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Abstract—Access control mechanisms and Privacy Protection Mechanisms (PPM) have been proposed for data streams. The 
access control for data stream allows roles access to tuples satisfying an authorized predicate sliding-window query. When the 
sensitive stream data is shared without a PPM the privacy can be compromised. The PPM meets privacy requirements, e.g., 
k-anonymity or l-diversity by generalization of stream data. This imprecision introduced by generalization can be reduced by 
delaying the publishing of stream data. However, the delay in sharing the stream tuples to achieve better accuracy can lead 
to false negatives if the tuples slide out of the window when a sliding-window query predicate is evaluated for access control 
mechanism. 
To set a threshold on the loss of precision, access control mechanism defines the imprecision bound for each query. The 
challenge is to optimize the time duration for which the stream data is held by PPM so that the imprecision bounds for the 
maximum possible number of queries are met. In our formulation of the aforementioned problem we present the hardness results, 
provide an anonymization algorithm, and conduct experimental evaluation of the proposed algorithm. Experiments demonstrate 
that the proposed heuristic provides better precision as compared to the minimum or maximum delay heuristics. 

Index Terms—Privacy, k-anonymity, Access Control, Data Stream. 

+ 

1 INTRODUCTION 

DATA Stream Management Systems (DSMS) have 
been proposed to process transactional data, e.g., 

internet traffic, health monitoring, and sensor net­
works [1], [2]. Continuous queries on a data stream 
can be used to define real-time alerts for event detec­
tion [3]. Access control mechanisms for data streams 
ensure that only the authorized parts of the stream 
are available to each user or role [4], [5]. The objects 
to be protected under the access control mechanism 
are the queries or views of the data stream [5]. If 
the sensitive information in a data stream is not 
privacy protected, then the privacy of a person can be 
compromised even in the presence of access control. 
The well-known privacy preservation techniques of 
k-anonymity [6] and l-diversity [7] have also been 
used for privacy protection of data streams [8], [9]. 
However, to the best of our knowledge, precision-
bounded access control along with privacy protection 
has not been investigated before for data streams, 
which is the focus of this paper. 

The attribute values in the data stream tuples can be 
generalized to satisfy the given privacy requirements. 
Attribute data generalization introduces imprecision 
in the query results for access control mechanism. This 
imprecision can be reduced if the publishing of stream 
data is delayed. However, the delay introduces false 
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negatives in the query results if the tuples satisfying 
the query predicate have not been made available to 
the access control mechanism at the instance of query 
evaluation. 

Example 1 (Motivating Scenario). Syndromic surveil­
lance systems have been developed by state and 
federal agencies to detect and monitor public health 
emergencies [10], [11]. The emergency department 
data (age, gender, location, time of arrival, symptoms, 
etc.) from county hospitals is collected and is sent to 
the department of health at the state level after every 
hour [11]. The surveillance data stream is classified 
into syndrome categories and is anonymized by the 
state department of health and is then shared with 
departments of health at each county. 

An role based access control policy is given in 
Figure 1. Role SE is above roles CE1 and CE2 in the 
role hierarchy and can execute all the permissions 
allowed to roles CE1 and CE2. This policy allows 
the users to execute the authorized queries on the 
data stream, e.g., Role CE1 can execute queries under 
Permission P1 over the stream data in a 24-hour 
window with a slide of 4 hours (i.e., updated every 
four hours). The Temporal Constraint (TC) T1 defines 
a sliding window (size = 24 hours, slide = 4 hours) 
of stream data upon which the query can execute. 
Permissions under an access control policy ensure 
that only the authorized part of the data stream 
is available to each user. The flu season starts in 
October, peaks around February, and lasts till April 
each year [12]. The epidemiologists at the state and 
county levels suggest community containment mea­
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sures, e.g., isolation or quarantine according to the 
number of persons infected in case of a flu outbreak. 
Depending upon the population density of a county, 
an epidemiologist can advise isolation if the number 
of persons reported with influenza are greater than 
1000, or quarantine if the number is greater than 3000 
during the last 24-hour window. The anonymization 
adds false positives to the query window and the 
precision can be improved by delaying the stream 
data. However, the delay adds false negatives for the 
queries (when a tuple satisfying the query has not 
been shared). The imprecision bound for each sliding-
window query ensures that results are within the 
required tolerance at the time of query evaluation. 
The total imprecision for a query is the sum of false 
positives and false negatives. The high rate of false 
positives will cause unnecessary false alarms for the 
containment measures, while the high rate of false 
negatives will result in missed event detection. 

