
CERIAS Tech Report 2013-10
Elliptic Curve Cryptography based Certificateless Hybrid Signcryption Scheme without Pairing

 by Seung-Hyun Seo and Elisa Bertino
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Elliptic Curve Cryptography based
Certificateless Hybrid Signcryption Scheme

without Pairing

Seung-Hyun Seo and Elisa Bertino

Dept. of Computer Science, Purdue University,
West Lafayette, IN 47907 US

seo29@purdue.edu, bertino@purdue.edu

1 Introduction

Signcryption is a scheme that provides confidentiality and authentication while
keeping costs low in comparison to independent encryption and message sign­
ing. Since Zheng [13] introduced the concept of signcryption, a variety of
schemes have been presented in [6–11]. We can divide the schemes in two ways
to construct the signcryption scheme such as a public signcryption and a hy­
brid signcryption. In the public signcryption scheme, the process of encryption
and signing are performed utilizing the public key operation. However, in the
hybrid signcryption scheme, only the signing process uses the public key oper­
ation while the symmetric key setting is used for the encryption. That is, we
can construct the hybrid signcryption scheme by combining two methods: (1)
an asymmetric part, takes a private and a public key as the input and outputs
a suitably sized random symmetric key and then performs an encapsulation of
the key, (2) the symmetric part takes a message and a symmetric key as the
input and outputs an authenticated encryption of the message. Thus, a hybrid
signcryption approach can efficiently encapsulate new keys and securely trans­
mit data for various applications such as Advanced Metering Infrastructures
(AMIs) and Wireless Sensor Networks (WSNs).

The hybrid signcryption scheme has been proposed in [1–5] and its formal se­
curity model was presented in [2] However, since these approaches rely on tra­
ditional PKI using a certificate trusted by CA, they require the management of
certificates. Although Identity-based Public Key Cryptography (ID-PKC)[16]
was introduced to eliminate the dependency from explicit certificates, it suffers
from a key escrow problem because the Key Generation Center (KGC) stores
the private keys of all users. In order to resolve these drawbacks, Al-Riyami

1

mailto:bertino@purdue.edu
mailto:seo29@purdue.edu

et al. [12] introduced certificateless public key cryptography (CL-PKC), that
splits the user’s private key into two parts: one is a partial private key gen­
erator by the KGC, and the other one is a secret value selected by the user.
CL-PKC is able to overcome the key escrow problem because the KGC is un­
able to access the user’s secret value. Only when a valid user holds both the
partial private key and the secret value, the cryptographic operations such as
decryption or digital signing based on CL-PKC can be performed.

Recently, Li et al.[15] first constructed a hybrid signcryption scheme which was
truly certificateless by using certificateless signcryption tag-KEM and a DEM.
The concept of certificateless hybrid signcryption evolved by combining the
ideas of signcryption based on tag-KEM and certificateless cryptography. Li et
al.[15] claimed that their scheme is secure against adaptive chosen ciphertext
attack and it is existentially unforgeable. However, such scheme is existentially
forgeable and the definition of the generic scheme is insufficient. Selvi et al.[14]
showed the security weaknesses of Li et al.[15]’s scheme and presented an im­
proved certificateless hybrid signcryption scheme. However, Li et al. [15] and
Selvi et al. [14] used a scheme based on bilinear pairings. In spite of the recent
advances in implementation techniques, the computational cost required for
pairing operation is still considerably higher in comparison to standard oper­
ations such as ECC point multiplication. For example, TinyTate, which uses
TinyECC as the underlying library, takes around 31s to compute one pairing
operation on the MICAz(8MHz) mote. NanoECC, which uses the MIRACL li­
brary, takes around 17.93s to compute one pairing operation and around 1.27s
to compute one ECC point multiplication on the MICA2(8MHz) mote [20].
Thus, such schemes based on pairing operations are not applicable to security
mechanisms for AMIs and WSNs. In this technical report, we propose a cer­
tificateless hybrid signcryption (CL-HSC) scheme without pairing operations.
We present the formal security model of our CL-HSC scheme. Then, we pro­
vide the security proof of our CL-HSC scheme against both adaptive chosen
ciphertext attack and existential forgery in the appropriate security models for
certificateless hybrid signcryption. Since our CL-HSC scheme does not depend
on the pairing-based operation, it reduces the computational overhead. It is
also adopted to utilize ECC (Elliptic Curve Cryptography). Thus, we take the
benefit of ECC keys defined on an additive group with a 160-bit length as
secure as the RSA keys with 1024-bit length.

The remainder of this report is organized as follows: In Section 2, we briefly
describe the overview of elliptic curve cryptography and computational as­
sumptions. In Section 3, we provide the definition of CL-HSC and security
models for CL-HSC. In Section 4, we introduced out ECC based CL-HSC
scheme without pairing operations. In Section 5, we provide formal security
proof of our scheme, and conclude in Section 6.

2

2 Preliminaries

2.1 Elliptic Curve Cryptography

The ECC was proposed by Miller [17] and Koblitz [18], and its security is
based on the difficulty of solving the ECDLP. Any cryptosystem based on
ECC provides high security with small key size, for example, a 160-bit ECC
is considered to be as secured as 1024-bit RSA key [19]. Let Fq be the field
of integers of modulo a large prime number q. A non-singular elliptic curve
Eq(a, b) over Fq is defined by the following equation:

y 2 mod q = (x 3 + ax + b) mod q (1),

where a, b, x, y ∈ Fq and D = (4a3 + 27b2) mod q = 0. A point P (x, y) is an
elliptic curve point if it satisfies Equation (1), and the point Q(x, −y) is called
the negative of P , i.e. Q = −P Let P (x1, y1) and Q(x2, y2)(P Q) be two =
points in Equation (1), the line l (tangent line to Equation (1) if P = Q) joining
the points P and Q intersects the curve (1) at −R(x3, −y3) and the reflection
of −R with respect to x-axis is the point R(x3, y3), i.e. P + Q = R. The points
Eq(a, b) together with a point O (called point at infinity) form an additive
cyclic group Gq, that is, Gq = (x, y) : a, b, x, y ∈ Fq and (x, y) ∈ Eq(a, b) ∪ O
of prime order q. The scalar point multiplication on the group Gq can be
computed as follows: kP = P + P + . . . + P (k times). A point P has order n
if n is the smallest positive integer such that nP = O.

2.2 Computational Assumptions

Definition 1. Elliptic Curve Computational Diffie-Hellman Problem
(EC-CDH) is defined as follows: Let AEC−CDH be an adversary. AEC−CDH

tries to solve the following problem: Given a random instance (P, aP, bP) ∈ Gq,
compute abP . We define AEC−CDH ’s advantage in solving the EC − CDH by
Adv(AEC−CDH)=Pr[AEC−CDH (P, aP, bP) = abP].

3 Certificateless Hybrid Signcryption Scheme Without Pairing

In this section, we present the Certificateless Hybrid Signcryption (CL-HSC)
scheme.

3

3.1 Definition of CL-HSC scheme

The generic certificateless hybrid signcryption scheme is a 8-tuple CL-HSC=(SetUp,
SetSecretValue, PartialPrivateKeyExtract, SetPrivateKey, SetPublicKey, Sym­
metricKeyGen, Encapsulation, Decapsulation). The description of each prob­
abilistic polynomial time algorithm is as follows.

•	 SetUp: The Key Generation Center (KGC) runs this algorithm, which takes
a security parameter k as input and returns system parameters params
and a master secret key msk of KGC. We assume that params are publicly
available to all users whereas the msk is kept secret by KGC.

•	 SetSecretValue: This algorithm is run by each user A to generate a secret
value for oneself. It takes params and an identity IDA of the user A as
inputs and outputs user’s secret value xA and a corresponding public value
PA.

•	 PartialPrivateKeyExtract: The KGC runs this algorithm to generate the par­
tial private key of the users. This algorithm takes params, msk and an iden­
tity IDA of the user A as inputs, and then it outputs the partial private
key DA of IDA. The KGC runs this algorithm for each user, and we assume
upthat the partial private key is distributed securely to the user.

