
explained. 

Given a relation T = {A1, A2, . . . , An}, where Ai 
∗is an attribute, T is the anonymized version of the 

relation T . The attributes can be of the following 
types: 
•	 Identifier. Attributes, e.g., name and social se­

curity, that can uniquely identify an individual. 
These attributes are completely removed from the 
anonymized relation. 

•	 Quasi-Identifier (QI). Attributes, e.g., gender, 
zip code, birth date, that can potentially identify 
an individual based on other information avail­
able to an adversary. QI attributes are generalized 
to satisfy the anonymity requirements. 

•	 Sensitive Attribute. Attributes, e.g., disease or 
salary, that if associated to a unique individual 
will cause a privacy breach. 

2.1 Role-based Access Control 
Role-based Access Control (RBAC) allows defining 
permissions on objects based on roles in an organi­
zation. An RBAC policy configuration is composed 
of a set of Users (U), a set of Roles (R), and a 
set of Permissions (P). For the relational model, we 
assume that the set of permissions for a role are 
the selection predicates on the QI attributes that the 
role is authorized to execute [11]. Among the autho­
rized tuple subset, a user is free to set any selection 
condition on the sensitive attribute. The user-to-role 
assignment (UA) is a user-to-role (U x R) mapping 
and the role-to-permission assignment (PA) is a role-
to-permission (R x P) mapping. A role hierarchy (RH) 
defines an inheritance relationship among roles and 
is a partial order on roles (R x R) [12]. 

Definition 1 (RBAC Policy). An RBAC policy ρ is a 
tuple (U, R, P, UA, P A, RH). 

2.2 Anonymity Definitions 
In this section, privacy definitions related to 
anonymity are introduced. The k-anonymity 
requirement is satisfied for an anonymized table 
if there are at least k tuples for every combination of 
predicates on the QI attributes [2]. 
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Definition 2 (Equivalence Class (EC)). An equiva­
lence class is a set of tuples having the same QI 
attribute values. 

Definition 3 (k-anonymity Property). A table T ∗ sat­
isfies the k-anonymity property if each equivalence 
class has k or more tuples. 

k-anonymity is prone to homogeneity attacks when 
the sensitive value for all the tuples in an equiva­
lence class is the same. To counter this shortcoming 
l-diversity is introduced [3] and requires that each 

∗equivalence class of T must contain at least l distinct 
values of the sensitive attribute. 

Definition 4 (l-diversity Principle). A table T ∗ satis­
fies the l-diversity principle if each equivalence class 
contains at least l well-represented values of the sen­
sitive attribute. 

For sensitive numeric attributes, the l-diverse 
equivalence class can still leak information if the nu­
meric values are close to each other. Variance diversity 
[6] and t-closeness [4] have been proposed for privacy 
protection against such a disclosure. 

∗Definition 5 (Variance Diversity). A table T is vari­
ance diverse if the variance V (EC) of each equivalence 
class satisfies V (EC) ≥ v, where v is the variance 
diversity parameter. 
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Age

1

ID

Flu

Disease

15

Zip

QI1 S1QI2

152 Fever25

283 Diarrhea28

254 Fever15

225 Flu28

326 Fever35

387 Flu32

358 Diarrhea25

1

ID

2

3

4

5

6

7

8

0-20

Age

Flu

Disease

10-30

Zip

QI1 S1QI2

0-20 Fever10-30

20-30 Diarrhea10-30

20-30 Fever10-30

20-30 Flu10-30

30-40 Fever20-40

30-40 Flu20-40

30-40 Diarrhea20-40

(a) Sensitive Table	 (b) 2-anonymous and 2-diverse 
Table 

Fig. 2. Generalization for k-anonymity and l-diversity 

The table in Figure 2(a) does not satisfy k-
anonymity because knowing the age and zip code of a 
person allows associating a disease to that person. The 
table in Figure 2(b) is a 2-anonymous and 2-diverse 
version of table in Figure 2(a). The ID attribute is 
removed in the anonymized table and is shown only 
for identification of tuples. Here, for any combination 
of selection predicates on the zip code and age at­
tributes, there are at least two tuples in each equiv­
alence class. In Section 4, algorithms are presented 
for k-anonymity only. However, the experiments are 
performed for both l-diversity and variance diversity 
using the proposed heuristics for partitioning. 

2.3 Predicate Evaluation and Imprecision 
Various quality metrics have been proposed to eval­
uate and compare anonymization techniques, e.g., 

the Discernibility Metric (DM) [13], Normalized average 
equivalence class size [14] and the Normalized Certainty 
Penalty (NCP) metric [15]. These metrics do not cap­
ture the semantics of error bounds for predicate-based 
permissions. We first discuss the query predicate 
evaluation semantics and then the imprecision metric 
based on one possible predicate evaluation semantic. 
For query predicate evaluation over a table, say T , 
a tuple is included in the result if all the attribute 
values satisfy the query predicate. Here, we only 
consider conjunctive queries (The disjunctive queries 
can be expressed as a union of conjunctive queries), 
where each query can be expressed as a d-dimensional 
hyper-rectangle. The semantics for query evaluation 
on an anonymized table T ∗ needs to be defined. 
When the equivalence class partition (Each equiv­
alence class can be represented as a d-dimensional 
hyper-rectangle) is fully enclosed inside the query 
region, all tuples in the equivalence class are part 
of the query result. Uncertainty in query evaluation 
arises when a partition overlaps the query region 
but is not fully enclosed. In this case, there can be 
many possible semantics. We discuss the following 
three choices: (i) Assuming uniform distribution of 
tuples in overlapping partitions, include tuples from 
all partitions according to the ratio of overlap between 
the query and the partition. Query evaluation under 
these semantics might under-count or over-count the 
query result depending upon the original distribution 
of tuples in the partition region. Most of the literature 
uses this uniform distribution semantic to compare 
anonymity techniques over selection tasks [14], [16]. 
However, the uniform distribution semantic is only 
valid for COUNT queries, as the choice of sensitive 
attribute value for the selected tuples from an overlap­
ping partition is not defined. While, for access control, 
a tuple’s QI attribute values along with the sensitive 
attribute value need to be returned. (ii) Include all 
tuples in all partitions that overlap the query region. 
This option will mostly add false positives to the 
original query result. (iii) Discard all tuples in all 
partitions that partially overlap the query region. This 
option will mostly have false negatives with respect 
to the original query result. 