SE
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CE1 CE2

P1 P2

County 2 EpidemiologistCE2
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Authorized Query Predicate

P1
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TypeTC Definition
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Fig. 1. Access control policy 

The contributions of the paper are as follows. First, 
we introduce the concept of precision-bounded access 
control for privacy-preserving data streams. Second, 
we formulate the Precision-bounded Access Control 
for privacy-preserving data strEams (PACE) problem 
and give hardness results. Third, we propose a heuris­
tic for an approximate solution of the PACE problem 
and conduct empirical evaluation. 

The rest of this paper proceeds as follows. In Sec­
tion 2, relevant background is discussed. The problem 
formulation and definitions are presented in Section 3. 
Section 4 covers the proposed total imprecision min­
imization heuristic for multidimensional partitioning 
of stream data to satisfy imprecision bounds of predi­
cate sliding-window queries. Experimental results are 
in Section 5. The related work is presented in Section 6 
and Section 7 concludes the paper. 

2 BACKGROUND 

Given a stream T [i] = {ID, T S, A1, A2, . . . , Ad, SA}, 
where ID is an identity attribute, TS is a time-stamp 
attribute that represents the arrival time of a tuple, Aj 

is a Quasi Identifier (QI) attribute, SA is the sensitive 

attribute, d is the number of QI attributes, and, i is 
the current time-stamp. T [i] represents all the data 
stream tuples that have arrived till the time instance 
i. The identity attribute (e.g., social security number) 
can uniquely identify an individual in a data stream. 
QI attributes (e.g., address, age) can be used with 
the background information to identify an individual 
even if the identity attribute has been suppressed [6]. 
If the sensitive attribute SA is associated with a 
unique individual, it will result in a privacy violation. 

2.1 Anonymity Definitions 

k-anonymity [6] for streaming data has been pro­
posed by Cao et al. [8] and Zhou et al. [9]. It has 
been suggested to suppress the TS attribute in the 
anonymized stream for privacy protection. However, 
with respect to access control over streaming data, the 
TS attribute is required for the evaluation of sliding-
window queries. We propose that the generalized 
time-stamp value for each equivalence class must be 
included in the anonymized stream. The time-stamp 
attribute is a quasi-identifier attribute as knowing the 
time-stamp value for a person in a relational stream 
data can allow to find the associated sensitive value 
and violate privacy of that person. 

Definition 1 (Equivalence Class (EC)). An equiva­
lence class is a set of tuples having the same QI 
attribute and time-stamp values. 

Definition 2 (Stream ks-anonymity Property [9]). A 
data stream T p[i] satisfies the ks-anonymity property 
if each published equivalence class has k or more 
tuples and if t1.ID = t2.ID then EC(t1)  EC(t2)= 
for any t1, t2 ∈ T [i]. 

Here, T p[i] is the anonymized view of the stream 
data that has been published till time instance i. In 
T p[i], the identity attribute is suppressed, the QI and 
the time-stamp attribute values are generalized and 
the sensitive attribute is published. The time-stamp 
attribute gives the arrival time of a tuple t ∈ T [i] and 
the delay in the publishing is equal to t.TS - t.PUB, 
where t.PUB is the time when a tuple is published 
(i.e., is added to T p[i]). The second part of the stream 
ks-anonymity definition sets the constraint that each 
equivalence class must have tuples with different ID’s. 
In the case of a data stream, multiple tuples (≥ ks) can 
be received from the same person/ID in a short span 
of time. Without the above constraint, the tuples with 
the same ID can be put into the same equivalence 
class without any generalization resulting in a high 
probability of privacy violation. l-diversity counters 
the homogeneity attacks possible against k-anonymity 
when all the tuples in an equivalence class have the 
same sensitive attribute value. 

