
CERIAS Tech Report 2012-13
Privacy-preserving Access Control

 by Zahid Pervaiz
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

1

Privacy-preserving Access Control

Zahid Pervaiz, Walid G. Aref Senior Member, IEEE , Arif Ghafoor Fellow, IEEE ,

Nagabhushana Prabhu

E-mail: zpervaiz@purdue.edu

Abstract—Access control mechanisms protect sensitive information from unauthorized users. However, when sensitive informa­
tion is shared and a Privacy Protection Mechanism (PPM) is not in place, an authorized insider can still compromise the privacy
of a person leading to identity disclosure. A PPM can use suppression and generalization to anonymize and satisfy privacy
requirements, e.g., k-anonymity and l-diversity, against identity and attribute disclosure. However, the protection of privacy is
achieved at the cost of precision of authorized information.
In this paper, we propose a privacy-preserving access control framework. The access control policies define selection predicates
available to roles while the privacy requirement is to satisfy the k-anonymity or l-diversity. An additional constraint that needs to
be satisfied by the PPM is the imprecision bound for each selection predicate. The techniques for workload-aware anonymization
for selection predicates have been discussed in the literature. However, to the best of our knowledge, the problem of satisfying
the accuracy constraints for multiple roles has not been studied before. In our formulation of the aforementioned problem, we
propose heuristics for anonymization algorithms and show empirically that the proposed approach satisfies imprecision bounds
for more permissions and has lower total imprecision than the current state of the art.

Index Terms—Access Control, Privacy, k-anonymity, Query Evaluation.

+

1 INTRODUCTION

ORGANIZATIONS collect and analyze consumer
data to improve services. Access Control Mecha­

nisms (ACM) are used to ensure that only authorized
information is available to users. However, sensitive
information can still be misused by authorized in­
siders to compromise the privacy of consumers. The
concept of privacy preservation for sensitive data can
require the enforcement of privacy policies or the
protection against identity disclosure by satisfying
some privacy requirements [1]. In this paper, we
investigate privacy preservation from the anonymity
aspect. The sensitive information, even after the re­
moval of identifying attributes, is still susceptible to
linking attacks by the authorized insiders [2]. This
problem has been studied extensively in the area of
micro data publishing and privacy definitions, e.g.,
k-anonymity [2], l-diversity [3], t-closeness [4]. The
anonymity techniques can be used with an access
control mechanism to ensure both security and pri­
vacy of the sensitive information. However, privacy
is achieved at the cost of accuracy and imprecision
is introduced in the information provided by per­
missions under an access control policy. We use the
concept of imprecision bound for each permission to
set a threshold on the amount of imprecision that can

•	 Z. Pervaiz and A. Ghafoor are with Department of Electrical and
Computer Engineering, W. Aref is with Computer Science Department
and N. Prabhu is with Industrial Engineering Department, Purdue
University, IN, 47907.

be tolerated. To exemplify our approach, role-based
access control is assumed. However, the approach is
generic and can be applied to any security policy,
e.g., discretionary access control or mandatory access
control. The heuristics proposed in this paper for
privacy-preserving access control are also relevant in
the context of workload-aware anonymization.

The issue of protecting the privacy of individuals
before releasing micro data containing personal infor­
mation has been studied extensively during the last
decade [5]. Anonymization algorithms use suppres­
sion and generalization of records to satisfy privacy
requirements, e.g., k-anonymity and l-diversity with
minimal distortion of micro data. Workload-aware
anonymization techniques that minimize information
loss for data mining tasks or for a given set of queries
have been developed [6], [7]. However, the problem
of satisfying accuracy constraints set by the multiple
users of micro data has not been studied.

Example 1 (Motivating Scenario). Syndromic surveil­
lance systems are used at the state and federal levels
to detect and monitor threats to public health [8],
[9]. The department of health in a state collects the
emergency department data (age, gender, location,
time of arrival, symptoms, etc.) from county hospitals
daily. Generally, each daily update consists of a static
instance that is classified into syndrome categories by
the department of health. Then, the surveillance data
is anonymized and shared with departments of health
at each county. An access control policy is given in
Figure 1 that allows the roles to execute the authorized
queries, e.g., Role CE1 can only execute queries under

mailto:zpervaiz@purdue.edu

2

Permission P1. The epidemiologists at the state and
county level suggest community containment mea­
sures, e.g., isolation or quarantine according to the
number of persons infected in case of a flu outbreak.
According to the population density in a county, an
epidemiologist can advise isolation if the number of
persons reported with influenza are greater than 1000
and quarantine if that number is greater than 3000 in
a single day. The anonymization adds imprecision to
the query results and the imprecision bound for each
query ensures that the results are within the tolerance
required. If the imprecision bounds are not satisfied
then unnecessary false alarms are generated due to
the high rate of false positives.

SE

State Epidemiologist

Designation

SE

Role

County 1 EpidemiologistCE1
CE1 CE2

P1 P2

County 2 EpidemiologistCE2

Location = County 1 ˄ Age = 15-65 ˄ Syndrome = Influenza

Authorized Query Predicate

P1

Permission

Location = County 2 ˄ Age = 15-65 ˄ Syndrome = InfluenzaP2

Fig. 1. Access control policy

From the perspective of access control, the motiva­
tion for the problem setting is that users are able to
specify the error tolerance of each permission pred­
icate for a given security policy or query workload.
The anonymization techniques minimizing impreci­
sion for all queries, e.g., Selection Mondrian [6], [10]
give no clue about the imprecision that has been
added to each permission/query in the anonymized
micro data. Making the privacy requirement more
stringent (e.g., increasing the value of k or l) results
in more imprecision for queries. It is observed in the
experiments in Section 5 that some permissions have
more than 100% false positives. For some applications,
when permissions have imprecision more than 50
to 100% of the size of the query, the access control
module should either deny the request or give a
warning.

The contributions of the paper are as follows. First,
we introduce the concept of privacy-preserving ac­
cess control. Second, we formulate the accuracy and
privacy constraints as the problem of k-anonymous
Partitioning with Imprecision Bounds (k-PIB) and
give hardness results. Third, we propose heuristics to
approximate the solution of the k-PIB problem and
conduct empirical evaluation.

The rest of this paper proceeds as follows. In Sec­
tion 2, relevant background is discussed. The problem
formulation and definitions are presented in Section 3.
Section 4 covers the proposed top-down heuristics for

multidimensional partitioning to satisfy imprecision
bounds. Experimental results are in Section 5, and in
Section 6, an additional step to reduce the number
of permissions violating imprecision bounds is pro­
posed. The related work is presented in Section 7 and
Section 8 concludes the paper.

2 BACKGROUND

In this section, role-based access control concepts
and privacy definitions based on anonymity are
overviewed. Query evaluation semantics, imprecision,
and the Selection Mondrian algorithm [10] are briefly
explained.

Given a relation T = {A1, A2, . . . , An}, where Ai
∗is an attribute, T is the anonymized version of the

relation T . The attributes can be of the following
types:
•	 Identifier. Attributes, e.g., name and social se­

curity, that can uniquely identify an individual.
These attributes are completely removed from the
anonymized relation.

•	 Quasi-Identifier (QI). Attributes, e.g., gender,
zip code, birth date, that can potentially identify
an individual based on other information avail­
able to an adversary. QI attributes are generalized
to satisfy the anonymity requirements.

•	 Sensitive Attribute. Attributes, e.g., disease or
salary, that if associated to a unique individual
will cause a privacy breach.

2.1 Role-based Access Control
Role-based Access Control (RBAC) allows defining
permissions on objects based on roles in an organi­
zation. An RBAC policy configuration is composed
of a set of Users (U), a set of Roles (R), and a
set of Permissions (P). For the relational model, we
assume that the set of permissions for a role are
the selection predicates on the QI attributes that the
role is authorized to execute [11]. Among the autho­
rized tuple subset, a user is free to set any selection
condition on the sensitive attribute. The user-to-role
assignment (UA) is a user-to-role (U x R) mapping
and the role-to-permission assignment (PA) is a role-
to-permission (R x P) mapping. A role hierarchy (RH)
defines an inheritance relationship among roles and
is a partial order on roles (R x R) [12].

Definition 1 (RBAC Policy). An RBAC policy ρ is a
tuple (U, R, P, UA, P A, RH).

2.2 Anonymity Definitions
In this section, privacy definitions related to
anonymity are introduced. The k-anonymity
requirement is satisfied for an anonymized table
if there are at least k tuples for every combination of
predicates on the QI attributes [2].

3

Definition 2 (Equivalence Class (EC)). An equiva­
lence class is a set of tuples having the same QI
attribute values.