It is possible to define other query evaluation se­
mantics. However, the error under any query evalu­
ation scheme will reduce if the number of tuples in 
the partitions that overlap the query region can be 
minimized. For the rest of the paper, we focus on 
semantics under the second choice as defined in [10]. 

The imprecision quality metric defined in [10] is as 
follows: 

Definition 6 (Query Imprecision). Query Imprecision 
is defined as the difference between the number of tu­
ples returned by a query evaluated on an anonymized 

∗relation T and the number of tuples for the same 
query on the original relation T . The imprecision for 
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query Qi is denoted by impQi , 

impQi = |Qi(T ∗ )| − |Qi(T )| where (1) 

 
|Qi(T ∗ )| = |EC|

EC overlaps Qi 

∗The query Qi is evaluated over T by including all 
the tuples in the equivalence classes that overlap the 
query region. 

Example 2. The multi-dimensional partitioning for 
the table in Figure 2(a) satisfying 2-anonymity with 
minimal imprecision for queries Q1 and Q2 is given 
in Figure 3(a). The queries are the shaded rectangles 
with solid lines while the partitions are the regions 
enclosed by rectangles with dashed lines. The im­
precision for Q1 is 0, as Q1’s region overlaps only 
Partition P1 with two tuples and the cardinality of Q1 

on original data is also two tuples. The imprecision 
for Query Q2 is two because Q2 overlaps partitions 
P1, P2, and P3, |Q2(T ∗)| = 6 while |Q2(T )| = 4. 

10

10

20 30 40

20

30

Q1

Q2
P1

P2

P3

P4

(a) Anonymization with mini­
mal imprecision 

10

10

20 30 40

20

30

Q1

Q2

P1

P2

P3

P4

(b) Anonymization satisfying 
imprecision bounds 

Fig. 3. Query evaluation over an anonymized table 

2.4 Recoding Techniques 

Recoding techniques can be classified into global 
and local recoding techniques. Both the global and 
local recoding techniques have single and multi­
dimensional variants. Our focus in this paper is on 
multi-dimensional recoding techniques as they have 
been shown to perform better than single-dimensional 
techniques [14]. In global recoding schemes, the tu­
ple space is partitioned into non-overlapping hyper-
rectangles and the anonymization algorithm maps 
all the tuples in a region to the same equivalence 
class. In contrast, the local recoding schemes partition 
the tuple space into overlapping hyper-rectangles. 
Anonymization algorithms based on local recoding 
can map multiple instances of the same tuple into 
different equivalence classes. 

A taxonomy for recoding techniques has been pre­
sented in [17]. Global recoding is preferable if the 
anonymized data is to be used for classification or 

regression tasks [5] along with selection queries. How­
ever, for only selection queries local recoding tech­
niques might perform better than global recoding 
[15], [17]. In this paper, only multi-dimensional global 
recoding is considered. 

2.5 Top Down Selection Mondrian 

Top Down Selection Mondrian (TDSM) algorithm is 
proposed by LeFevre et. al [10], [14] for a given query 
workload. This is the current state of the art for 
query-workload-based anonymization. The objective 
of TDSM is to minimize the total imprecision for all 
queries while the imprecision bounds for queries have 
not been considered. The anonymization for a given 
query workload with imprecision bounds has not 
investigated before to the best of our knowledge. We 
compare our results with TDSM in the experiments 
section. The algorithm presented in [14] is similar to 
the kd-tree construction [18]. TDSM starts with the 
whole tuple space as one partition and then partitions 
are recursively divided till the time new partitions 
meet the privacy requirement. To divide a partition, 
two decisions need to be made, i) Choosing a split 
value along each dimension, and ii) Choosing a di­
mension along which to split. In the TDSM algorithm 
[10], the split value is chosen along the median and 
then the dimension is selected along which the sum 
of imprecision for all queries is minimum. The time 
complexity of TDSM has not been reported in [10] and 
is O(d|Q|nlgn), where d is the number of dimensions 
of a tuple, Q is the set of queries, and n is the 
total number of tuples. The expression is derived 
by multiplying the height of the kd-tree with the 
work done at each level. The median cut generates 
a balanced tree with height lgn and the work done at 
each level is d|Q|n. 

(a) Before compaction (b) After compaction 

Fig. 4. Compaction of partitions 

2.5.1 Compaction 

The partitions created by TDSM have dimensions 
along the median of the parent partition. A com­
paction procedure has been proposed in [7] where the 
created partitions are replaced by minimum bound­
ing boxes. This step improves the precision of the 
anonymized table for any given query workload by 
reducing the overlapping partitions. An example of 
compaction is in Figure 4. In Section 5, compaction is 
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carried for all the algorithms and then the results are 
compared. 

3 ANONYMIZATION WITH IMPRECISION 
BOUNDS 

In this section, we give definitions for the imprecision 
bound and the imprecision slack and formulate the 
problem of k-anonymous Partitioning with Impreci­
sion Bounds (k-PIB). 

3.1 Definitions 

Let ti be a tuple in Table T with d QI attributes. 
Tuple ti can be expressed as a d-dimensional vector 

ti ti{v1 , . . . , v }, where vi is the value of the ith attribute.d 
Let DQIi be the domain of quasi-identifier attribute 
QIi, then ti ∈ DQI1 × . . . × DQId . Any d-dimensional 
Partition Pi of the QI attribute domain space can be 
defined as a d-dimensional vector of closed intervals 
{IPi , . . . , IPi }. The closed Interval IPi is further de­1	 d j
 

Pi Pi
fined as [a , bPi ], where a is the start of the interval j j j 

and bPj 
i is the end of the interval, and the length of 

Pithe interval lPi is bPi − a . A multidimensional global j j j 
recoding function, e.g., Mondrian [14], first divides the 
d-dimensional QI attribute domain space into non-
overlapping partitions Pi ∈ P , where each Pi is 
a d-dimensional rectangle. In the second step, the 
d-dimensional vector {v1, . . . , vd} for each tuple is 
replaced by the intervals {IPi , . . . , IPi } of the partition 1 d 
to which the tuple belongs. A Tuple, say tj , belongs to 

tj tj Pl tja Partition, say Pl, if ∀v , v ∈ IPl : a ≤ v ≤ bPl .i i i i i i 
Consider a set of queries Q, where Qi ∈ Q is 

defined by a boolean function of predicates on quasi-
identifier attributes {QI1, . . . , QId}. A query defines 
a space in the domain of quasi-identifier attributes 
DQI1 × . . . × DQId and can be represented by a d-
dimensional rectangle or a set of non-overlapping 
d-dimensional rectangles. To simplify the notation, 
we assume that Query Qi is a single d-dimensional 

Qi Qirectangle represented by {I , . . . , I }. A Tuple tj1	 d 
tj tj Qi Qibelongs to Query Qi, if ∀v , v ∈ I : a ≤i i i i 

tj Qiv ≤	 b . Query Qj and Partition Pl overlap if i i
 
Qj Qj Pl Qj
∀I ∀IPl , a ∈ IPl or a ∈ I .i i i i i i 

Definition 7 (Query Imprecision Bound). The query 
imprecision bound, denoted by BQi , is the total im­
precision acceptable for a query predicate Qi and is 
preset by the access control mechanism. 