Definition 3 (Stream ls-Diversity Property). A data 
stream T p[i] satisfies the ls-diversity property if each 
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equivalence class has at least l distinct values of the 
sensitive attribute and if t1.ID = t2.ID then EC(t1) = 
EC(t2) for any t1, t2 ∈ T [i]. 

In the case of sensitive numeric attributes, if the 
numeric values in an equivalence class are close to 
each other, an ls-diverse equivalence class can still 
leak private information. Variance diversity [13] and 
t-closeness [14] have been proposed to protect privacy 
against such a threat. The stream variance diversity is 
defined as follows: 

Definition 4 (Stream Variance Diversity). A data 
stream T p[i] is variance diverse if the variance Vs(EC) 
of each published equivalence class satisfies Vs(EC) 
≥ vs, where vs is the data stream variance diversity 
parameter and if t1.ID = t2.ID then EC(t1) = EC(t2) 
for any t1, t2 ∈ T [i]. 

Definition 5 (Delay Constraint). The delay constraint, 
denoted by δ, is the maximum delay before which a 
tuple is required to be published. 

The delay constraint can be set according to the 
temporal guarantees required by the streaming data 
application on the availability of the anonymized 
tuples. The time constraint set by δ ensures that the 
delayed tuples eventually get published. The delay 
constraint can also be set based on storage limitations 
of the system anonymizing sensitive stream data. 
T h[i] is the set of tuples from T [i] that are put on 

hold and are still to be anonymized at time instance i. 
Figure 2(a) gives the data stream tuples T [4] received 
till time instance 4, and Figure 2(b) gives the corre­
sponding anonymized data stream T p[4]. The data 
stream in Figure 2(a) does not satisfy k-anonymity 
because knowing the age and zip code of a person 
allows associating a disease to that person. The data 
stream T p[4] in Figure 2(b) is 2-anonymous and 2­
diverse. The tuples T h[4] in Figure 2(c) are on hold 
and are still waiting to be published. 

2.2 Stream Query Model 
Predicate window queries have been proposed for 
streaming data management systems [15], [16]. Other 
types of queries on streaming data are the snapshot 
query [17] and the landmark query [18]. The sliding 
window query is defined by two parameters: 1) Range 
that defines the size of query window and 2) Slide that 
defines the step by which the window moves [15], 
[18], [19]. If the slide of the window is less than 
the range, then the sliding query windows overlap. 
Otherwise, if the slide is equal to the range, then the 
windows are non-overlapping and are also known 
as tumbling windows. The sliding-window query can 
be either tuple-count sliding-window or time-sliding­
window [1]. In this paper, we consider time-sliding­
window queries. The predicate sliding-window query 
is evaluated at the end of the window size and then 
the window slides by the step size. 
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Fig. 2. Generalization of streaming data for k-
anonymity and l-diversity 

2.3 Role Based Access Control (RBAC) 
Definition 6 (RBAC Policy). An RBAC policy ρ is a 
tuple (U, R, P, UA, P A, RH), where 

U is a set of users, R is a set of Roles, P is a 
set of Permissions, RH is a Role Hierarchy that is a 
partial order on roles, UA is a user-to-role assignment 
relation, and RA is a role-to-permission assignment 
relation [20]. Role-based Access Control (RBAC) for 
data streams has been proposed by Carminati et 
al. [5], [21]. Permissions under P are the sliding-
window query predicates that define the authorized 
view of the data stream. 

3 STREAM ANONYMIZATION WITH IMPRECI­
SION BOUNDS 

In this section, we give definitions for the impreci­
sion, imprecision bound, average query bound vi­
olation, and formulate the problem of Precision-
bounded Access Control for privacy-preserving data 
strEams (PACE). 