•	 SetPrivateKey: This algorithm is run by each user A to generate the full
private key. It takes params, partial private key DA and the secret value xA

of IDA as inputs, and then it outputs the full private key skA for A.

•	 SetPublicKey: This algorithm is run by each user A to generate the full
public key. It takes params and a user’s secret value xA as inputs and then
returns the full public key pkA to A as output.

•	 SymmetricKeyGen: This symmetric key generation algorithm is run by the
sender A to obtain the symmetric key K and an internal state information
ω, which is not known to a receiver B. It takes the sender’s identity IDA, a
full public key pkA, a full private key skA, the receiver’s identity IDB and
a full public key pkB as inputs and then returns the symmetric key K and
ω to A as output.

•	 Encapsulation: This key encapsulation algorithm is executed by the sender A
to obtain the encapsulation ϕ. It takes a state information ω corresponding
to K, an arbitrary tag τ , the sender’s identity IDA, a full public key pkA

and a full private key skA as input. The τ and ϕ are sent to the receiver B.

•	 Decapsulation: This key decapsulation algorithm is executed by the receiver
B to obtain the key K encapsulated in ϕ. It takes the encapsulation ϕ, a tag
τ , the sender’s identity IDA, a full public key pkA, the receiver’s identity
IDB, a full public key pkB and a full private key skB as input and then
returns the symmetric key K or invalid with respect to the validity of ψ as

4

output.

The consistency constraint is if (K, ω) = SymmetricKeyGen(IDA, pkA, skA, IDB , pkB)
and ϕ = Encapsulation(ω, τ), then K = Decapsulation(ϕ, τ, IDA, pkA, IDB , pkB , skB).

3.2 Security Model for CL-HSC

Barbosa et al. [6] firstly formalized the security notion for certificateless sign­
cryption (CL-SC) scheme. Then, Selvi et al. [14] provided the security model
for certificateless hybrid signcryption (CL-HSC) scheme. A CL-HSC scheme
must satisfy confidentiality (indistinguishability against adaptive chosen ci­
phertext and identity attacks (IND-CCA2)) and unforgeability (existential
unforgeability against adaptive chosen messages and identity attacks (EUF­
CMA)). In order to prove the confidentiality and the unforgeability of CL-HSC
scheme, we have to consider two types of adversaries, Type I and Type II. A
Type I adversary models an attacker which is a common user of the system
without the possession of the KGC’s master secret key. But it is able to adap­
tively replace users’ public keys with valid public keys of its choice. A Type
II adversary models an honest-but-curious KGC who knows the KGC’s mas­
ter secret key. But it cannot replace users’ public keys. For the confidentiality,
we consider two games ”IND-CL-HSC-CCA2-I” and ”IND-CL-HSC-CCA2-II”
where a Type I adversary AI and a Type II adversary AII interact with their
”Challenger C” in these two games, respectively. For the unforgeability, we con­
sider two games ”EUF-CL-HSC-CMA-I” and ”EUF-CL-HSC-CMA-II” where
a Type I forger FI and a Type II forger FII interact with their ”Challenger
C” in these two games, respectively. Now we describe these games below.

3.2.1 Confidentiality

A CL-HSC scheme is indistinguishable against chosen ciphertext and identity
attacks (IND-CL-HSC-CCA2), if no polynomially bounded adversaries AI and
AII have non-negligible advantage in both IND-CL-HSC-CCA2-I and IND­
CL-HSC-CCA2-II games between C and AI , AII respectively:

IND-CL-HSC-CCA2-I: The following is the interactive game between C
and AI . The challenger C runs this algorithm to generate the master public
and private keys, params and msk respectively. C gives params to AI and keeps
the master private key msk secret from AI .

Phase 1: AI performs a series of queries in an adaptive fashion in this phase.
The queries allowed are given below:

• Partial-Private-Key-Extract queries: AI chooses an identity IDi and

5

gives it to C. C computes the corresponding partial private key di and sends
it to AI .

•	 Set-Secret-Value queries: AI produces an identity IDi and requests the
corresponding full private key. If IDi’s public key has not been replaced
then C responds with the full private key ski. If AI has already replaced
IDi’s public key, then C does not provide the corresponding private key to
AI .

•	 Set-Public-Key queries: AI produces an identity IDi to C and requests
IDi’s public key. C responds by returning the public key pki for the user
IDi.

•	 Public-Key-Replacement queries: AI can repeatedly replace the pub­
lic key pki corresponding to the user identity IDi with any value pki

� of
AI ’s choice. The current value of the user’s public key is used by C in any
computations or responses to AI ’s queries.

•	 Symmetric Key Generation queries: AI produces a sender’s identity
IDA, public key pkA, the receiver’s identity IDB and public key pkB to C.
The private key of the sender skA is obtained from the corresponding list
maintained by C. C computes the symmetric key K and an internal state
information ω, stores and keeps ω secret from the view of AI and sends the
symmetric key K to AI . It is to be noted that C may not be aware of the
corresponding private key if the public key of IDA is replaced. In this case
AI provides the private key of IDA to C.

•	 Key Encapsulation queries: AI produces an arbitrary tag τ , the sender’s
identity IDA and public key pkA. The private key of the sender skA is known
to C. C checks whether a corresponding ω value is stored previously. If ω
exists then C computes the encapsulation ϕ with ω and τ and deletes ω,
else returns invalid.

•	 Key Decapsulation queries: AI produces an encapsulation ϕ, a tag τ ,
the sender’s identity IDA, public key pkA, the receiver’s identity IDB and
public key pkB . The private key of the receiver skB is obtained from the
corresponding list maintained by C. C returns the key K or invalid with
respect to the validity of ϕ. It is to be noted that C may not be aware of
the corresponding private key if the public key of IDB is replaced. In this
case AI provides the private key of IDB to C.

Challenge: At the end of Phase 1 decided by AI , AI sends to C, a sender
identity IDA∗ and a receiver identity IDB∗ on which AI wishes to be chal­
lenged. Here, the private key of the receiver IDB∗ was not queried in Phase 1.
Now, C computes (K1, ω

∗) using SymmetricKeyGen(IDA, pkA, skA, IDB , pkB)
and chooses K0 ∈R K, where K is the key space of the CL-HSC scheme. Now
C chooses a bit δ ∈R {0, 1} and sends Kδ to AI . AI generates an arbitrary
tag τ ∗ and sends it to C. C computes the challenge encapsulation ϕ∗ with ω∗

and τ ∗ and sends ϕ∗ to AI .

Phase II: AI can perform polynomially bounded number of queries adaptively

6

� �

�

� �

� �

�

� �

again as in Phase 1 but it cannot make a partial-private-key extract query on
IDB∗ or cannot query for the key decapsulation of ϕ∗ .

Guess: AI outputs a bit δ and wins the game if δ = δ.

The advantage of AI is defined as AdvIND−CL−HSC−CCA2−I (AI) = |2Pr[δ =
δ] − 1|, where Pr[δ = δ] denotes the probability that δ = δ.

IND-CL-HSC-CCA2-II: The following is the interactive game between C
and AII . The challenger C runs this algorithm to generate the master public
and private keys, params and msk respectively. C gives both params and msk
to AII .

Phase 1: AII performs a series of queries in an adaptive fashion in this phase.
The queries allowed are similar to that of IND-CL-HSC-CCA2-I game except
that Partial-Private-Key-Extract queries is not included, because AII

can generate it on need basis as it knows msk.

Challenge: At the end of Phase 1 decided by AII , AII sends to C, a sender
identity IDA∗ and a receiver identity IDB∗ on which AII wishes to be chal­
lenged. Here, the private key of the receiver IDB∗ was not queried in Phase 1.
Now, C computes (K1, ω

∗) using SymmetricKeyGen(IDA, pkA, skA, IDB , pkB)
and chooses K0 ∈R K, where K is the key space of the CL-HSC scheme. Now
C chooses a bit δ ∈R {0, 1} and sends Kδ to AII . AII generates an arbitrary
tag τ ∗ and sends it to C. C computes the challenge encapsulation ϕ∗ with ω∗

and τ ∗ and sends ϕ∗ to AI .