Example 3. For the table in Figure 2(a), assume 
that the imprecision bounds for Queries Q1 and Q2 

are preset to 2 and 0. The partitioning given in 
Figure 3(a), although minimal, does not satisfy the 
imprecision bounds. However, the partitioning given 
in Figure 3(b) satisfies the bounds for Queries Q1 

and Q2 as the imprecision for Q1 and Q2 is 2 and 
0, respectively. 

The specification of imprecision bounds is necessary 
because, from a user’s perspective, all queries are 
not equal and the requirement of precision in some 
queries will be higher than others. This imprecision 
constraint sets an upper bound on the number of false 
positives returned for all authorized queries with the 
permitted query predicate. 

Definition 8 (Query Imprecision Slack). The query 
imprecision slack, denoted by sQi for a Query, say 
Qi, is defined as the difference between the query 
imprecision bound and the actual query imprecision.  

BQi − impQi , if impQi ≤ BQi sQi =	 (2)
0, otherwise 

Definition 9 (Partition Imprecision Cost (PIC)). The 
Q1 Qnpartition imprecision cost is a vector {ic , . . . , ic },Pi Pi 

where icQj is the imprecision cost of a Partition Pi ∈ PPi 

with respect to a Query Qj . This cost is the number 
of tuples that are present in the partition but not in 
the query, i.e., 

Qjic = |Pi − Qj |	 (3)Pi 

where the minus sign denotes the set difference. The 
imprecision for a query impQj , defined in Equation 1, 
can also be expressed in terms of icQj asPi 

impQj = ic
Qj 

Pi 

Pi ∈P 

The TDSM algorithm uses the median value along 
a dimension to split a partition. In the proposed 
heuristics in Section 4, query intervals are used to split 
the partitions that are defined as query cuts. 

Definition 10 (Query Cut). A query cut is defined as 
the splitting of a partition along the query interval 
values. For a query cut using Query Qi, both the start 

Qiof the query interval (aj ) and the end of the query 
Qiinterval (bj ) are considered to split a partition along 

the jth dimension. 

Q1 Q1

(a) Median cut (b) Query cut 

Fig. 5. Comparison of median and query Cut 

Example 4. A comparison of median cut and query 
cut is given in Figure 5 for 3-anonymity. The rect­
angle with solid lines represents Query Q1. While, 
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the rectangles with dotted lines represent partitions. 
In Figure 5(a) the tuples are partitioned according 
to the median cut and even after dividing the tuple 
space into four partitions there is no reduction in 
imprecision for the Query Q1. However, for query cuts 
in Figure 5(b) the imprecision is reduced to zero as 
partitions are either non-overlapping or fully enclosed 
inside the query region. 

3.2 The k-PIB Problem 
The optimal k-anonymity problem has been shown 
to be NP-complete for suppression [19] and gener­
alization [20]. It has also been proved that the opti­
mal k-anonymity is strong-sense NP-hard [21]. The 
hardness result for k-PIB follows the construction 
of Lefevre et al. [14] that shows the hardness of k-
anonymous multi-dimensional partitioning with the 
smallest average equivalence class size. We show 
that finding k-anonymous partitioning that satisfies 
imprecision bounds for minimum number of queries 
is also NP-hard. A multiset of tuples is transformed 
into an equivalent set of distinct (tuple, count) pairs. 
The cardinality of Query Qi is the sum of count values 
of tuples falling inside the query hyper-rectangle. The 
constant qv defines an upper bound for the number 
of queries that can violate the bounds. The decision 
version of the k-PIB problem is as follows: 

Definition 11 (Decisional k-anonymity with Impre­
cision Bounds). Given a set t ∈ T of unique 
(tuple, count) pairs with tuples in the d-dimensional 
space and a set of queries Qi ∈ Q with impre­
cision bounds BQi , does there exist a multidimen­
sional partitioning for T such that for every resulting m 
multidimensional region Ri, count(t) ≥ k orm t∈Ri 

t∈Ri 
count(t) = 0, and number of queries having 

impQi > BQi is less than the positive constant qv? 

Theorem 3.1. Decisional k-anonymity with Imprecision 
Bounds is NP-complete. 

Proof: Refer to Appendix A. 

3.3 Privacy-preserving Access Control 
A privacy-preserving access control framework, illus­
trated in Figure 6, is proposed where the privacy pro­
tection mechanism ensures that the privacy and accu­
racy goals are met before the sensitive data is available 
to the access control mechanism. The access control 
policies define permissions for roles based on selec­
tion predicates. Privacy Protection Mechanisms (PPM) 
use suppression and generalization to anonymize and 
satisfy privacy requirements. The attainment of the 
privacy goals is achieved at the cost of the precision 
of the data available to the authorized users. The 
access control mechanism needs to specify the level 
of imprecision that can be tolerated by the user for 
each permission. This specification of the imprecision 

bound ensures that the authorized information has the 
desired level of accuracy. Then, the privacy protection 
mechanism needs to meet the privacy requirement 
along with the imprecision bound for each permis­
sion. 

Reference

Monitor
User/Role

Permissions

Anonymized

Table

Privacy Protection 

Module

Sensitive

Table

Privacy 

Requirements

Imprecision 

Bounds

Access Control Mechanism

Privacy Protection Mechanism

Fig. 6. Privacy-preserving access control 

Definition 12 (Privacy-preserving RBAC Policy). 
A privacy-preserving RBAC policy ρp is a tuple 
(U, R, P, Bp, UA, P A, RH), where Bp is the impreci­
sion bound for the allowed query predicate Qi under 
permission p ∈ P . 

Notice that we use permission and query inter­
changeably. 