Definition 3 (k-anonymity Property). A table T ∗ sat­
isfies the k-anonymity property if each equivalence
class has k or more tuples.

k-anonymity is prone to homogeneity attacks when
the sensitive value for all the tuples in an equiva­
lence class is the same. To counter this shortcoming
l-diversity is introduced [3] and requires that each

∗equivalence class of T must contain at least l distinct
values of the sensitive attribute.

Definition 4 (l-diversity Principle). A table T ∗ satis­
fies the l-diversity principle if each equivalence class
contains at least l well-represented values of the sen­
sitive attribute.

For sensitive numeric attributes, the l-diverse
equivalence class can still leak information if the nu­
meric values are close to each other. Variance diversity
[6] and t-closeness [4] have been proposed for privacy
protection against such a disclosure.

∗Definition 5 (Variance Diversity). A table T is vari­
ance diverse if the variance V (EC) of each equivalence
class satisfies V (EC) ≥ v, where v is the variance
diversity parameter.

5

Age

1

ID

Flu

Disease

15

Zip

QI1 S1QI2

152 Fever25

283 Diarrhea28

254 Fever15

225 Flu28

326 Fever35

387 Flu32

358 Diarrhea25

1

ID

2

3

4

5

6

7

8

0-20

Age

Flu

Disease

10-30

Zip

QI1 S1QI2

0-20 Fever10-30

20-30 Diarrhea10-30

20-30 Fever10-30

20-30 Flu10-30

30-40 Fever20-40

30-40 Flu20-40

30-40 Diarrhea20-40

(a) Sensitive Table	 (b) 2-anonymous and 2-diverse
Table

Fig. 2. Generalization for k-anonymity and l-diversity

The table in Figure 2(a) does not satisfy k-
anonymity because knowing the age and zip code of a
person allows associating a disease to that person. The
table in Figure 2(b) is a 2-anonymous and 2-diverse
version of table in Figure 2(a). The ID attribute is
removed in the anonymized table and is shown only
for identification of tuples. Here, for any combination
of selection predicates on the zip code and age at­
tributes, there are at least two tuples in each equiv­
alence class. In Section 4, algorithms are presented
for k-anonymity only. However, the experiments are
performed for both l-diversity and variance diversity
using the proposed heuristics for partitioning.

2.3 Predicate Evaluation and Imprecision
Various quality metrics have been proposed to eval­
uate and compare anonymization techniques, e.g.,

the Discernibility Metric (DM) [13], Normalized average
equivalence class size [14] and the Normalized Certainty
Penalty (NCP) metric [15]. These metrics do not cap­
ture the semantics of error bounds for predicate-based
permissions. We first discuss the query predicate
evaluation semantics and then the imprecision metric
based on one possible predicate evaluation semantic.
For query predicate evaluation over a table, say T ,
a tuple is included in the result if all the attribute
values satisfy the query predicate. Here, we only
consider conjunctive queries (The disjunctive queries
can be expressed as a union of conjunctive queries),
where each query can be expressed as a d-dimensional
hyper-rectangle. The semantics for query evaluation
on an anonymized table T ∗ needs to be defined.
When the equivalence class partition (Each equiv­
alence class can be represented as a d-dimensional
hyper-rectangle) is fully enclosed inside the query
region, all tuples in the equivalence class are part
of the query result. Uncertainty in query evaluation
arises when a partition overlaps the query region
but is not fully enclosed. In this case, there can be
many possible semantics. We discuss the following
three choices: (i) Assuming uniform distribution of
tuples in overlapping partitions, include tuples from
all partitions according to the ratio of overlap between
the query and the partition. Query evaluation under
these semantics might under-count or over-count the
query result depending upon the original distribution
of tuples in the partition region. Most of the literature
uses this uniform distribution semantic to compare
anonymity techniques over selection tasks [14], [16].
However, the uniform distribution semantic is only
valid for COUNT queries, as the choice of sensitive
attribute value for the selected tuples from an overlap­
ping partition is not defined. While, for access control,
a tuple’s QI attribute values along with the sensitive
attribute value need to be returned. (ii) Include all
tuples in all partitions that overlap the query region.
This option will mostly add false positives to the
original query result. (iii) Discard all tuples in all
partitions that partially overlap the query region. This
option will mostly have false negatives with respect
to the original query result.

It is possible to define other query evaluation se­
mantics. However, the error under any query evalu­
ation scheme will reduce if the number of tuples in
the partitions that overlap the query region can be
minimized. For the rest of the paper, we focus on
semantics under the second choice as defined in [10].

The imprecision quality metric defined in [10] is as
follows:

Definition 6 (Query Imprecision). Query Imprecision
is defined as the difference between the number of tu­
ples returned by a query evaluated on an anonymized

∗relation T and the number of tuples for the same
query on the original relation T . The imprecision for

4

query Qi is denoted by impQi ,

impQi = |Qi(T ∗)| − |Qi(T)| where (1)

|Qi(T ∗)| = |EC|

EC overlaps Qi

∗The query Qi is evaluated over T by including all
the tuples in the equivalence classes that overlap the
query region.

Example 2. The multi-dimensional partitioning for
the table in Figure 2(a) satisfying 2-anonymity with
minimal imprecision for queries Q1 and Q2 is given
in Figure 3(a). The queries are the shaded rectangles
with solid lines while the partitions are the regions
enclosed by rectangles with dashed lines. The im­
precision for Q1 is 0, as Q1’s region overlaps only
Partition P1 with two tuples and the cardinality of Q1

on original data is also two tuples. The imprecision
for Query Q2 is two because Q2 overlaps partitions
P1, P2, and P3, |Q2(T ∗)| = 6 while |Q2(T)| = 4.

10

10

20 30 40

20

30

Q1

Q2
P1

P2

P3

P4

(a) Anonymization with mini­
mal imprecision

10

10

20 30 40

20

30

Q1

Q2

P1

P2

P3

P4

(b) Anonymization satisfying
imprecision bounds

Fig. 3. Query evaluation over an anonymized table

2.4 Recoding Techniques

Recoding techniques can be classified into global
and local recoding techniques. Both the global and
local recoding techniques have single and multi­
dimensional variants. Our focus in this paper is on
multi-dimensional recoding techniques as they have
been shown to perform better than single-dimensional
techniques [14]. In global recoding schemes, the tu­
ple space is partitioned into non-overlapping hyper-
rectangles and the anonymization algorithm maps
all the tuples in a region to the same equivalence
class. In contrast, the local recoding schemes partition
the tuple space into overlapping hyper-rectangles.
Anonymization algorithms based on local recoding
can map multiple instances of the same tuple into
different equivalence classes.

A taxonomy for recoding techniques has been pre­
sented in [17]. Global recoding is preferable if the
anonymized data is to be used for classification or

regression tasks [5] along with selection queries. How­
ever, for only selection queries local recoding tech­
niques might perform better than global recoding
[15], [17]. In this paper, only multi-dimensional global
recoding is considered.

2.5 Top Down Selection Mondrian

Top Down Selection Mondrian (TDSM) algorithm is
proposed by LeFevre et. al [10], [14] for a given query
workload. This is the current state of the art for
query-workload-based anonymization. The objective
of TDSM is to minimize the total imprecision for all
queries while the imprecision bounds for queries have
not been considered. The anonymization for a given
query workload with imprecision bounds has not
investigated before to the best of our knowledge. We
compare our results with TDSM in the experiments
section. The algorithm presented in [14] is similar to
the kd-tree construction [18]. TDSM starts with the
whole tuple space as one partition and then partitions
are recursively divided till the time new partitions
meet the privacy requirement. To divide a partition,
two decisions need to be made, i) Choosing a split
value along each dimension, and ii) Choosing a di­
mension along which to split. In the TDSM algorithm
[10], the split value is chosen along the median and
then the dimension is selected along which the sum
of imprecision for all queries is minimum. The time
complexity of TDSM has not been reported in [10] and
is O(d|Q|nlgn), where d is the number of dimensions
of a tuple, Q is the set of queries, and n is the
total number of tuples. The expression is derived
by multiplying the height of the kd-tree with the
work done at each level. The median cut generates
a balanced tree with height lgn and the work done at
each level is d|Q|n.

(a) Before compaction (b) After compaction

Fig. 4. Compaction of partitions

2.5.1 Compaction

The partitions created by TDSM have dimensions
along the median of the parent partition. A com­
paction procedure has been proposed in [7] where the
created partitions are replaced by minimum bound­
ing boxes. This step improves the precision of the
anonymized table for any given query workload by
reducing the overlapping partitions. An example of
compaction is in Figure 4. In Section 5, compaction is

5

carried for all the algorithms and then the results are
compared.

3 ANONYMIZATION WITH IMPRECISION
BOUNDS

In this section, we give definitions for the imprecision
bound and the imprecision slack and formulate the
problem of k-anonymous Partitioning with Impreci­
sion Bounds (k-PIB).