3.1 Predicate Evaluation and Imprecision 
A predicate sliding-window query is evaluated over 
a data stream, say T [i], by including all stream tuples 
that satisfy the query predicate. We define predicate 
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evaluation over an anonymized data stream T p[i] as 
follows. We adhere to the same semantics suggested 
in [13], [22], i.e., include all tuples in equivalence 
classes that overlap the query predicate range. We 
will further refer to query evaluation under these 
semantics as the Overlap semantics. Access control 
using the overlap semantics provides access to more 
anonymized tuples than authorized. For strict ac­
cess control enforcement, another semantics can be 
used for query evaluation, i.e, include all tuples in 
equivalence classes that are fully enclosed inside the 
query predicate range. This semantics will be further 
referred to as the Enclosed semantics. The definitions 
in the following paragraphs and the anonymization 
algorithm in Section 4 follow the Overlap semantics. 

Definition 7 (False-Positive Tuple). A tuple is a false-
positive when it does not satisfy the sliding-window 
query predicate at the time instance of query evalua­
tion but is included in the query result as the equiv­
alence class in T p[i] that contains the tuple overlaps 
the query predicate. 

The number of False-Positive (FP) tuples in the 
result of a predicate sliding-window query, say Qj [i], 
at any time instance i, is as follows: 

FPQj [i] = |Qj (T p[i])| − |Qj (T [i] − T h[i])|, where (1) 

 
|Qj (T p[i])| = |EC|

EC overlaps Qj 

A published partition can add a false-positive tu­
ple to a predicate sliding-window query due to a 
spatial overlap (QI attributes), temporal (time-stamp 
attribute) overlap, or both temporal and spatial over­
laps. 

Definition 8 (False-Negative Tuple). A tuple is a 
false-negative when it satisfies the predicate sliding-
window query at the time instance of query evalu­
ation but is not included in the query result due to 
being on hold. 

The number of False-Negative (FN) tuples for a 
query, say Qj [i], evaluated at time instance i, is as 
follows: 

FNQj [i] = |Qj (T h[i])| (2) 

If the publishing delay is increased, the false-
positives will reduce because equivalence classes with 
less imprecision can be formed but the number of 
false-negatives will increase. 

Definition 9 (Sliding-Window Query Imprecision). 
Query imprecision is defined as the total sum of false-
positives and false-negatives for a predicate sliding-
window query evaluated on an anonymized stream 
T p[i] at any given time instance i. The imprecision for 

query Qj [i] evaluated at time instance i is denoted by 
impQj [i] and is equal to the sum of false-positives and 
false-negatives. 

impQj [i] = FPQj [i] + FNQj [i] (3) 

Here, Query Qj [i] is evaluated over T p[i] by includ­
ing all the tuples in equivalence classes that overlap 
the query region and T h[i]. 

Example 2. The two-dimensional representation for 
the quasi-identifier attributes of the anonymized data 
stream in Figure 2 is given in Figure 3. The rectangles 
with solid lines represent Query Q1 and Q2. The rect­
angles with dotted lines represent partitions (equiv­
alence class). Assume that Query Q2[4] is evaluated 
at time instance 4. There is one false-positive Tuple 
A for Q2[4] as Partition P1 and P2 overlap the query. 
The false-negative tuple for Q2[4] is Tuple H as that 
tuple is still to be published and has not joined any 
equivalence class. 
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Fig. 3. Query evaluation over an anonymized data 
stream 

Definition 10 (Query Imprecision Bound). The query 
imprecision bound, denoted by BQj [i], is the total im­
precision acceptable to a query predicate Qj [i] by the 
access control mechanism when the sliding-window 
query predicate is evaluated at time instance i. 

A query violates the imprecision bound when, at 
the time of query evaluation, the total imprecision 
is more than the imprecision bound. For a sliding-
window query, the query evaluation takes place at 
each step and hence we define the average query 
bound violation as follows: 

Definition 11 (Average Query-bound Violation). The 
Average Query-bound Violation (AQV) for a query Qj 

is the average number of times the query imprecision 
bound is violated over a given time period. 

VQjAQVQj = (4)
NQj 

where NQj is the number of steps Query Qj has 
taken till the current time instance and VQj is the 
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number of times the imprecision bound is violated 
on these steps. 