3.4 Expected Query Imprecision 
Given n tuples, it is assumed that the tuples are uni­
formly distributed in the domain space of the QI at­
tributes. In order to estimate the expected imprecision 
for a randomly selected query, first the expected num­
ber of partitions overlapping the query needs to be 
found. We use the approach by Otoo et. al [22], where 
they find overlapping intervals in each dimension and 
then take the product to get the expected number of 
overlapping partitions. However, we still need to find 
the expected partition size |Pe| and expected length 
of intervals lPe . We use the domain length of each i 
attribute in domain space and then divide this length 
of first QI attribute by 2. The length of interval lPe 

1 
nis updated and the new partition will now contain 2 

tuples. For the next division, another QI attribute is 
selected and the process is repeated until the expected 
partition size is k ≤ |Pe| < 2k. 

Lemma 3.2. The expected imprecision for a query Qj is  d Qj   d l + lPe − 1i iE(impQj ) = ∗ |Pe| − |Qj | (4)
lPe 

i=1 i

In this equation, we round up the fraction (lQj 

i 
divided by lPe ) and then take the floor in each di­i 
mension. Multiplying the number of partitions with 
the expected size of each partition gives the expected 
number of tuples in the query |Qj (T ∗)|. Subtracting 
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the original size |Qj | of the query gives the expected 
imprecision. 

Example 5. Consider a query with range 10-21 and 
5-10 for two attributes and a query size of 50. If 
the expected partition length for the two attributes 
is 3 and 2 and the expected partition size is 6 then 
12 partitions are expected to overlap the query. The 
expected query imprecision will be 22 (12*6 - 50) 
tuples. 

4 HEURISTICS FOR PARTITIONING 

In this section, three algorithms based on greedy 
heuristics are proposed. All three algorithms are based 
on kd-tree construction [18]. Starting with the whole 
tuple space the nodes in the kd-tree are recursively 
divided till the partition size is between k and 2k. The 
leaf nodes of the kd-tree are the output partitions that 
are mapped to equivalence classes in the given table. 
Heuristic 1 and 2 have time complexity of O(d|Q|2n2). 
Heuristic 3 is a modification over Heuristic 2 to have 
O(d|Q|nlgn) complexity, which is same as that of 
TDSM. The proposed query cut can also be used to 
split partitions using bottom-up (R+-tree) techniques 
[7]. 

4.1 Top-Down Heuristic 1 (TDH1) 
In TDSM, the partitions are split along the median. 
Consider a partition that overlaps a query. If the 
median also falls inside the query then even after 
splitting the partition, the imprecision for that query 
will not change as both the new partitions still overlap 
the query as illustrated in Figure 5. In this heuristic, 
we propose to split the partition along the query 
cut and then choose the dimension along which the 
imprecision is minimum for all queries. If multiple 
queries overlap a partition, then the query to be 
used for the cut needs to be selected. The queries 
having imprecision greater than zero for the partition 
are sorted based on the imprecision bound and the 
query with minimum imprecision bound is selected. 
The intuition behind this decision is that the queries 
with smaller bounds have lower tolerance for error 
and such a partition split ensures the decrease in 
imprecision for the query with the smallest impreci­
sion bound. If no feasible cut satisfying the privacy 
requirement is found, then the next query in the 
sorted list is used to check for partition split. If none 
of the queries allow partition split, then that partition 
is split along the median and the resulting partitions 
are added to the output after compaction. 

The TDH1 algorithm is listed in Algorithm 1. In the 
first line, the whole tuple space is added to the set of 
candidate partitions. In the Lines 3-4, the query over­
lapping the candidate partition with least imprecision 
bound and imprecision greater than zero is selected. 
The while loop in Lines 5-8 checks for a feasible split 

of the partition along query intervals. If a feasible 
cut is found, then the resulting partitions are added 
to CP . Otherwise, the candidate partition is checked 
for median cut in Line 12. A feasible cut means that 
each partition resulting from split should satisfy the 
privacy requirement. The traversal of the kd-tree for 
partitions to consider in Set CP can be depth-first 
or breadth-first. However, the order of traversal for 
TDH1 does not matter. 

This heuristic of selecting cuts along minimum 
bound queries favors queries with smaller bounds. 
This behavior is also evident in the experiments in 
Section 5 for the randomly selected query workload. 
However, this approach creates imprecision slack in 
the queries with smaller bounds that could have been 
used to satisfy bounds of other queries. 

Algorithm 1: TDH1 
Input : T , k, Q, and BQj 

Output: P 
1 Initialize Set of Candidate Partitions(CP ← T ) 
2 for (CPi ∈ CP ) do 
3 Find the set of queries QO that overlap CPi 

QOjsuch that ic > 0CPi 

4 Sort queries QO in increasing order of BQj 

5 while (feasible cut is not found) do 
6 Select query from QO 
7 Create query cuts in each dimension 
8 Select dimension and cut having least 

overall imprecision for all queries in Q 

9 if (Feasible cut found) then 
10 Create new partitions and add to CP 
11 else 
12 Split CPi recursively along median till 

anonymity requirement is satisfied 
13 Compact new partitions and add to P 

14 return (P ) 

Lemma 4.1. The time complexity of TDH1 is O(d|Q|2n2). 

Proof: The time complexity is derived by multi­
plying the height of the kd-tree with the work per­
formed at each level. The height of the kd-tree for 

nTDH1 in the worst case can be , which occurs when k 
each successive cut creates one partition of exactly 
size k. In the worst case, at each level we might have 
to check all queries for a feasible cut, which leads to 
d|Q|2n. The total time complexity is then O(d|Q|2n2). 

4.2 Top-Down Heuristic 2 (TDH2) 
In the Top-Down Heuristic 2 algorithm (TDH2, for 
short), the query bounds are updated as the partitions 
are added to the output. This update is carried out 
by subtracting the icQj value from the imprecision Pi 
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bound BQj of each query, for a Partition, say Pi, that is 
being added to the output. For example, if a partition 
of size k has imprecision 5 and 10 for Queries Q1 
and Q2 with imprecision bound 100 and 200, then 
the bounds are changed to 95 and 190, respectively. 
The best results are achieved if the kd-tree traversal 
is depth-first (preorder). Preorder traversal for the 
kd-tree ensures that a given partition is recursively 
split till the leaf node is reached. Then, the query 
bounds are updated. Initially, this approach favors 
queries with smaller bounds. As more partitions are 
added to the output, all the queries are treated fairly. 
During the query bound update, if the imprecision 
bound for any query gets violated, then that query 
is put on low priority by replacing the query bound 
by the query size. The intuition behind this decision 
is that whatever future partition splits TDH2 makes, 
the query bound for this query cannot be satisfied. 
Hence, the focus should be on the remaining queries. 