3.1 Definitions

Let ti be a tuple in Table T with d QI attributes.
Tuple ti can be expressed as a d-dimensional vector

ti ti{v1 , . . . , v }, where vi is the value of the ith attribute.d
Let DQIi be the domain of quasi-identifier attribute
QIi, then ti ∈ DQI1 × . . . × DQId . Any d-dimensional
Partition Pi of the QI attribute domain space can be
defined as a d-dimensional vector of closed intervals
{IPi , . . . , IPi }. The closed Interval IPi is further de­1	 d j

Pi Pi
fined as [a , bPi], where a is the start of the interval j j j

and bPj
i is the end of the interval, and the length of

Pithe interval lPi is bPi − a . A multidimensional global j j j
recoding function, e.g., Mondrian [14], first divides the
d-dimensional QI attribute domain space into non-
overlapping partitions Pi ∈ P , where each Pi is
a d-dimensional rectangle. In the second step, the
d-dimensional vector {v1, . . . , vd} for each tuple is
replaced by the intervals {IPi , . . . , IPi } of the partition 1 d
to which the tuple belongs. A Tuple, say tj , belongs to

tj tj Pl tja Partition, say Pl, if ∀v , v ∈ IPl : a ≤ v ≤ bPl .i i i i i i
Consider a set of queries Q, where Qi ∈ Q is

defined by a boolean function of predicates on quasi-
identifier attributes {QI1, . . . , QId}. A query defines
a space in the domain of quasi-identifier attributes
DQI1 × . . . × DQId and can be represented by a d-
dimensional rectangle or a set of non-overlapping
d-dimensional rectangles. To simplify the notation,
we assume that Query Qi is a single d-dimensional

Qi Qirectangle represented by {I , . . . , I }. A Tuple tj1	 d
tj tj Qi Qibelongs to Query Qi, if ∀v , v ∈ I : a ≤i i i i

tj Qiv ≤	 b . Query Qj and Partition Pl overlap if i i

Qj Qj Pl Qj
∀I ∀IPl , a ∈ IPl or a ∈ I .i i i i i i

Definition 7 (Query Imprecision Bound). The query
imprecision bound, denoted by BQi , is the total im­
precision acceptable for a query predicate Qi and is
preset by the access control mechanism.

Example 3. For the table in Figure 2(a), assume
that the imprecision bounds for Queries Q1 and Q2

are preset to 2 and 0. The partitioning given in
Figure 3(a), although minimal, does not satisfy the
imprecision bounds. However, the partitioning given
in Figure 3(b) satisfies the bounds for Queries Q1

and Q2 as the imprecision for Q1 and Q2 is 2 and
0, respectively.

The specification of imprecision bounds is necessary
because, from a user’s perspective, all queries are
not equal and the requirement of precision in some
queries will be higher than others. This imprecision
constraint sets an upper bound on the number of false
positives returned for all authorized queries with the
permitted query predicate.

Definition 8 (Query Imprecision Slack). The query
imprecision slack, denoted by sQi for a Query, say
Qi, is defined as the difference between the query
imprecision bound and the actual query imprecision.

BQi − impQi , if impQi ≤ BQi sQi =	 (2)
0, otherwise

Definition 9 (Partition Imprecision Cost (PIC)). The
Q1 Qnpartition imprecision cost is a vector {ic , . . . , ic },Pi Pi

where icQj is the imprecision cost of a Partition Pi ∈ PPi

with respect to a Query Qj . This cost is the number
of tuples that are present in the partition but not in
the query, i.e.,

Qjic = |Pi − Qj |	 (3)Pi

where the minus sign denotes the set difference. The
imprecision for a query impQj , defined in Equation 1,
can also be expressed in terms of icQj asPi

impQj = ic
Qj

Pi

Pi ∈P

The TDSM algorithm uses the median value along
a dimension to split a partition. In the proposed
heuristics in Section 4, query intervals are used to split
the partitions that are defined as query cuts.

Definition 10 (Query Cut). A query cut is defined as
the splitting of a partition along the query interval
values. For a query cut using Query Qi, both the start

Qiof the query interval (aj) and the end of the query
Qiinterval (bj) are considered to split a partition along

the jth dimension.

Q1 Q1

(a) Median cut (b) Query cut

Fig. 5. Comparison of median and query Cut

Example 4. A comparison of median cut and query
cut is given in Figure 5 for 3-anonymity. The rect­
angle with solid lines represents Query Q1. While,

6

the rectangles with dotted lines represent partitions.
In Figure 5(a) the tuples are partitioned according
to the median cut and even after dividing the tuple
space into four partitions there is no reduction in
imprecision for the Query Q1. However, for query cuts
in Figure 5(b) the imprecision is reduced to zero as
partitions are either non-overlapping or fully enclosed
inside the query region.

3.2 The k-PIB Problem
The optimal k-anonymity problem has been shown
to be NP-complete for suppression [19] and gener­
alization [20]. It has also been proved that the opti­
mal k-anonymity is strong-sense NP-hard [21]. The
hardness result for k-PIB follows the construction
of Lefevre et al. [14] that shows the hardness of k-
anonymous multi-dimensional partitioning with the
smallest average equivalence class size. We show
that finding k-anonymous partitioning that satisfies
imprecision bounds for minimum number of queries
is also NP-hard. A multiset of tuples is transformed
into an equivalent set of distinct (tuple, count) pairs.
The cardinality of Query Qi is the sum of count values
of tuples falling inside the query hyper-rectangle. The
constant qv defines an upper bound for the number
of queries that can violate the bounds. The decision
version of the k-PIB problem is as follows:

Definition 11 (Decisional k-anonymity with Impre­
cision Bounds). Given a set t ∈ T of unique
(tuple, count) pairs with tuples in the d-dimensional
space and a set of queries Qi ∈ Q with impre­
cision bounds BQi , does there exist a multidimen­
sional partitioning for T such that for every resulting m
multidimensional region Ri, count(t) ≥ k orm t∈Ri

t∈Ri
count(t) = 0, and number of queries having

impQi > BQi is less than the positive constant qv?

Theorem 3.1. Decisional k-anonymity with Imprecision
Bounds is NP-complete.

Proof: Refer to Appendix A.

3.3 Privacy-preserving Access Control
A privacy-preserving access control framework, illus­
trated in Figure 6, is proposed where the privacy pro­
tection mechanism ensures that the privacy and accu­
racy goals are met before the sensitive data is available
to the access control mechanism. The access control
policies define permissions for roles based on selec­
tion predicates. Privacy Protection Mechanisms (PPM)
use suppression and generalization to anonymize and
satisfy privacy requirements. The attainment of the
privacy goals is achieved at the cost of the precision
of the data available to the authorized users. The
access control mechanism needs to specify the level
of imprecision that can be tolerated by the user for
each permission. This specification of the imprecision

bound ensures that the authorized information has the
desired level of accuracy. Then, the privacy protection
mechanism needs to meet the privacy requirement
along with the imprecision bound for each permis­
sion.

Reference

Monitor
User/Role

Permissions

Anonymized

Table

Privacy Protection

Module

Sensitive

Table

Privacy

Requirements

Imprecision

Bounds

Access Control Mechanism

Privacy Protection Mechanism

Fig. 6. Privacy-preserving access control

Definition 12 (Privacy-preserving RBAC Policy).
A privacy-preserving RBAC policy ρp is a tuple
(U, R, P, Bp, UA, P A, RH), where Bp is the impreci­
sion bound for the allowed query predicate Qi under
permission p ∈ P .

Notice that we use permission and query inter­
changeably.

3.4 Expected Query Imprecision
Given n tuples, it is assumed that the tuples are uni­
formly distributed in the domain space of the QI at­
tributes. In order to estimate the expected imprecision
for a randomly selected query, first the expected num­
ber of partitions overlapping the query needs to be
found. We use the approach by Otoo et. al [22], where
they find overlapping intervals in each dimension and
then take the product to get the expected number of
overlapping partitions. However, we still need to find
the expected partition size |Pe| and expected length
of intervals lPe . We use the domain length of each i
attribute in domain space and then divide this length
of first QI attribute by 2. The length of interval lPe

1
nis updated and the new partition will now contain 2

tuples. For the next division, another QI attribute is
selected and the process is repeated until the expected
partition size is k ≤ |Pe| < 2k.

Lemma 3.2. The expected imprecision for a query Qj is d Qj d l + lPe − 1i iE(impQj) = ∗ |Pe| − |Qj | (4)
lPe

i=1 i

In this equation, we round up the fraction (lQj

i
divided by lPe) and then take the floor in each di­i
mension. Multiplying the number of partitions with
the expected size of each partition gives the expected
number of tuples in the query |Qj (T ∗)|. Subtracting

7

the original size |Qj | of the query gives the expected
imprecision.