Example 3. Consider a sliding-window query, say Q1, 
that has taken 10 steps during a given time interval. 
At each query step, the query imprecision is evaluated 
and the imprecision value violates the imprecision 
bound at 4 of these steps. The average query bound 
violation for Q1 is then 0.4 (4/10). Consider another 
query, say Q2, that has taken 20 steps during the same 
time interval and the imprecision bound is violated at 
6 of these steps. The average query bound violation 
for Q2 is then 0.3 (6/20) and, on average, Q2 has better 
accuracy than that of Q1. 

Definition 12 (Tuple Arrival Rate). The data stream 
tuple arrival rate, denoted by λ, is the number of 
tuples received in a given time instance. 

Intuitively, a higher tuple arrival rate translates into 
less imprecision as more tuples are available to form 
equivalence classes with fewer false-positives. 

3.2 The PACE Problem 

The Precision-bounded Access Control for privacy-
preserving data strEams (PACE) problem is defined 
as follows: 

Definition 13 (The PACE Problem). Given a data 
stream T [i], a set of predicate sliding-window 
queries Q, and privacy parameter ks, the Precision-
bounded Access Control for privacy-preserving 
data strEams (PACE) problem is to generate an 
anonymized stream T P [i] such that the average query 
bound violation sum for all queries q ∈ Q is mini­
mized. 

The optimal k-anonymity problem has been shown 
to be NP-complete for generalization [23]. The hard­
ness result for the PACE problem follows the construc­
tion of LeFevre et al. [24] that shows the hardness of 
k-anonymous multi-dimensional partitioning with the 
smallest average equivalence class size. The decision 
problem for k-anonymous partitioning while satisfy­
ing the query imprecision bounds for relational data 
has been shown to be NP-complete [22]. 

For the decision version of the problem, we con­
sider a single time instance and a set of queries q ∈ Q. 
The data stream tuples received at that time instance 
can be transformed into an equivalent set of distinct 
(tuple, count) pairs. All the queries are evaluated at 
this time instance. The constant qv defines an upper 
bound for the sum of the average query bound vi­
olation for all predicate sliding-window queries. The 
tuples received can either be published as partitions 
or can be put on hold. The decision version of the 
PACE problem is as follows: 

Definition 14 (The Decisional PACE Problem). Given 
a set t ∈ T of unique (tuple, count) pairs received at 

a given time instance and a set of sliding-window 
queries q ∈ Q with imprecision bounds Bq , does 
there exist a multidimensional partitioning for T such 
that every published multidimensional region Ri ine 
T p, t∈Ri 

count(t) ≥ ks and sum of average query 
bound violation for all queries is less than the positive 
constant qv? 

Theorem 3.1. Decisional PACE problem is NP-complete. 

Proof: Refer to Appendix A. 

3.3 Precision-bounded Access Control for 
Privacy-preserving Data Streams 

A precision-bounded access control framework for 
privacy-preserving data streams is proposed(refer to 
Figure 4). The privacy protection mechanism ensures 
that the privacy and precision goals are met before 
the sensitive stream data is made available to the 
access control mechanism. The access control policy 
administrator defines sliding-window queries that de­
fine the authorized view of the data stream for each 
role. The Privacy Protection Mechanism (PPM) uses 
generalization of stream data tuples to anonymize and 
satisfy the given privacy requirement. The generaliza­
tion adds uncertainty and precision of the authorized 
view is reduced. The uncertainty due to generalization 
can be reduced by delaying the stream tuples and 
forming equivalence classes with less imprecision. 
However, the delay introduces false-negatives if the 
stream tuples belonging to the authorized view are 
being held by PPM. The access control policy adminis­
trator provides the imprecision bound for each query 
and PPM is required to ensure that at the time of 
query evaluation the sum of false-negatives and false-
positives is less than the imprecision bound. 

Reference
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User/Role

Permissions

Anonymized 

Stream

Privacy Protection 

Module

Sensitive 

Data 

Stream

Privacy 

Requirements

Imprecision 

Bounds

Access Control Mechanism (RBAC)

Privacy Protection Mechanism

Data on hold 

Fig. 4. Precision-bounded access control for privacy-
preserving data streams 

The purpose of access control is to ensure that 
each user accesses only authorized information. False-
positives due to generalization under the overlap 
semantics mean that access is being provided to 
unauthorized tuples. False-negatives although deny 
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access to the authorized information but ensure that 
the access control policy is not being violated. The 
reference monitor can be set for relaxed access control 
enforcement using the overlap semantics or strict 
access control enforcement using the enclosed seman­
tics. For the overlap semantics, the reference monitor 
may deny access to a permission if false-positives are 
more than a desired threshold. 