Algorithm 2: TDH2 
Input : T , k, Q, and BQj 

Output: P 
1 Initialize Set of Candidate Partitions(CP ← T ) 
2 for (CPi ∈ CP ) do 

// Depth-first(preorder) traversal 
3 Find the set of queries QO that overlap CPi 

QOjsuch that ic > 0CPi 

4 Sort queries QO in increasing order of BQj 

5 while (feasible cut is not found) do 
6 Select query from QO 
7 Create query cuts in each dimension 
8 Select dimension and cut having least 

overall imprecision for all queries in Q 

9 if (Feasible cut found) then 
10 Create new partitions and add to CP 
11 else 
12 Split CPi recursively along median till 

anonymity requirement is satisfied 
13 Compact new partitions and add to P 
14 Update BQj according to icQj , ∀Qj ∈ QPi 

15 return (P ) 

The algorithm for TDH2 is listed in Algorithm 2. 
There are two differences compared to TDH1. First, 
the kd-tree traversal for the for loop in Lines 2-14 is 
preorder. Second, in Line 14, the query bounds are 
updated as the partitions are being added to the out­
put (P ). The time complexity of TDH2 is O(d|Q|2n2), 
which is the same as that of TDH1. In Section 4.3, 
we propose changes to TDH2 that reduce the time 
complexity at the cost of increased query imprecision. 

4.3 Top-Down Heuristic 3 (TDH3) 

The time complexity of the TDH2 algorithm 
is O(d|Q|2n2), which is not scalable for large 
datasets (greater than 10 million tuples). In the 
Top-Down Heuristic 3 algorithm (TDH3, for short), 
we modify TDH2 so that the time complexity of 
O(d|Q|nlgn) can be achieved at the cost of reduced 
precision in the query results. Given a partition, 
TDH3 checks the query cuts only for the query 
having the lowest imprecision bound. Also, the 
second constraint is that the query cuts are feasible 
only in the case when the size ratio of the resulting 
partitions is not highly skewed. We use a skew 
ratio of 1:99 for TDH3 as a threshold. If a query cut 
results in one partition having a size greater than 
hundred times the other, then that cut is ignored. 
TDH3 algorithm is listed in Algorithm 3. In Line 4 of 
Algorithm 3, we use only one query for the candidate 
cut. In Line 6, the partition size ratio condition needs 
to be satisfied for a feasible cut. If a feasible query 
cut is not found, then the partition is split along the 
median as in Line 11. 

Algorithm 3: TDH3 
Input : T , k, Q, and BQj 

Output: P 
1 Initialize Set of Candidate Partitions(CP ← T ) 
2 for (CPi ∈ CP ) do 

// Depth-first(preorder) traversal 
3 Find the set of queries QO that overlap CPi 

QOjsuch that ic > 0CPi 

4 Select query from QO with smallest BQj 

5 Create query cuts in each dimension 
6 Reject cuts with skewed partitions 
7 Select dimension and cut having least overall 

imprecision for all queries in Q 
8 if (Feasible cut found) then 
9 Create new partitions and add to CP 

10 else 
11 Split CPi recursively along median till 

anonymity requirement is satisfied 
12 Compact new partitions and add to P 
13 Update BQj according to icQj , ∀Qj ∈ QPi 

14 return (P ) 

Lemma 4.2. The time complexity TDH3 is O(d|Q|nlgn). 

Proof: The height of the kd-tree for TDH3 will 
be log 100 n. The work performed at each level of the 

99 

kd-tree is |Q|n as only one query is considered for 
a feasible cut. This gives a total time complexity of 
O(d|Q|nlgn). 

The time complexity of TDH3 is O(d|Q|nlgn) with 
a constant factor of log 100 in comparison to TDSM. 

99 
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5 EXPERIMENTS 

The experiments have been carried out on two 
datasets for the empirical evaluation of the pro­
posed heuristics. The first dataset is the Adult dataset 
from the UC Irvine Machine Learning Repository 
[23] having 45222 tuples and is the de facto bench­
mark for k-anonymity research. The attributes in the 
Adult dataset are: Age, Work class, Education, Marital 
status, Occupation, Race, and, Gender. The second 
dataset is the Census dataset [24] from IPUMS1. 
This dataset is extracted for Year 2001 using at­
tributes: Age, Gender, Marital status, Race, Birth 
place, Language, Occupation, and Income. The size 
of the dataset is about 1.2 million tuples. For the 
k-anonymity experiments, we use the first eight at­
tributes as the QI attributes. For the l-diversity ex­
periments, we use Attribute occupation as the sen­
sitive attribute and the first seven attributes as the 
QI attributes. For the l-diversity experiments, all the 
tuples having the occupation value as Not Appli­
cable (0 in the dataset) are removed, which leaves 
about 700k tuples. In the case of the variance diversity 
experiments, Attribute income is used as the sensitive 
attribute and all the tuples having the income value as 
Not Applicable (9999999 in the dataset) are removed, 
which leaves about 950k tuples. 

We use 200 and 500 queries generated randomly 
as the workload/permissions for the Adult dataset 
and Census dataset, respectively. The experiments 
have been conducted for two types of query work­
loads. To avoid yielding too many empty queries, the 
queries are generated randomly using the approach 
by Iwuchukwu, et al. [7]. In this approach, two tu­
ples are selected randomly from the tuple space and 
a query is formed by making a bounding box of 
these two tuples. To simulate the permissions for an 
access control policy, the query selectivity for both 
the datasets is set to range from 0.5% to 5%. For the 
first workload, if the query output is between 500 to 
5500 tuples for the Adult dataset and 1000 to 50,000 
for the Census dataset, the query is added to the 
workload. For the second workload (we will refer to 
this workload as the uniform query workload) this 
range (1000 to 50,000 for Census dataset) is divided 
into ten equal intervals and we add only 50 queries 
from each interval to the workload. Similarly, for 
the Adult dataset, 20 queries are added from each 
size interval. The first workload is used for the l-
diversity and variance diversity experiments. The av­
erage query size for the Adult dataset is 3000 and for 
the Census dataset is 25,000 for the uniform query 
workload. The imprecision bounds for all queries are 
set based on the query size for the current experiment. 
Otherwise, bounds for queries can be set according to 
the precision required by the access control mecha­
nism. The intuition behind setting bounds as a factor 

1. Available at http://usa.ipums.org/usa/ 
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Fig. 7. No of queries whose bounds are not satisfied 
for k-anonymity(Adult dataset) 

of the query size is that imprecision added to the 
query is proportional to the query size. 