Example 5. Consider a query with range 10-21 and
5-10 for two attributes and a query size of 50. If
the expected partition length for the two attributes
is 3 and 2 and the expected partition size is 6 then
12 partitions are expected to overlap the query. The
expected query imprecision will be 22 (12*6 - 50)
tuples.

4 HEURISTICS FOR PARTITIONING

In this section, three algorithms based on greedy
heuristics are proposed. All three algorithms are based
on kd-tree construction [18]. Starting with the whole
tuple space the nodes in the kd-tree are recursively
divided till the partition size is between k and 2k. The
leaf nodes of the kd-tree are the output partitions that
are mapped to equivalence classes in the given table.
Heuristic 1 and 2 have time complexity of O(d|Q|2n2).
Heuristic 3 is a modification over Heuristic 2 to have
O(d|Q|nlgn) complexity, which is same as that of
TDSM. The proposed query cut can also be used to
split partitions using bottom-up (R+-tree) techniques
[7].

4.1 Top-Down Heuristic 1 (TDH1)
In TDSM, the partitions are split along the median.
Consider a partition that overlaps a query. If the
median also falls inside the query then even after
splitting the partition, the imprecision for that query
will not change as both the new partitions still overlap
the query as illustrated in Figure 5. In this heuristic,
we propose to split the partition along the query
cut and then choose the dimension along which the
imprecision is minimum for all queries. If multiple
queries overlap a partition, then the query to be
used for the cut needs to be selected. The queries
having imprecision greater than zero for the partition
are sorted based on the imprecision bound and the
query with minimum imprecision bound is selected.
The intuition behind this decision is that the queries
with smaller bounds have lower tolerance for error
and such a partition split ensures the decrease in
imprecision for the query with the smallest impreci­
sion bound. If no feasible cut satisfying the privacy
requirement is found, then the next query in the
sorted list is used to check for partition split. If none
of the queries allow partition split, then that partition
is split along the median and the resulting partitions
are added to the output after compaction.

The TDH1 algorithm is listed in Algorithm 1. In the
first line, the whole tuple space is added to the set of
candidate partitions. In the Lines 3-4, the query over­
lapping the candidate partition with least imprecision
bound and imprecision greater than zero is selected.
The while loop in Lines 5-8 checks for a feasible split

of the partition along query intervals. If a feasible
cut is found, then the resulting partitions are added
to CP . Otherwise, the candidate partition is checked
for median cut in Line 12. A feasible cut means that
each partition resulting from split should satisfy the
privacy requirement. The traversal of the kd-tree for
partitions to consider in Set CP can be depth-first
or breadth-first. However, the order of traversal for
TDH1 does not matter.

This heuristic of selecting cuts along minimum
bound queries favors queries with smaller bounds.
This behavior is also evident in the experiments in
Section 5 for the randomly selected query workload.
However, this approach creates imprecision slack in
the queries with smaller bounds that could have been
used to satisfy bounds of other queries.

Algorithm 1: TDH1
Input : T , k, Q, and BQj

Output: P
1 Initialize Set of Candidate Partitions(CP ← T)
2 for (CPi ∈ CP) do
3 Find the set of queries QO that overlap CPi

QOjsuch that ic > 0CPi

4 Sort queries QO in increasing order of BQj

5 while (feasible cut is not found) do
6 Select query from QO
7 Create query cuts in each dimension
8 Select dimension and cut having least

overall imprecision for all queries in Q

9 if (Feasible cut found) then
10 Create new partitions and add to CP
11 else
12 Split CPi recursively along median till

anonymity requirement is satisfied
13 Compact new partitions and add to P

14 return (P)

Lemma 4.1. The time complexity of TDH1 is O(d|Q|2n2).

Proof: The time complexity is derived by multi­
plying the height of the kd-tree with the work per­
formed at each level. The height of the kd-tree for

nTDH1 in the worst case can be , which occurs when k
each successive cut creates one partition of exactly
size k. In the worst case, at each level we might have
to check all queries for a feasible cut, which leads to
d|Q|2n. The total time complexity is then O(d|Q|2n2).

4.2 Top-Down Heuristic 2 (TDH2)
In the Top-Down Heuristic 2 algorithm (TDH2, for
short), the query bounds are updated as the partitions
are added to the output. This update is carried out
by subtracting the icQj value from the imprecision Pi

8

bound BQj of each query, for a Partition, say Pi, that is
being added to the output. For example, if a partition
of size k has imprecision 5 and 10 for Queries Q1
and Q2 with imprecision bound 100 and 200, then
the bounds are changed to 95 and 190, respectively.
The best results are achieved if the kd-tree traversal
is depth-first (preorder). Preorder traversal for the
kd-tree ensures that a given partition is recursively
split till the leaf node is reached. Then, the query
bounds are updated. Initially, this approach favors
queries with smaller bounds. As more partitions are
added to the output, all the queries are treated fairly.
During the query bound update, if the imprecision
bound for any query gets violated, then that query
is put on low priority by replacing the query bound
by the query size. The intuition behind this decision
is that whatever future partition splits TDH2 makes,
the query bound for this query cannot be satisfied.
Hence, the focus should be on the remaining queries.

Algorithm 2: TDH2
Input : T , k, Q, and BQj

Output: P
1 Initialize Set of Candidate Partitions(CP ← T)
2 for (CPi ∈ CP) do

// Depth-first(preorder) traversal
3 Find the set of queries QO that overlap CPi

QOjsuch that ic > 0CPi

4 Sort queries QO in increasing order of BQj

5 while (feasible cut is not found) do
6 Select query from QO
7 Create query cuts in each dimension
8 Select dimension and cut having least

overall imprecision for all queries in Q

9 if (Feasible cut found) then
10 Create new partitions and add to CP
11 else
12 Split CPi recursively along median till

anonymity requirement is satisfied
13 Compact new partitions and add to P
14 Update BQj according to icQj , ∀Qj ∈ QPi

15 return (P)

The algorithm for TDH2 is listed in Algorithm 2.
There are two differences compared to TDH1. First,
the kd-tree traversal for the for loop in Lines 2-14 is
preorder. Second, in Line 14, the query bounds are
updated as the partitions are being added to the out­
put (P). The time complexity of TDH2 is O(d|Q|2n2),
which is the same as that of TDH1. In Section 4.3,
we propose changes to TDH2 that reduce the time
complexity at the cost of increased query imprecision.

4.3 Top-Down Heuristic 3 (TDH3)

The time complexity of the TDH2 algorithm
is O(d|Q|2n2), which is not scalable for large
datasets (greater than 10 million tuples). In the
Top-Down Heuristic 3 algorithm (TDH3, for short),
we modify TDH2 so that the time complexity of
O(d|Q|nlgn) can be achieved at the cost of reduced
precision in the query results. Given a partition,
TDH3 checks the query cuts only for the query
having the lowest imprecision bound. Also, the
second constraint is that the query cuts are feasible
only in the case when the size ratio of the resulting
partitions is not highly skewed. We use a skew
ratio of 1:99 for TDH3 as a threshold. If a query cut
results in one partition having a size greater than
hundred times the other, then that cut is ignored.
TDH3 algorithm is listed in Algorithm 3. In Line 4 of
Algorithm 3, we use only one query for the candidate
cut. In Line 6, the partition size ratio condition needs
to be satisfied for a feasible cut. If a feasible query
cut is not found, then the partition is split along the
median as in Line 11.

Algorithm 3: TDH3
Input : T , k, Q, and BQj

Output: P
1 Initialize Set of Candidate Partitions(CP ← T)
2 for (CPi ∈ CP) do

// Depth-first(preorder) traversal
3 Find the set of queries QO that overlap CPi

QOjsuch that ic > 0CPi

4 Select query from QO with smallest BQj

5 Create query cuts in each dimension
6 Reject cuts with skewed partitions
7 Select dimension and cut having least overall

imprecision for all queries in Q
8 if (Feasible cut found) then
9 Create new partitions and add to CP

10 else
11 Split CPi recursively along median till

anonymity requirement is satisfied
12 Compact new partitions and add to P
13 Update BQj according to icQj , ∀Qj ∈ QPi

14 return (P)

Lemma 4.2. The time complexity TDH3 is O(d|Q|nlgn).

Proof: The height of the kd-tree for TDH3 will
be log 100 n. The work performed at each level of the

99

kd-tree is |Q|n as only one query is considered for
a feasible cut. This gives a total time complexity of
O(d|Q|nlgn).

The time complexity of TDH3 is O(d|Q|nlgn) with
a constant factor of log 100 in comparison to TDSM.