3.4 Probabilistic Analysis for Query Bound Viola­
tion 
A precision-bounded access control framework for 
privacy-preserving data streams has been presented 
in Section 3.3. The access control policy administrator 
sets the imprecision bound for each predicate sliding-
window query and requires that the imprecision 
bound for the least number of queries is violated 
by the PPM. The policy administrator might revise 
the imprecision bounds for the queries if it is known 
that the probability of satisfying the bound of large 
number of queries at any time instance is very low. 
From this perspective, we are interested in answering 
the following questions: 
•	 What is the probability that the number of queries 

violating imprecision bounds is less than a given 
threshold or is in a given range at any given time 
instance? 

•	 How long it takes for the sum of average query-
bound violation for all queries to reach a steady-
state value? 

Let X1[j], . . . , Xn[j] be a set of independent ran­
dom variables such that Pr(Xi[j] = 1) = pi and 
Pr(Xi[j] = 0) = 1 − pi, where 0 ≤ pi ≤ 1. Xi[j] is a 
random variable that is equal to 1 if a sliding-window 
query say, Qi (size = w and step = 1) evaluated at time 
instance j violates the imprecision bound, otherwise 
is equal to 0. The step size for all n queries is 1. Thus, 
all queries are evaluated at each time instance. The 
number of queries violating imprecision bounds at entime instance j is X[j] = Xi[j]. X1[j], . . . , Xn[j]i=1 
at each time instance are called Poisson trials and 
follow a Poisson binomial distribution. The expected 
number of queries violating the imprecision bound enat time instance j is E[X[j]] = µ = [25].i=1 pi 
Dependency exists among the sliding-window queries 
evaluated at each time instance but for our analysis 
we assume that they are independent. 

By the law of large numbers, the difference be­
tween the actual and expected values for a random 
process decreases as the number of trials increases. 
Formally, for a set of independent non-identically dis­
tributed random variables X1[j], . . . , Xn[j] and X[j] = e	 ejn 1Xi[j], the sample average µ̄ = X[i] ati=1	 j i=1 
time j, converges to the expected value µ = E[X[j]] as 
j approaches ∞ [26]. The sample average µ̄ for a large 
number of samples can be used to answer the first 
question: What is the probability that the number of 

sliding-window queries violating bounds is less than 
a given threshold? We use the Hoeffding/Chernoff 
bound [27] for the Poisson trials as given in Lemma 3.2. 

Lemma 3.2. Let X1[j], . . . , Xn[j] be an independent Pois­enson trial at time instance j, then for X[j] = Xi[j],i=1 
µ = E[X[j]], and 0 < E ≤ 1, we have 

− µ 
2 

2Pr[X[j] < (1 − E)µ] < e (5) 

The E value is set according to the required thresh­
old. However, in order to use Lemma 3.2 we would 
like to know the sample size that would give a high 
probability of |µ̄−µ| being smaller than some constant 
x. We give Theorem 3.3 to find S, the sample size, such 
that |µ̄− µ| < x for a given probability. The proof for 
Theorem 3.3 is similar to the proof of the generalized 
pairwise-independent sampling theorem [28]. 

Theorem 3.3. Let X1[j], . . . , Xn[j] be an independent 
Poisson trial at time instance j. Xi[j] is a random variable 
that is 1 if a sliding-window query say, Qi (with size 
= w and step = 1) that is evaluated at time instance 
j violates the imprecision bound, otherwise Xi[j] is 0. enThe Var[Xi] ≤ b for b ≥ 0, X[j] = Xi[j],eS	

i=1 
1 µ̄ = X[i], µ = E[X[j]], and x > 0, we have S i=1 

bn 
S ≥	 (6)

Pr[|µ̄− µ| > x]x2 

Proof: Refer to Appendix A. 