For the k-anonymity experiments, we fix the value 
of k and change the query imprecision bounds from 
5% to 30% with increments of 5. Then, we find 
the number of queries whose bounds have not been 
satisfied by each algorithm for the uniform query 
workload. The results for k-anonymity are given in 
Figure 7 for the Adult dataset for k values of 3, 5, 7 
and 9. Heuristic TDH2 has the least number of query 
bound violations and is better than TDH1 because of 
TDH2’s query-bound update step. TDH3 with added 
constraints and reduced complexity also performs 
better than TDSM. The number of queries not sat­
isfying imprecision bounds increases as the value of 
k increases. The focus is to maximize the number 
of queries satisfying imprecision bounds even if the 
total imprecision as compared to TDSM is increased. 
However, as in Figure 8, even the total imprecision for 
all the proposed heuristics is considerably less than 
TDSM for all values of k. Due to limited space, only 
the above results are discussed for the Adult dataset. 
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Fig. 8. Total imprecision for all queries(Adult dataset) 

For k-anonymity, the number of queries for which 
the imprecision bound is not satisfied is given in 
Figure 9 for the Census dataset using the uniform 
query workload of 500 queries. The results have the 
same behavior as that for the Adult dataset. In both 
cases, TDH2 has the lowest number of queries violat­

http://usa.ipums.org/usa
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Sample size = 1.2M,  # Queries = 500,  k = 3, AQS = 25077
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Fig. 9. No of queries whose bounds are not satisfied 
for k-anonymity(Census dataset) 

ing the imprecision bounds. The sum of imprecision 
for all queries is given in Figure 10, where TDH2 
also has the lowest total imprecision for all values of 
k. In Figure 9, the total number of violated queries 
is given. So, in Figure 11, we plot the number of 
queries against the margin by which they violate the 
query bound (Imprecision bound is set as 25% of the 
query size). Six query imprecision ranges have been 
considered that are: imprecision is less than 10%, 10­
25%, 25-50%, 50-75%, 75-100% and greater than 100% 
of the bound. In Section 6, an algorithm is proposed to 
realign the output partitions to satisfy the imprecision 
bounds of queries that violate the bound by a less 
than 10% margin. The reason for using the uniform 
query workload (50 randomly selected queries from 
each size range having cardinality between 0.5% to 5% 
of the dataset) is that it helps observe the behavior of 
the queries violating the bounds for each algorithm. 
Intuitively, there is more chance of violating the im­
precision bounds for a query having a smaller im­
precision bound. In Figure 12, the number of queries 
violated for each size range (10 size intervals in 1k­
50k) are plotted. The behavior of TDSM follows the 
intuition as more queries in the smaller size range are 
violated. For TDH1, the heuristic always favors the 
queries with smaller bounds when being considered 
for a partition split. Thus, for TDH1, less queries are 
violated of smaller bounds than of larger ones2. TDH2 
and TDH3 favor queries with smaller bounds ini­
tially. However, as partitions are added to the output, 
all queries are treated fairly. Hence, the number of 
queries violated is almost uniform in this case. 

We use the same heuristics for the privacy re­
quirements of l-diversity and variance diversity. The 
experiments are conducted for l values of 7 and 9. 

2. We are using size and bound interchangeably as an imprecision 
bound is a fraction of the query size. 

Fig. 10. Total imprecision for all queries(Census 
dataset) 

0

2

4

6

8

10

12

14

16

< 10 10-25 25-50 50-75 75-100 > 100

#
 o

f 
Q

u
e

ri
e

s

% of Query Bound

TDSM TDH1

TDH2 TDH3

Sample size = 1.2M,  # Queries = 500, AQS = 25077,  k = 3, Bound = 25%

0

5

10

15

20

25

30

35

40

45

50

< 10 10-25 25-50 50-75 75-100 > 100

#
 o

f 
Q

u
e

ri
e

s

% of Query Bound

TDSM TDH1

TDH2 TDH3

Sample size = 1.2M,  # Queries = 500, AQS = 25077,  k = 5, Bound = 25%

(a) k = 3 (b) k = 5 

0

10

20

30

40

50

60

70

80

< 10 10-25 25-50 50-75 75-100 > 100

#
 o

f 
Q

u
e

ri
e

s

% of Query Bound

TDSM TDH1

TDH2 TDH3

Sample size = 1.2M,  # Queries = 500, AQS = 25077,  k = 7, Bound = 25%

0

20

40

60

80

100

120

< 10 10-25 25-50 50-75 75-100 > 100

#
 o

f 
Q

u
e

ri
e

s

% of Query Bound

TDSM TDH1

TDH2 TDH3

Sample size = 1.2M,  # Queries = 500, AQS = 25077,  k = 9, Bound = 25%

(c) k = 7 (d) k = 9 

Fig. 11. Distribution of queries(wrt bound) not satisfy­
ing bound at 25% for k-anonymity(Census dataset) 

For each value of l, we change the query imprecision 
bounds from 5% to 30% with increments of 5 and find 
the number of queries whose bounds are not satisfied 
by each algorithm. The results for l values of 7 and 
9 are given in Figure 13. The results show that TDH2 
violates the bound for a less number of queries for 
l-diversity. 
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Fig. 13. Number of queries not satisfying bound for 
l-diversity(Census dataset) 

In the case of variance diversity the experiments 
V Vare conducted for the variance values and ,200 100 

where V is the variance of the sensitive attribute in the 
dataset. For a variance diversity value , we change the 
query imprecision bounds from 5% to 30% and find 
the number of queries whose bounds are violated by 
each algorithm. The results for variance diversity are 
given in Figure 14. For variance diversity, TDH2 gives 
the best results. Sample size = 1.2M,  # Queries = 500,  v = V/200, AQS = 25077
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Fig. 14. Number of queries not satisfying bound for 
variance-diversity(Census dataset) 

In the next experiment, all the algorithms are com­
pared with respect to the size of the given query set. 
The size of the query set is changed from 32 to 1024 
for a k value of 5 and a query imprecision bound of 
30%. Observe in Figure 15 that as the size of query 
workload is increased bounds for more queries are 
violated. However, the proposed heuristics still violate 
bounds of less queries than TDSM. 