Phase II: AII can perform polynomially bounded number of queries adap­
tively again as in Phase 1 but it cannot make a set-secret-value query on IDB∗ ,
cannot make a public-key-replacement query on IDB∗ or cannot query for the
key decapsulation of ϕ∗ .

Guess: AII outputs a bit δ and wins the game if δ = δ.

The advantage of AII is defined as AdvIND−CL−HSC−CCA2−II (AII) = |2Pr[δ =
δ] − 1|, where Pr[δ = δ] denotes the probability that δ = δ.

3.2.2 Existential Unforgeability

A CL-HSC scheme is existentially unforgeable against adaptive chosen mes­
sage attack (EUF-CL-HSC-CMA), if no polynomially bounded forgers FI

and FII have non-negligible advantage in both ”EUF-CL-HSC-CMA-I” and
”EUF-CL-HSC-CMA-II” games between C and FI , FII respectively:

7

EUF-CL-HSC-CMA-I: The following is the interactive game between C and
FI . The challenger C runs this algorithm to generate the master public and
private keys, params and msk respectively. C gives params to FI and keeps
the master private key msk secret from FI .

Training Phase: FI may make a series of polynomially bounded number
of queries to random oracles Hi(0 ≤ i ≤ 3) at any time and C responds as
follows:
All the oracles and queries needed in the training phase are identical to those
of queries allowed in Phase 1 of IND-CL-HSC-CCA2-I game.

Forgery: A the end of the Training Phase, FI sends to C an encapsulation
(τ ∗, ω∗, IDA∗ , IDB∗) on a arbitrary tag τ ∗, where IDA∗ is the sender identity
and IDB∗ is the receiver identity. During the Training Phase, the partial
private key of the sender IDA∗ must not be queried and the public key of the
sender IDA∗ must not be replaced, simultaneously. Moreover ω∗ must not be
the response for any key encapsulation queries by FI during the Training
Phase.

If the output of Decapsulation(ω∗, τ ∗, IDA∗ , pkA∗ , IDB∗ , pkB∗ , skB∗) is valid, FI

wins the game. The advantage of FI is defined as the probability with which
it wins the EUF-CL-HSC-CMA-I game.

EUF-CL-HSC-CMA-II: The following is the interactive game between C
and FII . The challenger C runs this algorithm to generate the master public
and private keys, params and msk respectively. C gives params and the master
private key msk to FI .

Training Phase: FII may make a series of polynomially bounded number
of queries to random oracles Hi(0 ≤ i ≤ 3) at any time and C responds as
follows:
All the oracles and queries needed in the training phase are identical to those
of queries allowed in Phase 1 of IND-CL-HSC-CCA2-II game.

Forgery: A the end of the Training Phase, FII sends to C an encapsulation
(τ ∗, ω∗, IDA∗ , IDB∗) on a arbitrary tag τ ∗, where IDA∗ is the sender identity
and IDB∗ is the receiver identity. During the Training Phase, the secret
value xA∗ of the sender IDA∗ must not be queried and the public key of the
sender IDA∗ must not be replaced, simultaneously. Moreover ω∗ must not be
the response for any key encapsulation queries by FII during the Training
Phase.

If the output of Decapsulation(ω∗, τ ∗, IDA∗ , pkA∗ , IDB∗ , pkB∗ , skB∗) is valid,
FII wins the game. The advantage of FII is defined as the probability with
which it wins the EUF-CL-HSC-CMA-II game.

8

4	 ECC based Certificateless Hybrid Signcryption Scheme Without
Pairing

4.1 Setup

This algorithm takes a security parameter k ∈ Z+ as input, and returns list
of system parameter Ω and KGC’s master private key msk. Given k, KGC
performs the following steps:

(1) Choose a k-bit prime q and determine the tuple {Fq, E/Fq, Gq, P }, where
the point P is the generator of Gq.

(2) Choose the master key x ∈ Z∗
q uniformly at random and compute the

system public key Ppub = xP .
(3) Choose	 cryptographic hash functions H0 : {0, 1}∗ × G2

q → Z∗
q , H1 :

{0, 1}∗ × G2 → Z∗ and H2 : {0, 1}∗ × G2 → Z∗ .q q	 q q

(4) Publish Ω	 = {Fq, E/Fq, Gq, P, Ppub, H0, H1, H2, H3} as the system’s pa­
rameter and keep the master key x is secret.

4.2 Set Secret Value

The entity A with an identity IDA chooses xA ∈ Z∗
q uniformly at random as

his secret value and generates the corresponding public key as PA = xAP .

4.3 Partial Private key Extract

This algorithm takes KGC’s master secret key, identity of an entity and the
system parameter as input. Then, it returns the partial private key of the
entity. In order to obtain the partial private key, the entity A sends (IDA, PA)
to the KGC and then KGC does as follows:

(1) Choose rA ∈ Z∗
q uniformly at random and compute RA = rAP .

(2) Compute dA = rA + xH0(IDA, RA, PA) mod q.

The partial private key of the entity A is dA. The entity can validate his
private key by checking whether dAP = RA + H0(IDA, RA, PA)Ppub holds.

4.4 Set Private Key

The entity A takes the pair skA = (dA, xA) as his full private key.

9

�

�

�

�

4.5 Set Public Key

The entity A takes the pair pkA = (PA, RA) as his full public key.

4.6 Symmetric Key Generation

Given the sender(entity A)’s identity IDA, full public key pkA, full private key
skA, the receiver’s identity IDB and full public key pkB as input, the sender
executes this symmetric key generation algorithm to obtain the symmetric key
K as follows:

(1) Choose lA ∈ Z∗
q uniformly at random and compute U = lAP .

(2) Compute	 T = lA · H0(IDB, RB , PB)Ppub + lA · RB mod q and K =

H1(U, T, lA · PB, IDB, PB).

(3) Output K and the intermediate information ω = (lA, U, T, IDA, pkA, skA, IDB, pkB).

4.7 Encapsulation

Given a state information ω and an arbitrary tag τ , the sender A obtains the
encapsulation ϕ by performing the following:

(1) Compute H = H2(U, τ, T, IDA, PA, IDB , PB), H = H3(U, τ, T, IDA, PA, IDB , PB)

and W = dA + lA · H + xA · H

(2) Output ϕ = (U, W).

4.8 Decapsulation

Given the encapsulation ϕ, a tag τ , the sender’s identity IDA, full public key
pkA, the receiver’s identity IDB, full public key pkB and full private key skB ,
the key K is computed as follows:

(1) Compute	 T = dB · U (= (rB + xH0(IDB , RB, PB)) · lAP mod q = lA ·

H0(IDB , RB, PB)Ppub + lA · RB mod q).

(2) Compute H = H2(U, τ, T, IDA, PA, IDB , PB) and H = H3(U, τ, T, IDA, PA, IDB , PB).
(3) If W · P = RA + H0(IDA, RA, PA) · Ppub + H · U + H · PA, output K =

H1(U, T, xB · U, IDB , PB). Otherwise, output invalid.