Example 4. Suppose that for 500 predicate sliding-
window queries (i.e., n=500) the tolerance for µ̄ is x = 
2.5 and we want our estimate to be within tolerance 
with a 95% probability. The Var[Xi] is equal to pi(1 − 
pi) and the maximum value b of pi in the interval 

10 ≤ pi ≤ 1 occurs for pi = . From Equation 6, we 2 
get a sample size of 800, which means that when 800 
time-stamps have elapsed, there is a 95% probability 
that |µ̄− µ| < 2.5. 

The Poisson binomial distribution for a large number 
of samples can be approximated by a normal dis­
tribution of sample mean µ̄ and standard deviation 
σ̄ by the central limit theorem [29]. The cumulative 
distribution function of the approximate normal dis­
tribution can then be used to find the probability 
that the number of queries violating the imprecision 
bounds is in a given range at any time instance. 

4 ALGORITHM FOR PRECISION-BOUNDED 
ANONYMIZATION 

Cao et al. [8] have proposed a clustering algorithm for 
anonymization of a data stream. Another approach 
proposed by Zhou et al. [9] uses an R-tree [30] based 
algorithm to anonymize. The stream tuples are added 
to leaf nodes in an R-tree with a constraint that each 
node should have between k to 2k tuples. When a 
leaf node is published, that node is removed from 
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the R-tree. The proposed heuristic listed in Algorithm 
1 can be applied to both techniques for a given 
predicate sliding-window query workload. We follow 
the approach suggested by Zhou et al. but use an 
R+-tree [31] instead of an R-tree. The R+-tree-based 
anonymization algorithm for relational data has been 
proposed by Iwuchukwu et al. [32]. When the tuples 
are added to an R+-tree, the leaf nodes and interme­
diate nodes are non-overlapping [32]. This condition 
can be maintained in case of data streams under the 
assumption that the stream tuple identity value is not 
repeated within the maximum delay. However, if the 
tuple identity value is repeated, then according to the 
data stream ks-anonymity definition, the tuple cannot 
be put into the same leaf node. Adding that tuple to 
any other leaf node will create an overlapping leaf 
node. It is observed in the experiments in Section 5 
that better accuracy can be achieved by maintain­
ing non-overlapping leaf nodes and by setting the 
maximum delay such that the existing leaf nodes are 
published before any duplicate tuple is received. 

An R+-tree-based index is maintained at the PPM. 
The data stream tuples in T are first added to the ac­
tive R+-tree at each time instance. Then, the decision 
to publish each leaf node (equivalence class) is taken. 
For a leaf node in the active R+-tree, the expected 
false-positives and the expected false-negatives are 
defined as follows. 

Definition 15 (Expected False-Positives (EF P )). The 
Expected False-Positives for a leaf node partition P 
(EF PP , for short) is defined as the sum of false-
positives for all queries resulting from Partition P if 
the partition is published at the current time instance. 

EF PP = |P − Qj | (7) 
Qj ∈Q 

In Equation 7 above, the minus sign denotes the set 
difference operation that gives the data stream tuples 
that are inside the partition but are outside the region 
defined by the predicate sliding-window query Qj . 

Definition 16 (Expected False-Negatives (EF N )). The 
Expected False-Negatives for a leaf node partition P 
(EF NP , for short) is defined as the sum of false-
negatives for all queries that will be evaluated at 
the next time instance resulting from Partition P if 
the partition is held by the PPM at the current time 
instance. 

EF NP = |Qj (P )| (8) 
Qj ∈Q 

In Equation 8 above, only those sliding-window 
queries add false-negatives that will be evaluated in 
the next time instance. 

A leaf-node in the R+-tree can either contribute 
false-positives (if published) or false-negatives (if 
held) to the sliding-window queries. Therefore, we 

choose the option that contributes less imprecision for 
all queries from a partition. This means that a leaf-
node partition can be held in the active R+-tree till 
the time when EF PP becomes smaller than EF NP . 
We further define wFP and wFN as weights where 
0 < wFP , wFN ≤ 1. The weight assignment should 
be done according to requirements of the application, 
e.g., wFP can be set less than 1 for an application 
sensitive to false-negatives. 