While the intention is to satisfy the imprecision 
bounds for as many queries as possible from the 
given set of queries, it is as important to maintain the 
utility of all other queries. In this experiment, after 
partitioning for a given set of queries, we generate 
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Fig. 15. Varying size of given query workload(Census 
dataset) 
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Fig. 16. Performance for a different query workload 
(Census dataset) 
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Fig. 17. Comparison with optimal solution 

1000 new random queries and compare the number 
of queries satisfied at 30% imprecision bound by each 
algorithm. The results are given in Figure 16. Observe 
that the performance of all the algorithms is similar. 
The slightly better results in case of TDH1, TDH2, and 
TDH3 are due to the fact that more queries are picked 
from high density tuple regions for which partitioning 
is already optimized for the proposed heuristics. 

The proposed techniques do not provide any per­
formance guarantees. However, we compare the per­
formance of the proposed heuristics with the optimal 
solution using a smaller subset of the Adult dataset. 
We use three attributes (Work Class, Marital Status, 
and, Race) and pick 1000 tuples randomly from the 
Adult dataset. The heuristic algorithms are executed 
using a workload of 1000 randomly selected queries 
with an imprecision bound of 20% of the size of query. 
For the optimal partitioning, all possible partitions 
are created based on the selected three attributes. 
In the next step, the partitions having less than k 
tuples or more than 2d(k − 1) + fmax [14] are rejected, 
where fmax is the maximum frequency of any tuple in 
the partition. For the remaining partitions, an integer 
programming model in GAMS [25] is executed to 
select a set of partitions containing all the tuples while 
violating the imprecision bound for the minimum 
number of queries. The comparison of the optimal 
partitioning for the least number of query imprecision 
bound violations against TDSM and TDH2 is given in 
Figure 17. Observe that as the value of k is increased, 
the gap between TDH2 and the optimal solution in­
creases suggesting that the quality factor is dependent 
on k. 

The visual representation of the partitions resulting 
from the proposed heuristic TDH2 and TDSM is given 
in Figure 18. Here, 1000 tuples with two attributes 
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Fig. 18. Anonymization for two attributes with discrete 
normal distribution (µ = 50, σ = 10) 

are randomly selected (Normal distribution with µ 
= 50, σ = 10, and cardinality = 100). 10 random 
queries are also selected (Query selectivity is from 
10% to 50%) and the query imprecision bound is set 
to 10% of the query size. The rectangles with the 
blue (darker) lines are the queries while the rectangles 
with red (lighter) lines are partitions generated by 
the heuristics at k = 5. The query imprecision results 
are given in Table 1. Observe that in Figure 18, less 
partitions are overlapping the query region for TDH2 
as compared to TDSM, e.g., Query Q2 (range: 32-54, 
30-43) has zero imprecision under TDH2 and all the 
partitions are fully enclosed by the query region. 

6 IMPROVING THE NUMBER OF QUERIES 
SATISFYING THE IMPRECISION BOUNDS 

In Section 3, the query imprecision slack is defined as 
the difference between the query bound and query 
imprecision. This query imprecision slack can help 
satisfy queries that violate the bounds by only a 
small margin by increasing the imprecision of the 
queries having more slack. The margin by which 
queries violate the bounds is given in Figure 11. In 
this repartitioning step, we consider only the first 
two groups of queries that fall within 10% and 10­
25% of the bound only and these queries are added 
to the Candidate Query set (CQ), while all queries 

TABLE 1
 
Query Imprecision
 

Query Dimensions Size Bound 
Query Imprecision 

TDSM TDH2 

Q1 45-58, 47-53 148 14 43 0 

Q2 32-54, 30-43 152 15 27 0 

Q3 45-73, 50-55 187 18 2 8 

Q4 39-61, 41-48 194 19 34 0 

Q5 35-49, 44-62 260 26 25 18 

Q6 28-48, 34-53 271 27 37 8 

Q7 47-66, 47-60 296 29 52 21 

Q8 52-75, 38-59 320 32 57 17 

Q9 51-63, 28-61 353 35 36 22 

Q10 33-70, 37-49 363 36 41 21 

satisfying the bounds are added to the query set QS. 
The output partitions are all the leaf nodes in the kd­
tree. For repartitioning, we only consider those pairs 
of partitions from the output that are siblings in the 
kd-tree and have imprecision greater than zero for 
the queries in the candidate query set. These pairs of 
partitions are then added to the candidate partition 
set for repartitioning. Merging such a pair of sibling 
leaf nodes ensures that we still get a hyper-rectangle 
and the merged partition is non-overlapping with 
any other output partition. The repartitioning is first 
performed for the set of queries within 10% of the 
bound. The partitions that are modified are removed 
from the candidate set and then the second group of 
queries is checked. The algorithm for repartitioning 
is listed as Algorithm 4. In Lines 6-9, we check if a 
query cut along any dimension exists that reduces 
the total imprecision for the queries in CQ Set while 
still satisfying the bounds of the queries in QS. If 
such a cut exists, then the old partitions are removed 
and the new ones are added to Output P in Lines 
11-12. After every iteration, the imprecision of the 
queries in Set CQ is checked. If the imprecision is 
less than the bound for any query, then as in Line 
15, that query is moved from Set CQ to QS. The 
proposed algorithm in the experiments satisfies most 
of the queries from the first group and only a few 
queries from the second group. This repartitioning 
step is equivalent to partitioning all the leaf nodes 
that in the worst case can take O(|Q|n) time for each 
candidate query set. 

In the experiments, we set the value of k to 5 and 
7 with a query imprecision bound of 30% of the 
query size. The results for repartitioning are given 
in Figure 19. TDH2p and TDH3p are the results 
after the repartitioning step. Observe that most of the 
queries in the 10% group have been satisfied, while for 
the 10-25% group, some of these have been satisfied 
while the others have moved into the first group. 
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Algorithm 4: Post Processing 
Input : T , k, Q, P , and Bq 

Output: P 
1	 Initialize SQ, CQ, and CP 
2	 Add q ∈ Q satisfying bound to SQ 
3	 Add q ∈ Q violating bound by 10% to Candidate 

Query set(CQ) 
4	 Add all sibling leaf node pairs havingm qj qj(ic + ic ) > 0 to Candidate q∈CQ Pi Pi+1 

Partition(CP ) 
5 for (CPi ∈ CP ) do 

to original query results to satisfy privacy constraints. 
However, they have not considered the accuracy con­
straints for permissions. We define the privacy re­
quirement in terms of k-anonymity. It has been shown 
by Li et. al [31] that after sampling, k-anonymity offers 
similar privacy guarantees as those of differential pri­
vacy. From an access control user perspective, the per­
missions based on selection predicates have different 
accuracy requirements that need to be satisfied by the 
privacy protection mechanism. The proposed privacy-
aware access control framework allows the access 
control mechanism to specify imprecision constraints 
that the privacy protection mechanism is required to 
meet along with the privacy requirements. 