10

�

�

5 Security Analysis

5.1 Type-I Confidentiality

Theorem 1. Suppose that the hash functions Hi(i = 0, 1, 2, 3) are random
oracles. If there exists an adversary AI against the IND-CL-HSC-CCA2-I
security of the CL-HSC scheme with advantage a non-negligible ε, asking qppri
partial-private-key queries, qsv set-secret-value queries and qHi random oracle
queries to Hi (0 ≤ i ≤ 3), then there exist an algorithm C that solves the
EC − CDH problem with the following advantage ε

qppri qsv 1 1
ε ≥ ε · (1 −) · (1 −) · () · ()

qH0 qH0 qH0 − qppri − qsv qH1

Proof. A challenger C is challenged with an instance of the EC-CDH prob­
lem. Given (P, aP, bP) ∈ Gq, C must find abP . Let AI be an adversary who
is able to break the IND-CL-HSC-CCA2-I security of the CL-HSC scheme.
C can utilize AI to compute the solution abP of the EC-CDH instance by
playing the following interactive game with AI . To solve the EC-CDH prob­
lem, C sets the master private/public key pair as (x = a, Ppub = aP), where
P is the generator of the group Gq and the hash functions Hi(0 ≤ i ≤ 3)
are treated as random oracles. The C sends the system parameters Ω =
{Fq, E/Fq, Gq, P, Ppub, H0, H1, H2, H3} to AI . In order to avoid the inconsis­
tency between the responses to the hash queries, C maintains lists Li(0 ≤ i ≤
3)). It also maintains a list of issued private keys and public keys in Lk. C can
simulate the Challenger’s execution of each phase of the formal Game. Let C
select a random index t, where 1 ≤ t ≤ qH0 and fixes IDt as the target identity
for the challenge phase.

Phase 1: AI may make a series of polynomially bounded number of queries
to random oracles Hi(0 ≤ i ≤ 3) at any time and C responds as follows:

Create(IDi: When AI submits a Create(IDi) query to C, C responds as
follows:

•	 If IDi = IDt, C chooses ei, xi ∈R Zq
∗ and sets H0(IDi, Ri, Pi) = −ei, Ri =

eiPpub + bP and Pi = xiP . Here, C does not know b. C uses the bP given
in the instance of the EC-CDH problem. C inserts (IDi, Ri, Pi, ei) to the list
L0 and (IDi, ⊥, xi, Ri, Pi) to the list Lk.

•	 If IDi = IDt, C picks ei, bi, xi ∈R Zq
∗, then sets H0(IDi, Ri, Pi) = −ei, Ri =

eiPpub +biP and computes the public key as Pi = xiP . di = bi and it satisfies
the equation diP = Ri +H0(IDi, Ri, Pi)Ppub. C inserts (IDi, Ri, Pi, ei) to the
list L0 and (IDi, di, xi, Ri, Pi) to the list Lk.

11

� �

�

� � � �

�

� �

� �

H0 queries: When AI submits a H0 query with IDi, C searches the list
L0. If there is a tuple IDi, Ri, Pi, ei), C responds with the previous value ei.
Otherwise, C chooses ei ∈R Zq

∗ and returns ei as the answer. Then, C inserts
(IDi, Ri, Pi, li) to the list L0.

H1 queries: C checks whether a tuple of the form (U, T, lA ·PB , IDB, PB) exists
in list L1. If it exists, C returns K to AI . Otherwise, it chooses K ∈R {0, 1}n

and adds the tuple (U, T, lA · PB , IDB , PB, K) to the L1, then returns K to
AI .

H2 queries: C checks whether a tuple of the form (U, τ, T, IDA, PA, IDB , PB, hi, H)
exists in the list L2. If it exists, C returns H to AI . Otherwise, C performs the
following steps.

•	 If IDB = IDt, C chooses hi ∈R Z
∗, adds the tuple (U, τ, T, IDA, PA, IDB , PB, hi, H = q

hiP) to the L2 and returns H to AI .
•	 If IDB = IDt, C picks hi ∈R Z

∗, adds the tuple (U, τ, T, IDA, PA, IDB, PB , hi, H = q

hiPpub) to the L2 and returns H to AI .

H3 queries: C checks whether a tuple of the form (U, τ, T, IDA, PA, IDB , PB, hi, H)
exists in the list L3. If it exists, C returns H to AI . Otherwise, C chooses
hi ∈R Z

∗, adds the tuple (U, τ, T, IDA, PA, IDB , PB , hi, H = hiP) to the L3q

and returns H to AI .

Partial-Private-Key-Extract queries: In order to respond to the query for
the partial private key of a user with IDi, C performs as follows:

•	 If IDi = IDt, C aborts the execution.
•	 If IDi = IDt, C retrieves the tuple (IDi, di, xi, Ri, Pi) from Lk, returns
(di, Ri) which satisfies the equation diP = Ri + H0(IDi, Ri, Pi)Ppub.

Set-Secret-Value queries: AI produces IDi to C and requests a secret value
of the user with IDi. If the public key of IDi has not been replaced and
IDi = IDt, then C responds with xi by retrieving from the Lk. If AI has
already replaced the public key of IDi, C does not provide the corresponding
secret value to AI . If IDi = IDt, C aborts.

Set-Public-Key queries: AI produces IDi to C and requests a public key of
the user with IDi. C checks in the Lk for a tuple of the form (IDi, di, xi, Ri, Pi).
If it exists, C returns the corresponding public key (Ri, Pi). Otherwise, C recalls
Create(IDi) query to obtain (Ri, Pi) and returns (Ri, Pi) as the answer.

Public-Key-Replacement queries: AI chooses values (Ri, Pi) to replace
the public key (Ri, Pi) of a user IDi. C updates the corresponding tuple in
the list Lk as (IDi, −, −, Ri, Pi). The current value of the user’s public key is
used by C for computations or responses to any queries made by AI .

12

�

� � � �

�

�

�

�

�

�

�

Symmetric Key Generation queries: AI produces a sender’s identity IDA,
public key (RA, PA), the receiver’s identity IDB and public key (RB , PB) to C.
C computes the symmetric key K and an internal state information ω, stores
and keeps ω secret from the view of AI and sends the symmetric key K to AI .
C can perform this step even if C does not know the private key corresponding
to the sender IDA or the receiver IDB because computing K does not utilize
the private key of either the sender or receiver.

Key Encapsulation queries: AI produces an arbitrary tag τ , the sender’s
identity IDA, public key (RA, PA), the receiver’s identity IDB and public key
(RB , PB) and sends to C. The full private key of the sender (dA, xA) is obtained
from the list Lk. C checks whether a corresponding ω value has been stored
previously.

•	 If ω does not exist, C returns invalid.
•	 If a corresponding ω exists and IDi = IDt, then C computes ϕ with ω and
τ by using the actual Encapsulation algorithm, and deletes ω.

•	 If a corresponding ω exists and IDi = IDt, then C computes ϕ by performing
the following steps. (C does not know the private key corresponding to IDt,
so it should perform the encapsulation in a different way.):
· Choose r, hi, hi ∈R Zq

∗ and compute U = rP − (hiPpub)
−1 · (RA − eiPpub),

where RA − eiPpub = bP , RA and ei are obtained from the list L0.
·	 Compute H = hiPpub and add the tuple (U, τ, T, IDA, PA, IDB, PB , hi, H)
to the list L2.

·	 Compute H = hiP and add the tuple (U, τ, T, IDA, PA, IDB, PB, hi, H)
to the list L3.

·	 Compute W = rH + hiPA.
·	 Output ϕ = (U, W) as the encapsulation.
We show that AI can pass the verification of ϕ = (U, W) to validate the

encapsulation, because the equality W · P = RA + H0(IDA, RA, PA) · Ppub +
H · U + H · PA holds as follows:
RA + H0(IDA, RA, PA) · Ppub + H · U + H · PA

= bP + ePpub + (−ei) · Ppub + H · (rP − (hiPpub)
−1 · (RA − eiPpub)) + H · PA

= bP + eiPpub − eiPpub + (hiPpub) · (rP − (hiPpub)
−1 · bP) + hiP · PA

= bP + hiPpub · rP − bP + hiP · PA

= (rH + hiPA) · P
= W · P

Key Decapsulation queries: AI produces an encapsulation ϕ, a tag τ ,
the sender’s identity IDA, public key (RA, PA), the receiver’s identity IDB

and public key (RB , PB) to C. The full private key of the receiver (dB, xB) is
obtained from the list Lk.

•	 If IDi = IDt, then C computes the decapsulation of ϕ by using the actual
Decapsulation algorithm.

13

� �

�

�

�

�

� � �

�

•	 If IDi = IDt, then C computes K from ϕ as follows:
· Searches in the list L2 and L3 for entries of the type (U, τ, T, IDA, PA, IDB, PB, hi, H)
and (U, τ, T, IDA, PA, IDB, PB , hi, H) respectively.