99

9

5 EXPERIMENTS

The experiments have been carried out on two
datasets for the empirical evaluation of the pro­
posed heuristics. The first dataset is the Adult dataset
from the UC Irvine Machine Learning Repository
[23] having 45222 tuples and is the de facto bench­
mark for k-anonymity research. The attributes in the
Adult dataset are: Age, Work class, Education, Marital
status, Occupation, Race, and, Gender. The second
dataset is the Census dataset [24] from IPUMS1.
This dataset is extracted for Year 2001 using at­
tributes: Age, Gender, Marital status, Race, Birth
place, Language, Occupation, and Income. The size
of the dataset is about 1.2 million tuples. For the
k-anonymity experiments, we use the first eight at­
tributes as the QI attributes. For the l-diversity ex­
periments, we use Attribute occupation as the sen­
sitive attribute and the first seven attributes as the
QI attributes. For the l-diversity experiments, all the
tuples having the occupation value as Not Appli­
cable (0 in the dataset) are removed, which leaves
about 700k tuples. In the case of the variance diversity
experiments, Attribute income is used as the sensitive
attribute and all the tuples having the income value as
Not Applicable (9999999 in the dataset) are removed,
which leaves about 950k tuples.

We use 200 and 500 queries generated randomly
as the workload/permissions for the Adult dataset
and Census dataset, respectively. The experiments
have been conducted for two types of query work­
loads. To avoid yielding too many empty queries, the
queries are generated randomly using the approach
by Iwuchukwu, et al. [7]. In this approach, two tu­
ples are selected randomly from the tuple space and
a query is formed by making a bounding box of
these two tuples. To simulate the permissions for an
access control policy, the query selectivity for both
the datasets is set to range from 0.5% to 5%. For the
first workload, if the query output is between 500 to
5500 tuples for the Adult dataset and 1000 to 50,000
for the Census dataset, the query is added to the
workload. For the second workload (we will refer to
this workload as the uniform query workload) this
range (1000 to 50,000 for Census dataset) is divided
into ten equal intervals and we add only 50 queries
from each interval to the workload. Similarly, for
the Adult dataset, 20 queries are added from each
size interval. The first workload is used for the l-
diversity and variance diversity experiments. The av­
erage query size for the Adult dataset is 3000 and for
the Census dataset is 25,000 for the uniform query
workload. The imprecision bounds for all queries are
set based on the query size for the current experiment.
Otherwise, bounds for queries can be set according to
the precision required by the access control mecha­
nism. The intuition behind setting bounds as a factor

1. Available at http://usa.ipums.org/usa/

Sample size = 45k, # Queries = 200, k = 3, AQS = 3001

0

50

100

150

200

250

5 10 15 20 25 30

#
 Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Query Bound

TDSM TDH1 TDH2 TDH3

Sample size = 45k, # Queries = 200, k = 5, AQS = 3001

0

50

100

150

200

250

5 10 15 20 25 30

#
 Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Query Bound

TDSM TDH1 TDH2 TDH3

(a) k = 3 (b) k = 5
Sample size = 45k, # Queries = 200, k = 7, AQS = 3001

0

50

100

150

200

250

5 10 15 20 25 30

#
 Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Query Bound

TDSM TDH1 TDH2 TDH3

Sample size = 45k, # Queries = 200, k = 9, AQS = 3001

0

50

100

150

200

250

5 10 15 20 25 30

#
 Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Query Bound

TDSM TDH1 TDH2 TDH3

(c) k = 7 (d) k = 9

Fig. 7. No of queries whose bounds are not satisfied
for k-anonymity(Adult dataset)

of the query size is that imprecision added to the
query is proportional to the query size.

For the k-anonymity experiments, we fix the value
of k and change the query imprecision bounds from
5% to 30% with increments of 5. Then, we find
the number of queries whose bounds have not been
satisfied by each algorithm for the uniform query
workload. The results for k-anonymity are given in
Figure 7 for the Adult dataset for k values of 3, 5, 7
and 9. Heuristic TDH2 has the least number of query
bound violations and is better than TDH1 because of
TDH2’s query-bound update step. TDH3 with added
constraints and reduced complexity also performs
better than TDSM. The number of queries not sat­
isfying imprecision bounds increases as the value of
k increases. The focus is to maximize the number
of queries satisfying imprecision bounds even if the
total imprecision as compared to TDSM is increased.
However, as in Figure 8, even the total imprecision for
all the proposed heuristics is considerably less than
TDSM for all values of k. Due to limited space, only
the above results are discussed for the Adult dataset.

0.E+00

5.E+04

1.E+05

2.E+05

2.E+05

3.E+05

3 5 7 9

To
ta

l
Im

p
re

ci
si

o
n

k

TDSM TDH1

TDH2 TDH3

Sample size = 45k, # Queries = 200, AQS = 3001

Fig. 8. Total imprecision for all queries(Adult dataset)

For k-anonymity, the number of queries for which
the imprecision bound is not satisfied is given in
Figure 9 for the Census dataset using the uniform
query workload of 500 queries. The results have the
same behavior as that for the Adult dataset. In both
cases, TDH2 has the lowest number of queries violat­

http://usa.ipums.org/usa

10
Sample size = 1.2M, # Queries = 500, k = 3, AQS = 25077

0

50

100

150

200

250

300

350

400

450

5 10 15 20 25 30

#
 Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Query Bound

TDSM TDH1

TDH2 TDH3

Sample size = 1.2M, # Queries = 500, k = 5, AQS = 25077

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30

#
 Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Query Bound

TDSM TDH1

TDH2 TDH3

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

3.E+06

4.E+06

3 5 7 9

To
ta

l
Im

p
re

ci
si

o
n

k

TDSM TDH1 TDH2 TDH3

Sample size = 1.2M, # Queries = 500, AQS = 25077

(a) k = 3 (b) k = 5 Sample size = 1.2M, # Queries = 500, k = 7, AQS = 25077

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30

#
 Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Query Bound

TDSM TDH1

TDH2 TDH3

Sample size = 1.2M, # Queries = 500, k = 9, AQS = 25077

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30

#
 Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Query Bound

TDSM TDH1

TDH2 TDH3

(c) k = 7 (d) k = 9

Fig. 9. No of queries whose bounds are not satisfied
for k-anonymity(Census dataset)

ing the imprecision bounds. The sum of imprecision
for all queries is given in Figure 10, where TDH2
also has the lowest total imprecision for all values of
k. In Figure 9, the total number of violated queries
is given. So, in Figure 11, we plot the number of
queries against the margin by which they violate the
query bound (Imprecision bound is set as 25% of the
query size). Six query imprecision ranges have been
considered that are: imprecision is less than 10%, 10­
25%, 25-50%, 50-75%, 75-100% and greater than 100%
of the bound. In Section 6, an algorithm is proposed to
realign the output partitions to satisfy the imprecision
bounds of queries that violate the bound by a less
than 10% margin. The reason for using the uniform
query workload (50 randomly selected queries from
each size range having cardinality between 0.5% to 5%
of the dataset) is that it helps observe the behavior of
the queries violating the bounds for each algorithm.
Intuitively, there is more chance of violating the im­
precision bounds for a query having a smaller im­
precision bound. In Figure 12, the number of queries
violated for each size range (10 size intervals in 1k­
50k) are plotted. The behavior of TDSM follows the
intuition as more queries in the smaller size range are
violated. For TDH1, the heuristic always favors the
queries with smaller bounds when being considered
for a partition split. Thus, for TDH1, less queries are
violated of smaller bounds than of larger ones2. TDH2
and TDH3 favor queries with smaller bounds ini­
tially. However, as partitions are added to the output,
all queries are treated fairly. Hence, the number of
queries violated is almost uniform in this case.

We use the same heuristics for the privacy re­
quirements of l-diversity and variance diversity. The
experiments are conducted for l values of 7 and 9.

2. We are using size and bound interchangeably as an imprecision
bound is a fraction of the query size.

Fig. 10. Total imprecision for all queries(Census
dataset)

0

2

4

6

8

10

12

14

16

< 10 10-25 25-50 50-75 75-100 > 100

#
 o

f
Q

u
e

ri
e

s

% of Query Bound

TDSM TDH1

TDH2 TDH3

Sample size = 1.2M, # Queries = 500, AQS = 25077, k = 3, Bound = 25%

0

5

10

15

20

25

30

35

40

45

50

< 10 10-25 25-50 50-75 75-100 > 100

#
 o

f
Q

u
e

ri
e

s

% of Query Bound

TDSM TDH1

TDH2 TDH3

Sample size = 1.2M, # Queries = 500, AQS = 25077, k = 5, Bound = 25%

(a) k = 3 (b) k = 5

0

10

20

30

40

50

60

70

80

< 10 10-25 25-50 50-75 75-100 > 100

#
 o

f
Q

u
e

ri
e

s

% of Query Bound

TDSM TDH1

TDH2 TDH3

Sample size = 1.2M, # Queries = 500, AQS = 25077, k = 7, Bound = 25%

0

20

40

60

80

100

120

< 10 10-25 25-50 50-75 75-100 > 100

#
 o

f
Q

u
e

ri
e

s

% of Query Bound

TDSM TDH1

TDH2 TDH3

Sample size = 1.2M, # Queries = 500, AQS = 25077, k = 9, Bound = 25%

(c) k = 7 (d) k = 9

Fig. 11. Distribution of queries(wrt bound) not satisfy­
ing bound at 25% for k-anonymity(Census dataset)

For each value of l, we change the query imprecision
bounds from 5% to 30% with increments of 5 and find
the number of queries whose bounds are not satisfied
by each algorithm. The results for l values of 7 and
9 are given in Figure 13. The results show that TDH2
violates the bound for a less number of queries for
l-diversity.