The challenges of privacy-aware access control are 
similar to the problem of workload-aware anonymiza­
tion. In our analysis of the related work, we fo­
cus on query-aware anonymization. For the state of 
the art in k-anonymity techniques and algorithms, 
we refer the reader to the recent survey papers [5], 
[32]. Workload-aware anonymization is first studied 
by Lefevre et al. [6], [10]. They have proposed the 
Selection Mondrian algorithm, which is a modifi­
cation to the greedy multidimensional partitioning 
algorithm Mondrian [14]. In their algorithm, based 
on the given query-workload, the greedy splitting 
heuristic minimizes the sum of imprecision for all 
queries. Iwuchukwu et al. have proposed an R+­
tree [33] based anonymization algorithm [7], [16]. The 
authors illustrate by experiments that anonymized 
data using biased R+-tree based on the given query 
workload is more accurate for those queries than 
for an unbiased algorithm. Ghinita et al. have pro­
posed algorithms based on space filling curves for k-
anonymity and l-diversity [34]. They also introduce 
the problem of accuracy-constrained anonymization 
for a given bound of acceptable information loss for 
each equivalence class [35]. Similarly, Xiao et. al [36] 
propose to add noise to queries according to the size 
of the queries in a given workload to satisfy differen­
tial privacy. However, bounds for query imprecision 
have not been considered. The existing literature on 
workload-aware anonymization has a focus to mini­
mize the overall imprecision for a given set of queries. 
However, anonymization with imprecision constraints 
for individual queries has not been studied before. We 
follow the imprecision definition of Lefevre et al. [6] 
and introduce the constraint of imprecision bound for 
each query in a given query workload. 

8 CONCLUSIONS 

A privacy-preserving access control framework as­
suming a relational model has been proposed. The 
framework is a combination of access control and 
privacy protection mechanisms. The access control 
mechanism allows only authorized query predicates 
on sensitive data. The privacy preserving module 
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Fig. 19. Improvements after repartitioning for k­
anonymity(Census dataset) 

Repartitioning of the other groups of queries reduces 
the total imprecision but the gains in terms of having 
more queries satisfying bounds are not worthwhile. 

7 RELATED WORK 

Access control mechanisms for databases allow 
queries only on the authorized part of the database 
[26], [27]. Predicate-based fine-grained access control 
has further been proposed, where user authorization 
is limited to pre-defined predicates [11]. Enforcement 
of access control and privacy policies have been stud­
ied in [28]. However, studying the interaction be­
tween the access control mechanisms and the privacy 
protection mechanisms has been missing. Recently, 
Chaudhuri et al. have studied access control with 
privacy mechanisms [29]. They use the definition of 
differential privacy [30] whereby random noise is added 
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anonymizes the data to meet privacy requirements 
and imprecision constraints on predicates set by the 
access control mechanism. We formulate this inter­
action as the problem of k-anonymous Partitioning 
with Imprecision Bounds(k-PIB). We give hardness 
results for the k-PIB problem and present heuristics 
for partitioning the data to the satisfy the privacy 
constraints and the imprecision bounds. In the current 
work, static access control and relational data model 
has been assumed. For future work, we plan to ex­
tend the proposed privacy-preserving access control 
to incremental data and dynamic access control. 
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APPENDIX A 
PROOF OF HARDNESS 

Theorem A.1. Decisional k-anonymity with Imprecision 
Bounds is NP-complete. 

Proof: The proof is by reduction from Partition: 
Partition Given a finite set A and a size function 
s(ai) ∈ Z+ for each ai ∈ A. Does there exist a subset, 

'
A ⊆ A such that 

s(ai) = s(aj ) ? 
' 'ai∈A aj ∈A−A

For each ai ∈ A, construct multiple tuples that 
are repeated a number of times equal to count, i.e., 
forming a multiset, where count is equal to s(ai). We 
can equivalently represent these repeated tuples as a 
set of distinct pairs of the form (tuple, count). This 
construct is similar to that in [14]. In each pair, the 
tuple is a point in the d-dimensional unit-hypercube 
defined by a vector [01, . . . , 0i−1, 1i, 0i+1, . . . , 0d, ] (i.e., 
the ith co-ordinate is 1 and all others are 0). The union 
of all such pairs is Table T . In this d-dimensional unit-
hypercube, construct Query Q so that Q encloses a 
single (tuple, count) pair. 

The partition problem for A can be reduced to the m ms(ai) s(ai)following: Let k = , BQ = and qv = 1. Is 2 2 
there a k-anonymous multidimensional partitioning for T 
such that impQ ≤ BQ? We claim that there is a solution 
to the k-anonymous multidimensional partitioning for 
T satisfying the imprecision bound for the query Q if 
and only if there is a solution to the partition problem 
for A. 

Suppose there exists a k-anonymous multidimen­
sional partitioning for T satisfying the imprecision 
bound for the query Q. The partitions will define 
two multidimensional regions R1 and R2 such that m m m s(ai)count(t) = count(t) = k = . The t∈R1 t∈R2 2 
count(t) values in R1 and R2 will give the two disjoint 
subsets of A that define an equal partitioning of A. 

In the other direction, suppose there is a solution 
to the partition problem for A. The solution will 
define two disjoint subsets A1 and A2. From these two 
subsets, we can find the multidimensional partitions m m 
R1 and R2 such that count(t) = s(ai)t∈R1 s(ai )∈A1m m 
and count(t) = s(ai). The impreci­t∈R2 s(ai)∈A2 

sion for the Query Q is less than BQ as the overlap­
ping partition has size k = BQ. 

Finally, a given solution to the decisional k-
anonymous multidimensional partitioning problem 
with imprecision bounds can be verified in polyno­
mial time. All the multidimensional partitions are 

checked to see if they satisfy the k-anonymity require­
ment and that the imprecision bound for the query is 
satisfied. 

Example 6. Let the multiset of size function of set A 
is {1, 2, 2, 3} and the Query Q be on attribute a1. The 
(tuple, count) pairs for A are 

t1 = ([1, 0, 0, 0], 1) t2 = ([0, 1, 0, 0], 2) 

t3 = ([0, 0, 1, 0], 2) t4 = ([0, 0, 0, 1], 3) 

m s(ai)Then k = BQ = = 4 and the solution for 2 
partition of A is A1 = {1, 3} and A2 = {2, 2}. The 
corresponding multidimensional partitions for table 
are 4-anonymous and imprecision for Query Q is 3 
which is less than 4. 