· If entries H and H exist then C checks whether the equality W · P =
RA + H0(IDA, RA, PA) · Ppub + H · U + H · PA holds.

· If the above equality holds, the corresponding value of T is retrieved from
the lists L2 and L3. Both the T values should be equal.

·	 C checks whether a tuple of the form (U, T, xB · U, IDB, PB, K) exists

in the list L1. If it exists the corresponding K value is output as the

decapsulation of ϕ.

Challenge: At the end of Phase 1, AI sends a sender identity IDA∗ and a
receiver identity IDB∗ on which AI wishes to be challenged to C. Here, the
full private key of the receiver IDB∗ was not queried in Phase 1. C aborts
the game if IDB∗ = IDt. Otherwise, C performs the following to compute the
challenge encapsulation ϕ∗ .

•	 Set U = cP and choose T ∈R Gq.
•	 Choose K0 ∈R K, where K is the key space of the CL-HSC scheme.
•	 Compute K1 = H1(U, T, xB · U, IDB , PB).
•	 Set ω∗ = (−, U, U , T, IDA, PA, RA, xA, dA, IDB , PB, RB).
• C chooses a bit δ ∈R {0, 1} and sends Kδ to AI .
• AI generates an arbitrary tag τ ∗ and sends it to C.
•	 Choose hi, hi ∈R Z∗, store the tuple (U, τ ∗, T, IDA, PA, IDB , PB, hi, H = q

hiP) to the list L2 and (U, τ ∗, T, IDA, PA, IDB, PB , hi, H = hiP) to the list

L3.

•	 Since C knows the private key of the sender, C computes W = dA + hi · cP +
hixAP .

• C sends ω∗ = (U, W) to AI .

Phase II: AI adaptively queries the oracles as in Phase I, consistent with the
constraints for Type I adversary. Besides it cannot query decapsulation on ω∗ .

Guess: Since AI is able to break the IND-CL-HSC-CCA2-I security of CL­
HSC (which is assumed at the beginning of the proof), AI should have asked
a H1 query with (U, T, xB · U, IDB , PB) as inputs. T = r · H0(IDB , RB, PB) ·
Ppub + r · RB = c · (−ei) · aP + c · (ei · aP + bP) = c · bP . Therefore, if the list L1

has qH1 queries corresponding to the sender IDA and receiver IDB, one of the
T ’s among qH1 values stored in the list L1 is the solution for the EC − CDH
problem instance. C chooses one T value uniformly at random from the qH1

values from the list L1 and outputs it as the solution for the EC − CDH
instance.

Analysis: In order to assess the probability of success of the challenger C,
Let E1, E2 and E3 be the events in which C aborts the IND-CL-HSC-CCA2-I

14

�

�

game.

•	 E1 is an event when AI queries the partial private key of the target identity
is Pr[E1] = qppri IDt. The probability of E1	 .

qH0

•	 E2 is an event when AI asks to query the set secret value of the target
identity IDt. The probability of E2 is Pr[E2] = qsv .

qH0

•	 E3 is an event when AI does not choose the target identity IDt as the re­
ceiver during the challenge. The probability of E3 is Pr[E3] = 1− 1 .

qH0 −qppri−qsv

Thus, the probability that C does not abort the IND-CL-HSC-CCA2-I game
is

qppri qsv 1
Pr[¬E1 ∧ ¬E2 ∧ ¬E3] = (1 −) · (1 −) · ()

qH0 qH0 qH0 − qppri − qsv

The probability that C randomly chooses the T from L1 and T is the solution
of EC −CDH is

qH

1

1
. So, the probability that C finds the EC −CDH instance

is as follows:

qppri qsv 1 1
Pr[C(P, aP, bP) = abP] = ε · (1 −) · (1 −) · () · ()

qH0 qH0 qH0 − qppri − qsv qH1

Therefore, the Pr[C(P, aP, bP) = abP] is non-negligible, because ε is non-
negligible.

5.2 Type-II Confidentiality

Theorem 2. Suppose that the hash functions Hi(i = 0, 1, 2, 3) are random
oracles. If there exists an adversary AII against the IND-CL-HSC-CCA2-II
security of the CL-HSC scheme with advantage a non-negligible ε, asking qsv

set-secret-value queries, qpkR public key replacement queries and qHi random
oracle queries to Hi (0 ≤ i ≤ 3), then there exist an algorithm C that solves
the EC − CDH problem with the following advantage ε

qsv qpkR 1 1
ε ≥ ε · (1 −) · (1 −) · () · ()

qH0 qH0 qH0 − qsv − qpkR qH1

Proof. A challenger C is challenged with an instance of the EC-CDH problem.
Given (P, aP, bP) ∈ Gq, C must find abP . Let AII be an adversary who is able
to break the IND-CL-HSC-CCA2-II security of the CL-HSC scheme. C can
utilize AII to compute the solution abP of the EC-CDH instance by playing
the following interactive game with AII . To solve the EC-CDH, C chooses s ∈R

15

� �

�

 � � �

� �

� � �

Z∗
q , sets the master public key Ppub = sP , where P is the generator of the group

Gq and the hash functions Hi(0 ≤ i ≤ 3) are treated as random oracles. The C
sends the system parameter Ω = {Fq, E/Fq, Gq, P, Ppub = sP, H0, H1, H2, H3}
and the master private key s to AII . In order to avoid the inconsistency
between the responses to the hash queries, C maintains lists Li(0 ≤ i ≤ 3)). It
also maintains a list Lk to maintain the list of issued private keys and public
keys. C can simulate the Challenger’s execution of each phase of the formal
Game. Let C select a random index t, where 1 ≤ t ≤ qH0 and fixes IDt as the
target identity for the challenge phase.

Phase 1: AII may make a series of polynomially bounded number of queries
to random oracles Hi(0 ≤ i ≤ 3) at any time and C responds as follows:

Create(IDi) queries: When AII submits a Create(IDi) query to C, C re­
sponds as follows:

•	 If IDi = IDt, C chooses ai, li ∈R Zq
∗ and sets H0(IDi, Ri, Pi) = li, computes

Ri = aiP , di = ai + li · s and the public key as Pi = aP . Here, C does
not know a. C uses the aP given in the instance of the EC-CDH problem. C
inserts (IDi, Ri, Pi, li) to the list L0 and (IDi, di, ⊥, Ri, Pi) to the list Lk.

•	 If IDi = IDt, C picks ai, xi, li ∈R Zq
∗, then sets H0(IDi, Ri, Pi) = li, com­

putes Ri = aiP , di = ai + li · s and the public key as Pi = xiP . C inserts
(IDi, Ri, Pi, li) to the list L0 and (IDi, di, xi, Ri, Pi) to the list Lk.

H0 queries: When AII submits a H0 query with IDi, C searches the list
L0. If there is a tuple IDi, Ri, Pi, li), C responds with the previous value li.
Otherwise, C chooses li ∈R Zq

∗ and returns li as the answer. Then, C inserts
(IDi, Ri, Pi, li) to the list L0.

H1 queries: When AII submits a H1 query with IDi, C checks whether
a tuple of the form (U, T, r · PB, IDB , PB) exists in list L1. If it exists, C
returns K to AII . Otherwise, it chooses K ∈R {0, 1}n and adds the tuple
(U, T, r · PB, IDB , PB , K) to the list L1, then returns K to AII .

H2 queries: When AII submits a H2 query with IDi, C checks whether a
tuple of the form (U, τ, T, IDA, PA, IDB , PB, hi, H) exists in the list L2. If it
exists, C returns H to AII . Otherwise, C chooses hi ∈R Zq

∗, adds the tuple
(U, τ, T, IDA, PA, IDB , PB, hi, H = hiP) to the L2 and returns H to AII .