0

10

20

30

40

50

60

1-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

#
 o

f
Q

u
e

ri
e

s

Query Size

#Q TDSM TDH1 TDH2 TDH3

Sample size = 1.2M, # Queries = 500, AQS = 25077, k = 3, Bound = 15%

0

10

20

30

40

50

60

1-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

#
 o

f
Q

u
e

ri
e

s

Query Size

#Q TDSM TDH1 TDH2 TDH3

Sample size = 1.2M, # Queries = 500, AQS = 25077, k = 5, Bound = 15%

(a) k = 3 (b) k = 5

0

10

20

30

40

50

60

1-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

#
 o

f
Q

u
e

ri
e

s

Query Size

#Q TDSM TDH1 TDH2 TDH3

Sample size = 1.2M, # Queries = 500, AQS = 25077, k = 7, Bound = 15%

0

10

20

30

40

50

60

1-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

#
 o

f
Q

u
e

ri
e

s

Query Size

#Q TDSM TDH1 TDH2 TDH3

Sample size = 1.2M, # Queries = 500, AQS = 25077, k = 9, Bound = 15%

(c) k = 7 (d) k = 9

Fig. 12. Distribution of queries(wrt size) not satisfying
bound at 15% for k-anonymity(Census dataset)

11
Sample size = 1.2M, # Queries = 500, l = 7, AQS = 25077

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30

#
 Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Query Bound

TDSM TDH1

TDH2 TDH3

Sample size = 1.2M, # Queries = 500, l = 9, AQS = 25077

0

100

200

300

400

500

600

5 10 15 20 25 30

#
 Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Query Bound

TDSM TDH1

TDH2 TDH3

(a) l = 5 (b) l = 7

Fig. 13. Number of queries not satisfying bound for
l-diversity(Census dataset)

In the case of variance diversity the experiments
V Vare conducted for the variance values and ,200 100

where V is the variance of the sensitive attribute in the
dataset. For a variance diversity value , we change the
query imprecision bounds from 5% to 30% and find
the number of queries whose bounds are violated by
each algorithm. The results for variance diversity are
given in Figure 14. For variance diversity, TDH2 gives
the best results. Sample size = 1.2M, # Queries = 500, v = V/200, AQS = 25077

0

100

200

300

400

500

600

5 10 15 20 25 30

#
 Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Query Bound

TDSM TDH1

TDH2 TDH3

Sample size = 1.2M, # Queries = 500, v = V/100, AQS = 25077

0

100

200

300

400

500

600

5 10 15 20 25 30

#
 Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Query Bound

TDSM TDH1

TDH2 TDH3

V V(a) v = (b) v =
200 100

Fig. 14. Number of queries not satisfying bound for
variance-diversity(Census dataset)

In the next experiment, all the algorithms are com­
pared with respect to the size of the given query set.
The size of the query set is changed from 32 to 1024
for a k value of 5 and a query imprecision bound of
30%. Observe in Figure 15 that as the size of query
workload is increased bounds for more queries are
violated. However, the proposed heuristics still violate
bounds of less queries than TDSM.

While the intention is to satisfy the imprecision
bounds for as many queries as possible from the
given set of queries, it is as important to maintain the
utility of all other queries. In this experiment, after
partitioning for a given set of queries, we generate

0

50

100

150

200

250

300

350

400

32 64 128 256 512 1024

#
 o

f
Q

u
e

ri
e

s
 B

o
u

n
d

 V
io

la
te

d

Total Number of Queries

TDSM TDH1 TDH2 TDH3

Sample size = 1.2M, k = 5, Bound = 30%

Fig. 15. Varying size of given query workload(Census
dataset)

0

100

200

300

400

500

600

700

3 5 7 9

To
ta

l
Im

p
re

ci
si

o
n

k

TDSM TDH1 TDH2 TDH3

Sample size = 1.2M, # Queries = 1000, AQS = 25077

Fig. 16. Performance for a different query workload
(Census dataset)

0

50

100

150

200

250

300

350

400

450

9 13 17 21 25 29 33 37 41 45 49 53 57

#
 o

f
Q

u
e

ri
e

s
 w

it
h

 B
o

u
n

d
s
 V

io
la

te
d

k

TDSM TDH2 Optimal

Sample size = 1k, # Queries = 1000

Fig. 17. Comparison with optimal solution

1000 new random queries and compare the number
of queries satisfied at 30% imprecision bound by each
algorithm. The results are given in Figure 16. Observe
that the performance of all the algorithms is similar.
The slightly better results in case of TDH1, TDH2, and
TDH3 are due to the fact that more queries are picked
from high density tuple regions for which partitioning
is already optimized for the proposed heuristics.

The proposed techniques do not provide any per­
formance guarantees. However, we compare the per­
formance of the proposed heuristics with the optimal
solution using a smaller subset of the Adult dataset.
We use three attributes (Work Class, Marital Status,
and, Race) and pick 1000 tuples randomly from the
Adult dataset. The heuristic algorithms are executed
using a workload of 1000 randomly selected queries
with an imprecision bound of 20% of the size of query.
For the optimal partitioning, all possible partitions
are created based on the selected three attributes.
In the next step, the partitions having less than k
tuples or more than 2d(k − 1) + fmax [14] are rejected,
where fmax is the maximum frequency of any tuple in
the partition. For the remaining partitions, an integer
programming model in GAMS [25] is executed to
select a set of partitions containing all the tuples while
violating the imprecision bound for the minimum
number of queries. The comparison of the optimal
partitioning for the least number of query imprecision
bound violations against TDSM and TDH2 is given in
Figure 17. Observe that as the value of k is increased,
the gap between TDH2 and the optimal solution in­
creases suggesting that the quality factor is dependent
on k.

The visual representation of the partitions resulting
from the proposed heuristic TDH2 and TDSM is given
in Figure 18. Here, 1000 tuples with two attributes

12

10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

90

(a) TDSM

10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

90

(b) TDH2

Fig. 18. Anonymization for two attributes with discrete
normal distribution (µ = 50, σ = 10)

are randomly selected (Normal distribution with µ
= 50, σ = 10, and cardinality = 100). 10 random
queries are also selected (Query selectivity is from
10% to 50%) and the query imprecision bound is set
to 10% of the query size. The rectangles with the
blue (darker) lines are the queries while the rectangles
with red (lighter) lines are partitions generated by
the heuristics at k = 5. The query imprecision results
are given in Table 1. Observe that in Figure 18, less
partitions are overlapping the query region for TDH2
as compared to TDSM, e.g., Query Q2 (range: 32-54,
30-43) has zero imprecision under TDH2 and all the
partitions are fully enclosed by the query region.