H3 queries: When AII submits a H3 query with IDi, C checks whether a
tuple of the form (U, τ, T, IDA, PA, IDB, PB, hi, H) exists in the list L3. If it
exists, C returns H to AII . Otherwise, C performs the following:

•	 If IDA = IDt, C chooses hi ∈R Zq
∗, adds the tuple (U, τ, T, IDA, PA, IDB, PB, hi, H =

hiP) to the L3 and returns H to AII .
•	 If IDA = IDt, C chooses hi ∈R Z

∗, adds the tuple (U, τ, T, IDA, PA, IDB, PB, hi, H = q

16

� �

� �

� �

hi · bP) to the L3 and returns H to AII . Here, C knows bP but does not
know b. C uses the bP given in the instance of the EC-CDH problem.

Partial-Private-Key-Extract queries: When AII asks a Partial-Private­
Key-Extract query for IDi, C checks whether the corresponding partial private
key for IDi, di exists in the list Lk. If it exists, C returns di to AII . Otherwise,
C recalls Create(IDi) query to obtain di and returns di as the answer.

Set-Secret-Value queries: If AII asks a Set-Secret-Value query for IDi, C
answers as follows:

•	 If IDi = IDt, C aborts.
•	 If IDi = IDt, C looks from the tuple (IDi, di, xi, Ri, Pi) in the list Lk. If
such tuple exists in the Lk, C returns xi. Otherwise, C recalls Create(IDi)
query to obtain xi and returns xi as the answer.

Set-Public-Key queries: When AII asks Set-Public-Key query for IDi, C
searches the list Lk. If the public key for IDi, (Ri, Pi) is found in the Lk, C
returns (Ri, Pi) as the answer. Otherwise, C executes a Create(IDi) query to
obtain (Ri, Pi) and then returns (Ri, Pi) as the answer.

Public-Key-Replacement queries: When AII asks Public-Key-Replacement
query for IDi, C checks whether IDi = IDt. If IDi = IDt, C aborts. Other­
wise, C updates the corresponding tuple in the list Lk as (IDi, −, −, Ri, Pi),
where (Ri, Pi) is chosen by AII . The current public key(i.e. replaced public
key) is used by C for computations or responses to any queries made by AII .

Symmetric Key Generation queries: AII produces a sender’s identity
IDA, public key (RA, PA), the receiver’s identity IDB and public key (RB , PB)
then sends to C. Now, C computes the symmetric key K and an internal state
information ω, stores and keeps ω secret from the view of AII and sends the
symmetric key K to AII . C can perform this step without knowing the private
key corresponding to the sender IDA or the receiver IDB , because computing
K does not utilize the private key of either the sender or the receiver.

Key Encapsulation queries: AII produces an arbitrary tag τ , the sender’s
identity IDA, public key (RA, PA), the receiver’s identity IDB and public key
(RB , PB) then sends to C. C checks whether a corresponding ω value is stored
previously.

•	 If ω does not exist, C returns invalid.
•	 If a corresponding ω exists and IDA = IDt, then C computes ϕ with ω and
τ by using the actual Encapsulation algorithm, and deletes ω. Here, C gets
the full private key of the sender (dA, xA) from the list Lk.

•	 If a corresponding ω exists and IDA = IDt, then C computes ϕ by perform­
ing the following steps. (C does not know the secret value xt corresponding

17

� �

� � � �

�

�

� �

� �

� �

�

�

�

�

to IDt, so it should perform the encapsulation in a different way.):

P −1 RA − h−1
 · Choose r, hi, hi ∈R Zq

∗ and compute U = rP − hi
−1 · · i · hi · PA,

where RA and PA are obtained from the list Lk.

· Compute H = hiP and add the tuple (U, τ, T, IDA, PA, IDB, PB , hi, H)

to the list L2.

· Compute H = hiP and add the tuple (U, τ, T, IDA, PA, IDB, PB, hi, H)

to the list L3.

· Compute W = rH + li · s, where li is obtained from the list L0 and C

knows the master private key s.

· Output ϕ = (U, W) as the encapsulation.

We show that AII can pass the verification of ϕ = (U, W) to validate the

encapsulation, because the equality W · P = RA + H0(IDA, RA, PA) · Ppub +

H · U + H · PA holds as follows:

RA + H0(IDA, RA, PA) · Ppub + H · U + H · PA

= RA + li · sP + hiP · (rP − h−i
1 · P −1 · RA − h−i

1 · hi · PA) + hiP · PA

= RA + li · sP + hiP · rP − RA − hiP · PA + hiP · PA

= li · sP + hiP · rP

= li · sP + H · rP

= W · P

Key Decapsulation queries: AII produces an encapsulation ϕ, a tag τ , the
sender’s identity IDA, public key (RA, PA), the receiver’s identity IDB and
public key (RB , PB) to C.

•	 If IDB = IDt, then C computes the decapsulation of ϕ by using the actual
Decapsulation algorithm. Here, the full private key of the receiver (dB, xB)
is obtained from the list Lk.

•	 If IDB = IDt, then C computes K from ϕ as follows:
· Searches in the list L2 and L3 for entries of the type (U, τ, T, IDA, PA, IDB, PB, hi, H)
and (U, τ, T, IDA, PA, IDB, PB , hi, H) respectively.

· If entries H and H exist then C checks whether the equality W · P =
RA + H0(IDA, RA, PA) · Ppub + H · U + H · PA holds.

· If the above equality holds, then retrieves the corresponding value of T
from the lists L2 and L3. Both the T values should be equal.

·	 C checks whether a tuple of the form (U, T, U (= xB ·U), IDB, PB, K) exists

in the list L1. If it exists, then C checks whether U ·P = PB ·U . If the check

holds then C outputs the corresponding K value as the decapsulation of

ϕ.

Challenge: At the end of Phase 1, AII sends a sender identity IDA∗ and
a receiver identity IDB∗ on which AII wishes to be challenged to C. Here,
the secret value of the receiver IDB∗ was not queried in Phase 1. C aborts
the game if IDB∗ = IDt. Otherwise, C performs the following to compute the
challenge encapsulation ϕ∗ .

18

� �

�

�

� � �

�

�

�

�

�

•	 Set U = bP and computes T = dB∗ · U , where C knows the partial private
key for IDB∗, dB∗. Here, C does not know b. C uses the bP given in the
instance of the EC-CDH problem.

•	 Choose K0 ∈R K, where K is the key space of the CL-HSC scheme.
•	 Choose U ∈R Gq and compute K1 = H1(U, T, U , IDB∗, PB∗).
•	 Set ω∗ = (−, U, U , T, IDA∗, PA∗, RA∗, xA∗, dA∗, IDB∗, PB∗, RB∗).
• C chooses a bit δ ∈R {0, 1} and sends Kδ to AII .
• AII generates an arbitrary tag τ ∗ and sends it to C.
•	 Choose hi, hi ∈R Z∗, store the tuple (U, τ ∗, T, IDA∗, PA∗, IDB∗, PB∗, hi, H = q

hiP) to the list L2 and (U, τ ∗, T, IDA∗, PA∗, IDB∗, PB∗, hi, H = hiP) to the
list L3.

•	 Since C knows the private key of the sender IDA∗, C computes W = dA∗ +
hi · bP + hixA∗P .

• C sends ω∗ = (U, W) to AII .

Phase II: AII adaptively queries the oracles as in Phase I, consistent with the
constraints for a Type-II adversary. Besides this it cannot query decapsulation
on ω∗ .

Guess: Since AII is able to break the IND-CL-HSC-CCA2-II security of CL­
HSC (which is assumed at the beginning of the proof), AII should have asked
a H1 query with (U, T, U , IDB∗, PB∗) as inputs. Since IDB∗ is a target identity
IDt, PB∗ = aP . Here, aP was given as the instance of the EC-CDH problem
and C does not know a. Thus, computing U = xB∗U = abP is to find abP
when (P, aP (= PB∗), bP (= U)) ∈ Gq are given. Therefore, if the list L1 has
qH1 queries corresponding to the sender IDA∗ and receiver IDB∗, one of the
qH1 values of U stored in the list L1 is the solution for the EC −CDH problem
instance. C chooses one U value uniformly at random from the qH1 values from
the list L1 and outputs it as the solution for the EC − CDH instance.

Analysis: In order to assess the probability of success of the challenger C,
let E1, E2 and E3 be the events in which C aborts the IND-CL-HSC-CCA2-II
game.

•	 E1 is an event when AII queries the secret value of the target identity IDt.
The probability of E1 is Pr[E1] = qsv .

qH0

•	 E2 is an event when AII asks to replace the public key of the target identity
IDt. The probability of E2 is Pr[E2] = qpkR .

qH0

•	 E3 is an event when AII does not choose the target identity IDt as the re­
ceiver during the challenge. The probability of E3 is Pr[E3] = 1− 1 .

qH0 −qsv −qpkR

Thus, the probability that C does not abort the IND-CL-HSC-CCA2-II game
is

qsv qpkR 1
Pr[¬E1 ∧ ¬E2 ∧ ¬E3] = (1 −) · (1 −) · ()

qH0 qH0 qH0 − qsv − qpkR

19

� �

�

�

The probability that C randomly chooses the U from L1 and U is the solution
of EC −CDH is 1 . So, the probability that C finds the EC −CDH instance

qH1

is as follows:

qsv qpkR 1 1
Pr[C(P, aP, bP) = abP] = ε · (1 −) · (1 −) · () · ()

qH0 qH0 qH0 − qsv − qpkR qH1

Therefore, the Pr[C(P, aP, bP) = abP] is non-negligible, because ε is non-
negligible.

5.3 Type-I Unforgeability

Theorem 3. Suppose that the hash functions Hi(i = 0, 1, 2, 3) are random
oracles. If there exists a forger FI against the EUF-CL-HSC-CMA-I security
of the CL-HSC scheme with advantage a non-negligible ε, asking qC create
(IDi) queries, qE key-encapsulation queries, qHi random oracle queries to Hi

(0 ≤ i ≤ 3), qppri partial-private-key queries and qsv set-secret-value queries,
then there exists an algorithm C that solves the EC − CDH problem with the
following advantage ε

2 2 qH0 · qC qH2
qH3

1 1 qppri qsv
ε ≥ qE ·(1−)·(1−)·(1−)·(1+)·()·(1−)·(1−)·ε

q q q q qC qH0 qH0

Proof. A challenger C is challenged with an instance of the EC-CDH problem.
Given (P, aP, cP) ∈ Gq, C must find acP . Let FI be a forger who is able to
break the EUF-CL-HSC-CMA-I security of the CL-HSC scheme. C can utilize
FI to compute the solution abP of the EC-CDH instance by playing the follow­
ing interactive game with FI . To solve the EC-CDH problem, C sets the master
private/public key pair as (x = a, Ppub = aP), where P is the generator of the
group Gq and the hash functions Hi(0 ≤ i ≤ 3) are treated as random oracles.
The C sends the system parameter Ω = {Fq, E/Fq, Gq, P, Ppub, H0, H1, H2, H3}
to FI . In order to avoid the inconsistency between the responses to the hash
queries, C maintains lists Li(0 ≤ i ≤ 3)). It also maintains a list Lk to maintain
the list of issued private keys and public keys. C can simulate the Challenger’s
execution of each phase of the formal game.

Training Phase: FI may make a series of polynomially bounded number
of queries to random oracles Hi(0 ≤ i ≤ 3) at any time and C responds as
follows:
All the oracles and queries needed in the training phase are identical to those of
the Create(IDi) queries, H0 queries, H1 queries, H2 queries, H3 queries,

20

�

�

�

Partial-Private-Key-Extract queries, Set-Secret-Value queries, Public­
Key-Replacement queries, Symmetric Key Generation queries, Key
Encapsulation queries and Key Decapsulation queries in IND-CL-HSC­
CCA2-I game.

Forgery: Eventually, FI returns a valid encapsulation (τ, ω = (U, W), IDA, IDB)
on a arbitrary tag τ , where IDA is the sender identity and IDB is the receiver
identity, to C. If IDA = IDt, C aborts the execution of this game. Other­
wise, C searches the list L2 and outputs another valid encapsulation (τ, ω∗ =
(U, W ∗), IDA, IDB) with different h∗ such that h∗ = hi on the same τ as done i i

in forking lemma [21]. Thus, we can get W ·P = Rt−et ·Ppub+U ·hiPpub+Pt ·hiP
and W ∗ · P = Rt − et · Ppub + U · h∗

i Ppub + Pt · hiP . Let U = cP and Ppub = aP .
Then if we subtract these two equations, we get following value.
W ∗ · P − W · P = U · h∗

i Ppub − U · hiPpub

⇒ (W ∗ − W)P = U · (h∗
i − hi)Ppub

⇒ (W ∗ − W)P = cP · (h∗
i − hi)Ppub

⇒ (W ∗ − W) = c · (h∗
i − hi)Ppub

⇒ (W ∗ − W) · (h∗
i − hi)−1 = c · aP

Therefore, FI solve the EC − CDH problem as acP = W ∗−W
h∗
i −hi

using the algo­

rithm C for given a random instance (P, aP, cP) ∈ Gq.

Analysis: In order to assess the probability of success of the challenger C. We
assume that FI can ask qC create (IDi) queries, qE key-encapsulation queries
and qHi random oracle queries to Hi (0 ≤ i ≤ 3). We also assume that FI

never repeats Hi (0 ≤ i ≤ 3) query with the same input.

•	 The success probability of the Create(IDi) query execution is (1 −
qH
q
0)qC ≥

qH0 ·qC1 − .
q

2

)qH2
qqH2 H2•	 The success probability of the H2 query execution is (1 −

q ≥ 1 −
q .
2

)qH3
qqH3 H3•	 The success probability of the H3 query execution is (1 −

q ≥ 1 −
q .

•	 The success probability of the key encapsulation query execution is qE ≥
(1− 1)

q

qE · (1 + 1
q).

•	 The probability that IDi = IDt is 1 .
qC

•	 The probability that FI queries the partial private key of the target identity
is	 qppri IDt .

qH0

•	 The probability that FI asks to query the set secret value of the target
identity IDt is

qsv .
qH0

Thus, the success probability that C can win the EUF-CL-HSC-CMA-I game
is

2 2 qH0 · qC qH2
qH3

1 1 qppri qsv
ε	 ≥ qE ·(1−)·(1−)·(1−)·(1+)·()·(1−)·(1−)·ε

q q q q qC qH0 qH0

21

�

�

. Therefore, the probability that C computes the solution of EC − CDH
problem is non-negligible, because ε is non-negligible.

5.4 Type-II Unforgeability

Theorem 4. Suppose that the hash functions Hi(i = 0, 1, 2, 3) are random
oracles. If there exists a forger FII against the EUF-CL-HSC-CMA-II security
of the CL-HSC scheme with advantage a non-negligible ε, asking qC create
(IDi) queries, qE key-encapsulation queries, qHi random oracle queries to Hi

(0 ≤ i ≤ 3), qsv set-secret-value queries and qpkR public key replacement
queries, then there exist an algorithm C that solves the EC − CDH problem
with the following advantage ε

2 2 qH0 · qC qH2
qH3

1 1 qsv qpkR
ε ≥ qE ·(1−)·(1−)·(1−)·(1+)·()·(1−)·(1−)·ε

q q q q qC qH0 qH0

Proof. A challenger C is challenged with an instance of the EC-CDH problem.
Given (P, aP, bP) ∈ Gq, C must find abP . Let FII be a forger who is able to
break the EUF-CL-HSC-CMA-II security of the CL-HSC scheme. C can utilize
FII to compute the solution abP of the EC-CDH instance by playing the
following interactive game with FII . To solve the EC-CDH, C chooses s ∈R Z∗

q ,
sets the master public key Ppub = sP , where P is the generator of the group
Gq and the hash functions Hi(0 ≤ i ≤ 3) are treated as random oracles. The C
sends the system parameter Ω = {Fq, E/Fq, Gq, P, Ppub = sP, H0, H1, H2, H3}
and the master private key s to FII . In order to avoid the inconsistency
between the responses to the hash queries, C maintains lists Li(0 ≤ i ≤ 3)). It
also maintains a list Lk to maintain the list of issued private keys and public
keys. C can simulate the Challenger’s execution of each phase of the formal
Game.