6 IMPROVING THE NUMBER OF QUERIES
SATISFYING THE IMPRECISION BOUNDS

In Section 3, the query imprecision slack is defined as
the difference between the query bound and query
imprecision. This query imprecision slack can help
satisfy queries that violate the bounds by only a
small margin by increasing the imprecision of the
queries having more slack. The margin by which
queries violate the bounds is given in Figure 11. In
this repartitioning step, we consider only the first
two groups of queries that fall within 10% and 10­
25% of the bound only and these queries are added
to the Candidate Query set (CQ), while all queries

TABLE 1

Query Imprecision

Query Dimensions Size Bound
Query Imprecision

TDSM TDH2

Q1 45-58, 47-53 148 14 43 0

Q2 32-54, 30-43 152 15 27 0

Q3 45-73, 50-55 187 18 2 8

Q4 39-61, 41-48 194 19 34 0

Q5 35-49, 44-62 260 26 25 18

Q6 28-48, 34-53 271 27 37 8

Q7 47-66, 47-60 296 29 52 21

Q8 52-75, 38-59 320 32 57 17

Q9 51-63, 28-61 353 35 36 22

Q10 33-70, 37-49 363 36 41 21

satisfying the bounds are added to the query set QS.
The output partitions are all the leaf nodes in the kd­
tree. For repartitioning, we only consider those pairs
of partitions from the output that are siblings in the
kd-tree and have imprecision greater than zero for
the queries in the candidate query set. These pairs of
partitions are then added to the candidate partition
set for repartitioning. Merging such a pair of sibling
leaf nodes ensures that we still get a hyper-rectangle
and the merged partition is non-overlapping with
any other output partition. The repartitioning is first
performed for the set of queries within 10% of the
bound. The partitions that are modified are removed
from the candidate set and then the second group of
queries is checked. The algorithm for repartitioning
is listed as Algorithm 4. In Lines 6-9, we check if a
query cut along any dimension exists that reduces
the total imprecision for the queries in CQ Set while
still satisfying the bounds of the queries in QS. If
such a cut exists, then the old partitions are removed
and the new ones are added to Output P in Lines
11-12. After every iteration, the imprecision of the
queries in Set CQ is checked. If the imprecision is
less than the bound for any query, then as in Line
15, that query is moved from Set CQ to QS. The
proposed algorithm in the experiments satisfies most
of the queries from the first group and only a few
queries from the second group. This repartitioning
step is equivalent to partitioning all the leaf nodes
that in the worst case can take O(|Q|n) time for each
candidate query set.

In the experiments, we set the value of k to 5 and
7 with a query imprecision bound of 30% of the
query size. The results for repartitioning are given
in Figure 19. TDH2p and TDH3p are the results
after the repartitioning step. Observe that most of the
queries in the 10% group have been satisfied, while for
the 10-25% group, some of these have been satisfied
while the others have moved into the first group.

13

Algorithm 4: Post Processing
Input : T , k, Q, P , and Bq

Output: P
1	 Initialize SQ, CQ, and CP
2	 Add q ∈ Q satisfying bound to SQ
3	 Add q ∈ Q violating bound by 10% to Candidate

Query set(CQ)
4	 Add all sibling leaf node pairs havingm qj qj(ic + ic) > 0 to Candidate q∈CQ Pi Pi+1

Partition(CP)
5 for (CPi ∈ CP) do

to original query results to satisfy privacy constraints.
However, they have not considered the accuracy con­
straints for permissions. We define the privacy re­
quirement in terms of k-anonymity. It has been shown
by Li et. al [31] that after sampling, k-anonymity offers
similar privacy guarantees as those of differential pri­
vacy. From an access control user perspective, the per­
missions based on selection predicates have different
accuracy requirements that need to be satisfied by the
privacy protection mechanism. The proposed privacy-
aware access control framework allows the access
control mechanism to specify imprecision constraints
that the privacy protection mechanism is required to
meet along with the privacy requirements.

The challenges of privacy-aware access control are
similar to the problem of workload-aware anonymiza­
tion. In our analysis of the related work, we fo­
cus on query-aware anonymization. For the state of
the art in k-anonymity techniques and algorithms,
we refer the reader to the recent survey papers [5],
[32]. Workload-aware anonymization is first studied
by Lefevre et al. [6], [10]. They have proposed the
Selection Mondrian algorithm, which is a modifi­
cation to the greedy multidimensional partitioning
algorithm Mondrian [14]. In their algorithm, based
on the given query-workload, the greedy splitting
heuristic minimizes the sum of imprecision for all
queries. Iwuchukwu et al. have proposed an R+­
tree [33] based anonymization algorithm [7], [16]. The
authors illustrate by experiments that anonymized
data using biased R+-tree based on the given query
workload is more accurate for those queries than
for an unbiased algorithm. Ghinita et al. have pro­
posed algorithms based on space filling curves for k-
anonymity and l-diversity [34]. They also introduce
the problem of accuracy-constrained anonymization
for a given bound of acceptable information loss for
each equivalence class [35]. Similarly, Xiao et. al [36]
propose to add noise to queries according to the size
of the queries in a given workload to satisfy differen­
tial privacy. However, bounds for query imprecision
have not been considered. The existing literature on
workload-aware anonymization has a focus to mini­
mize the overall imprecision for a given set of queries.
However, anonymization with imprecision constraints
for individual queries has not been studied before. We
follow the imprecision definition of Lefevre et al. [6]
and introduce the constraint of imprecision bound for
each query in a given query workload.

8 CONCLUSIONS

A privacy-preserving access control framework as­
suming a relational model has been proposed. The
framework is a combination of access control and
privacy protection mechanisms. The access control
mechanism allows only authorized query predicates
on sensitive data. The privacy preserving module

6

7

8

9

10

11

12

13

14

15

Merge the first pair CPi and CPi+1

Select q from CQ with the least imprecision
greater than the imprecision bound
Create the candidate cuts in each dimension
Select the cut and the dimension satisfying all
q ∈ SQ with the minimum imprecision
∀q ∈ CQ
if (feasible cut found) then

Remove CPi and CPi+1 from CP and P
Add new partitions to P
for (q ∈ CQ) do

if (Impq < Bq) then
Remove q from CQ and add to SQ

16 return (P)

0

2

4

6

8

10

12

14

16

< 10 10-25 25-50 50-75 75-100 > 100

#
 o

f
Q

u
e

ri
e

s

% of Query Bound

TDH2 TDH2p

TDH3 TDH3p

Sample size = 1.2M, # Queries = 500, AQS = 25077, k = 5, Bound = 25%

0

5

10

15

20

25

30

< 10 10-25 25-50 50-75 75-100 > 100

#
 o

f
Q

u
e

ri
e

s

% of Query Bound

TDH2 TDH2p

TDH3 TDH3p

Sample size = 1.2M, # Queries = 500, AQS = 25077, k = 7, Bound = 25%

(a) k = 5 and Bound = 30% (b) k = 7 and Bound = 30%

Fig. 19. Improvements after repartitioning for k­
anonymity(Census dataset)

Repartitioning of the other groups of queries reduces
the total imprecision but the gains in terms of having
more queries satisfying bounds are not worthwhile.

7 RELATED WORK

Access control mechanisms for databases allow
queries only on the authorized part of the database
[26], [27]. Predicate-based fine-grained access control
has further been proposed, where user authorization
is limited to pre-defined predicates [11]. Enforcement
of access control and privacy policies have been stud­
ied in [28]. However, studying the interaction be­
tween the access control mechanisms and the privacy
protection mechanisms has been missing. Recently,
Chaudhuri et al. have studied access control with
privacy mechanisms [29]. They use the definition of
differential privacy [30] whereby random noise is added

14

anonymizes the data to meet privacy requirements
and imprecision constraints on predicates set by the
access control mechanism. We formulate this inter­
action as the problem of k-anonymous Partitioning
with Imprecision Bounds(k-PIB). We give hardness
results for the k-PIB problem and present heuristics
for partitioning the data to the satisfy the privacy
constraints and the imprecision bounds. In the current
work, static access control and relational data model
has been assumed. For future work, we plan to ex­
tend the proposed privacy-preserving access control
to incremental data and dynamic access control.

ACKNOWLEDGMENTS

The research in this paper was partially supported
by the National Science Foundation under Grants IIS­
1117766, IIS-0964639, and IIS-0811954.

REFERENCES

[1]	 E. Bertino and R. Sandhu, “Database security-concepts, ap­
proaches, and challenges,” Dependable and Secure Computing,
IEEE Transactions on, vol. 2, no. 1, pp. 2–19, 2005.

[2]	 P. Samarati, “Protecting respondents’ identities in microdata
release,” IEEE Transactions on Knowledge and Data Engineering,
pp. 1010–1027, 2001.

[3]	 A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasub­
ramaniam, “l-diversity: Privacy beyond k-anonymity,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 1,
no. 1, pp. 3–es, 2007.

[4]	 N. Li, T. Li, and S. Venkatasubramanian, “Closeness: A new
privacy measure for data publishing,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 22, no. 7, pp. 943–956,
2010.

[5]	 B. Fung, K. Wang, R. Chen, and P. Yu, “Privacy-preserving
data publishing: A survey of recent developments,” ACM
Computing Surveys (CSUR), vol. 42, no. 4, p. 14, 2010.

[6]	 K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Workload­
aware anonymization techniques for large-scale datasets,”
ACM Transactions on Database Systems (TODS), vol. 33, no. 3,
pp. 1–47, 2008.

[7]	 T. Iwuchukwu, Anonymization techniques for large and dynamic
data sets. PhD thesis, The University of Wisconsin-Madison,
2008.

[8]	 J. Buehler, A. Sonricker, M. Paladini, P. Soper, and
F. Mostashari, “Syndromic surveillance practice in the united
states: findings from a survey of state, territorial, and selected
local health departments,” Advances in Disease Surveillance,
vol. 6, no. 3, pp. 1–20, 2008.