Training Phase: FII may make a series of polynomially bounded number
of queries to random oracles Hi(0 ≤ i ≤ 3) at any time and C responds as
follows:
All the oracles and queries needed in the training phase are identical to those of
the Create(IDi) queries, H0 queries, H1 queries, H2 queries, H3 queries,
Partial-Private-Key-Extract queries, Set-Secret-Value queries, Public­
Key-Replacement queries, Symmetric Key Generation queries, Key
Encapsulation queries and Key Decapsulation queries in IND-CL-HSC­
CCA2-II game.

Forgery: Eventually, FII returns a valid encapsulation (τ, ω = (U, W), IDt, IDB)
on a arbitrary tag τ , where IDt is the sender identity and IDB is the receiver

22

 �

�

�

�

identity, to C. The public key of the sender IDt should not be replaced during
the training phase. The secret value of the target identity IDt should not be
queried during the training phase. C searches the list L3 and outputs another

�∗valid encapsulation (τ, ω∗ = (U, W ∗), IDt, IDB) with different h such that i
�∗hi = hi on the same τ as done in forking lemma[21]. Thus, we can get W ·P =

∗	 �∗Rt −et ·Ppub +U ·hiP +Pt ·hibP and W ·P = Rt −et ·Ppub +U ·hiP +Pt ·hi bP .
Then if we subtract these two equations, we get following value.

�∗ �
W ∗ · P − W · P = Pt · hi bP − Pt · hibP

�∗⇒ (W ∗ − W)P = Pt · (hi − hi) · bP
⇒ (W ∗ − W)P = aP · (hi ∗ − hi)] · bP
⇒ (W ∗ − W) = a · (h∗

i − hi) · bP
⇒ (W ∗ − W) · (h∗

i − hi)−1 = a · bP
W ∗−WTherefore, FII solve the EC − CDH problem as abP = using the
h∗
i −hi

algorithm C for given a random instance (P, aP, bP) ∈ Gq.

Analysis: In order to assess the probability of success of the challenger C. We
assume that FII can ask qC create (IDi) queries, qE key-encapsulation queries,
qHi random oracle queries to Hi (0 ≤ i ≤ 3), qsv set-secret-value queries and
qpkR public key replacement queries. We also assume that FII never repeats
Hi (0 ≤ i ≤ 3) query with the same input.

•	 The success probability of the Create(IDi) query execution is (1 −
qH
q
0)qC ≥

qH0 ·qC1 − .
q

2
qH2)qH2

H2• The success probability of the H2 query execution is (1 −
q ≥ 1 −

q

q .
2

qH3 H3• The success probability of the H3 query execution is (1 −
q)

qH3 ≥ 1 −
q

q .
• The success probability of the key encapsulation query execution is qE ≥

(1− 1)
q

qE · (1 + 1
q).

• The probability that IDi = IDt is q
1
C
.

• The probability that FII queries the secret value of the target identity IDt
qsvis .
qH0

•	 The probability that FII asks to replace the public key of the target identity
is qpkR IDt .

qH0

Thus, the success probability that C can win the EUF-CL-HSC-CMA-II game
is

2 2 qH0 · qC qH2
qH3

1 1 qsv qpkR
ε ≥ qE ·(1−)·(1−)·(1−)·(1+)·()·(1−)·(1−)·ε

q q q q qC qH0 qH0

. Therefore, the probability that C computes the solution of EC − CDH
problem is non-negligible, because ε is non-negligible.

23

6	 Conclusions

In this report we first proposed a CL-HSC (Certificateless Hybrid Signcryp­
tion) scheme without pairing operations and provided its formal security. Our
CL-HSC scheme is satisfied with confidentiality and unforgeability against
Type I and Type II adversaries. Our scheme is also adopted to use ECC (El­
liptic Curve Cryptography). Thus, our scheme has the benefit of ECC keys
defined on an additive group with a 160-bit length as secure as the RSA keys
with 1024-bit length. Therefore, our CL-HSC scheme can be practically ap­
plied into encryption key management for Advanced Metering Infrastructures
or Wireless Sensor Networks.

References

[1]	 A.W.Dent, Hybrid signcryption schemes with outsider security, Information
Security and Privacy, 2005.

[2]	 A.W.Dent, Hybrid signcryption schemes with insider security, ACISP 2005, pp.
253-266, 2005.

[3]	 J.H.An, Y.Dodis and T.Rabin, On the security of joint signature and
encryption, EUROCRYPT 2002, pp. 83-107, 2002.

[4]	 Y.Dodis, M.J.Freedman, S.Jarecki and S.Walfish, Versatile padding schemes for
joint signature and encryption, CCS 2004, pp. 344-353, 2004.

[5]	 J.Malone-Lee and W.Mao, Two birds one stone: Signcryption using RSA, CT­
RSA 2003, pp. 211-225, 2003.

[6]	 Barreto, P.S.L.M., Libert, B., McCullagh, N. and Quisquater, J.-J., Efficient
and provably-secure identity-based signatures and signcryption from bilinear
maps, ASIACRYPT 2005, pp. 515-532, 2005.

[7]	 Chen, L. and Malone-Lee, J., Improved identity-based signcryption, PKC 2005,
pp. 362-379, 2005.

[8]	 Barbosa, M. and Farshim, P., Certificateless signcryption, ASIACCS 2008, pp.
369-372, 2008.

[9]	 Chow, S.S.M., Yiu, S.-M., Hui, L.C.K. and Chow, K.P., Efficient forward and
provably secure id-based signcryption scheme with public verifiability and public
ciphertext authenticity, ICISC 2003, pp. 352-369, 2004.

[10] Libert, B. and Quisquater, J.-J., Efficient signcryption with key privacy from
gap diffiehellman groups, PKC 2004, pp. 187-200, 2004.

24

[11] Selvi, S.S.D., Vivek, S.S., Shukla, D. and Rangan Chandrasekaran, P., Efficient
and provably secure certificateless multi-receiver signcryption, ProvSec 2008, pp.
52-67, 2008.

[12] S.	 Al-Riyami and K. Paterson, Certificateless public key cryptography,
ASIACRYPT 2003, Vol. 2894, pp. 452-473, 2013.

[13] Y.	 Zheng, Digital signcryption or how to achieve cost (Signature and
encryption) << cost(Signature) + cost(Encryption), Crypto 1997, Vol. 1294,
pp. 165-179, 1997.

[14] S. Sharmila Deva Selvi, S. Sree Vivek and C. P.Rangan,	 Certificateless KEM
and Hybrid Signcryption Scehems Revisited, ISPEC 2010, pp. 294-307, 2010.

[15] F. Li, M. Shirase and T. Takagi,	 Certificateless hybrid signcryption, ISPEC
2009, pp. 112-123, 2009.

[16] A. Shamir, Identity-based cryptosystems and signature schemes, CRYPTO 84,
pp. 47-53, 1985.

[17] V.S.Miller, Use of elliptic curves in cryptography, Crypto 85, pp. 417-426, 1985.

[18] N.Koblitz,	 Elliptic curve cryptosystem, Journal of Mathematics of
Computations, Vol. 48, no. 177, pp. 203-209, 1987.

[19] D.Hankerson,
A.Menezes and S.Vanstone, Guide to Elliptic Curve Cryptography, Springer-
Verlag, 2004.

[20] P.	 Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, R. Dahab, NanoECC:
Testing the Limits of Elliptic Curve Cryptography in Sensor Networks, WSN,
LNCS 4913, pp. 305-320, 2008.

[21] D. Pointcheval and J. Stern, Security arguments for digital signatures and blind
signatures, Journal of Cryptology, vol. 13, no. 3, pp. 361-396, 2000.

25