[9]	 S. Grannis, M. Wade, J. Gibson, and J. Overhage, “The in­
diana public health emergency surveillance system: Ongoing
progress, early findings, and future directions,” in AMIA
Annual Symposium proceedings, vol. 2006, p. 304, American
Medical Informatics Association, 2006.

[10] K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Workload­
aware anonymization,” in Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pp. 277–286, ACM, 2006.

[11] S. Chaudhuri, T. Dutta, and S. Sudarshan, “Fine grained autho­
rization through predicated grants,” in Data Engineering, 2007.
ICDE 2007. IEEE 23rd International Conference on, pp. 1174–
1183, IEEE, 2007.

[12] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chan­
dramouli, “Proposed NIST standard for role-based access
control,” ACM Transactions on Information and System Security,
vol. 4, no. 3, pp. 224–274, 2001.

[13] R. Bayardo and R. Agrawal, “Data privacy through optimal k­
anonymization,” in Data Engineering, 2005. ICDE 2005. Proceed­
ings. 21st International Conference on, pp. 217–228, IEEE, 2005.

[14] K. LeFevre,	 D. DeWitt, and R. Ramakrishnan, “Mondrian
multidimensional k-anonymity,” in Data Engineering, 2006.
ICDE’06. Proceedings of the 22nd International Conference on,
pp. 25–25, IEEE, 2006.

[15] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. Fu, “Utility­
based anonymization using local recoding,” in Proceedings of
the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 785–790, ACM, 2006.

[16] T. Iwuchukwu and J. Naughton, “K-anonymization as spatial
indexing: Toward scalable and incremental anonymization,”
in Proceedings of the 33rd international conference on Very large
data bases, pp. 746–757, VLDB Endowment, 2007.

[17] K. LeFevre,	 D. DeWitt, and R. Ramakrishnan, “Incognito:
Efficient full-domain k-anonymity,” in Proceedings of the 2005
ACM SIGMOD international conference on Management of data,
pp. 49–60, ACM, 2005.

[18] J. Friedman,	 J. Bentley, and R. Finkel, “An algorithm for
finding best matches in logarithmic expected time,” ACM
Transactions on Mathematical Software (TOMS), vol. 3, no. 3,
pp. 209–226, 1977.

[19] A. Meyerson and R. Williams, “On the complexity of optimal
k-anonymity,” in Proceedings of the twenty-third ACM SIGMOD­
SIGACT-SIGART symposium on Principles of database systems,
pp. 223–228, ACM, 2004.

[20] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Pani­
grahy, D. Thomas, and A. Zhu, “Approximation algorithms for
k-anonymity,” Journal of Privacy Technology, vol. 2005112001,
2005.

[21] W.	 Du, D. Eppstein, M. Goodrich, and G. Lueker, “On the
approximability of geometric and geographic generalization
and the min-max bin covering problem,” Algorithms and Data
Structures, pp. 242–253, 2009.

[22] E. Otoo, D. Rotem, and S. Seshadri, “Optimal chunking
of large multidimensional arrays for data warehousing,” in
Proceedings of the ACM tenth international workshop on Data
warehousing and OLAP, pp. 25–32, ACM, 2007.

[23] A. Frank and A. Asuncion, “UCI Machine Learning Reposi­
tory,” 2010.

[24] B. Steven, A. Trent, G. Katie, G. Ronald, B. S. Matthew, and
M. S., “Integrated Public Use Microdata Series: Version 5.0
[machine-readable database],” 2010.

[25] “General Algebraic Modeling System (GAMS).” http://www.
gams.com/.

[26] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending
query rewriting techniques for fine-grained access control,” in
Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, pp. 551–562, ACM, 2004.

[27] K. Browder and M. Davidson, “The virtual private database
in oracle9ir2,” Oracle Technical White Paper, Oracle Corporation,
vol. 500, 2002.

[28] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, and
W. Rjaibi, “Extending relational database systems to automati­
cally enforce privacy policies,” in Data Engineering, 2005. ICDE
2005. Proceedings. 21st International Conference on, pp. 1013–
1022, IEEE, 2005.

[29] S. Chaudhuri, R. Kaushik, and R. Ramamurthy, “Database
access control & privacy: Is there a common ground?,” in
Proceedings of the 5th Biennial Conference on Innovative Data
Systems Research (CIDR), pp. 96–103, 2011.

[30] C. Dwork, “Differential privacy,” Automata, languages and pro­
gramming, pp. 1–12, 2006.

[31] N.	 Li, W. Qardaji, and D. Su, “Provably private data
anonymization: Or, k-anonymity meets differential privacy,”
Arxiv preprint arXiv:1101.2604, 2011.

[32] V. Ciriani, S. De Capitani Di Vimercati, S. Foresti, and P. Sama­
rati, “Theory of privacy and anonymity,” in Algorithms and the­
ory of computation handbook, pp. 18–18, Chapman & Hall/CRC,
2010.

[33] H. Samet,	 The design and analysis of spatial data structures,
vol. 85. Addison-Wesley Reading MA, 1990.

[34] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis, “Fast data
anonymization with low information loss,” in Proceedings of the
33rd international conference on Very large data bases, pp. 758–769,
VLDB Endowment, 2007.

[35] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis, “A frame­
work for efficient data anonymization under privacy and

http:gams.com
http://www

15

accuracy constraints,” ACM Transactions on Database Systems
(TODS), vol. 34, no. 2, p. 9, 2009.

[36] X. Xiao, G. Bender, M. Hay, and J. Gehrke, “ireduct: Differen­
tial privacy with reduced relative errors,” in Proceedings of the
ACM SIGMOD International Conference on Management of Data,
2011.

APPENDIX A
PROOF OF HARDNESS

Theorem A.1. Decisional k-anonymity with Imprecision
Bounds is NP-complete.

Proof: The proof is by reduction from Partition:
Partition Given a finite set A and a size function
s(ai) ∈ Z+ for each ai ∈ A. Does there exist a subset,

'
A ⊆ A such that

s(ai) = s(aj) ?
' 'ai∈A aj ∈A−A

For each ai ∈ A, construct multiple tuples that
are repeated a number of times equal to count, i.e.,
forming a multiset, where count is equal to s(ai). We
can equivalently represent these repeated tuples as a
set of distinct pairs of the form (tuple, count). This
construct is similar to that in [14]. In each pair, the
tuple is a point in the d-dimensional unit-hypercube
defined by a vector [01, . . . , 0i−1, 1i, 0i+1, . . . , 0d,] (i.e.,
the ith co-ordinate is 1 and all others are 0). The union
of all such pairs is Table T . In this d-dimensional unit-
hypercube, construct Query Q so that Q encloses a
single (tuple, count) pair.

The partition problem for A can be reduced to the m ms(ai) s(ai)following: Let k = , BQ = and qv = 1. Is 2 2
there a k-anonymous multidimensional partitioning for T
such that impQ ≤ BQ? We claim that there is a solution
to the k-anonymous multidimensional partitioning for
T satisfying the imprecision bound for the query Q if
and only if there is a solution to the partition problem
for A.

Suppose there exists a k-anonymous multidimen­
sional partitioning for T satisfying the imprecision
bound for the query Q. The partitions will define
two multidimensional regions R1 and R2 such that m m m s(ai)count(t) = count(t) = k = . The t∈R1 t∈R2 2
count(t) values in R1 and R2 will give the two disjoint
subsets of A that define an equal partitioning of A.

In the other direction, suppose there is a solution
to the partition problem for A. The solution will
define two disjoint subsets A1 and A2. From these two
subsets, we can find the multidimensional partitions m m
R1 and R2 such that count(t) = s(ai)t∈R1 s(ai)∈A1m m
and count(t) = s(ai). The impreci­t∈R2 s(ai)∈A2

sion for the Query Q is less than BQ as the overlap­
ping partition has size k = BQ.

Finally, a given solution to the decisional k-
anonymous multidimensional partitioning problem
with imprecision bounds can be verified in polyno­
mial time. All the multidimensional partitions are

checked to see if they satisfy the k-anonymity require­
ment and that the imprecision bound for the query is
satisfied.

Example 6. Let the multiset of size function of set A
is {1, 2, 2, 3} and the Query Q be on attribute a1. The
(tuple, count) pairs for A are

t1 = ([1, 0, 0, 0], 1) t2 = ([0, 1, 0, 0], 2)

t3 = ([0, 0, 1, 0], 2) t4 = ([0, 0, 0, 1], 3)

m s(ai)Then k = BQ = = 4 and the solution for 2
partition of A is A1 = {1, 3} and A2 = {2, 2}. The
corresponding multidimensional partitions for table
are 4-anonymous and imprecision for Query Q is 3
which is less than 4.