The Total Imprecision Minimization (TIM) algo­
rithm is listed in Algorithm 1. The active R+-tree 
is initialized in Line 1. In the for loop in Lines 2­
5, at each time instance, the tuples arriving in data 
stream T are added to the active R+-tree and the 
leaf nodes are split if the size of a leaf node is 
greater than 2ks. The leaf nodes are split along the 
median in the dimension having the least expected 
false-positives. The for loop in Lines 6-9 checks all 
the leaf nodes of the active R+-tree. If the expected 
false-negatives by holding a leaf node are more than 
the false-positives by publishing the node, then the 
node is published as an equivalence class. For wFP = 
wFN , the sum of false-negatives for all queries will 
always be greater than total false-positives because 
until a partition is published, it only adds false-
negatives. Access control enforcement under the over­
lap semantics can be adjusted to set a preference for 
lower false-positives (wFP > wFN ) or lower false-
negatives (wFN > wFP ). The same algorithm can be 
used to satisfy the privacy requirements of ls-diversity 
and variance diversity by publishing the leaf nodes 
only when they meet the privacy condition. 

Algorithm 1: Total imprecision minimization 
Input : T , ks, Q, and BQj 

Output: EC1, EC2, . . . 
1 Initialize the active R+-tree 
2 for (each tm ∈ T arriving at time instant i) do 
3 Add Tuple tm to the active R+-tree 
4 if (size of leaf node > 2ks) then 
5 Split the leaf node 

6 for (all leaf nodes P in active R+-tree at time instant 
i) do 

7
 Update the imprecision cost of each leaf node
 
8 if (wFN ∗ EF NP > EFPP ∗ wFP ) then 
9 Publish the leaf node as EC and remove 

from active R+-tree 

Example 5. Assume that eight tuples are received 
at some time instance as shown in Figure 5. The 
shaded rectangles with solid lines represent sliding-
window queries while the rectangles with dotted lines 
represent partitions. The leaf-node Partitions P1 and 
P2 are added to the R+-tree. The weight assignment 
is wFP = wFN = 1. The two sliding-window queries 
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Q1 and Q2 will be evaluated at the next time instance. 
The EFP for P1 is 1 and EFN is 3. Since EFP is less than 
EFN for P1, P1 is published. For P2, EFP is 3 and EFN 
is 1. Since EFN is less than EFP for P2, P2 is put on 
hold by the PPM. The total imprecision contributed 
by P1 and P2 at this time instance is 2. Note that if 
both P1 and P2 are published or held by PPM the total 
imprecision will be 4. 

10

10

20 30 40

20

30

Q1

Q2

P1

P2

EFPP2= 3

EFNP2= 1

EFPP1= 1

EFNP1= 3

Fig. 5. EF PP and EF NP for leaf nodes P 1 and P 2 

5 EXPERIMENTS 

The experiments for the empirical evaluation of the 
proposed algorithm have been carried out on two real 
datasets. The first dataset is the Adult dataset from 
UC Irvine Machine Learning Repository [33] having 
45222 tuples and is the benchmark for k-anonymity 
research. The attributes in the Adult dataset are: Age, 
Work class, Marital status, Relationship, Race, Gender, 
Education, and, Occupation. The second dataset is the 
Census dataset [34] from IPUMS1. This dataset is ex­
tracted for the year 2001 using attributes: Age, Gender, 
Marital status, Race, Language, Education, Occupa­
tion, and Income. The size of this dataset is about 
1.2 million tuples. For the ks-anonymity experiments, 
we use the first six attributes as quasi-attributes from 
both datasets. To model the dataset as a data stream, 
we assume that 1000 tuples are received at each time 
instance. The maximum delay constraint δ is set to 
5 time units for the Adult dataset and 25 time units 
for the Census dataset. It is assumed that the time 
interval between the two time instances is enough to 
update the R+-tree and the query imprecision at each 
time instance. We also assume that the tuple ID is not 
repeated within the time duration of the maximum 
delay. 

We use 100 and 300 queries as the work-
load/permissions for the Adult and Census datasets, 
respectively. The queries are generated randomly us­
ing the approach suggested by Iwuchukwu, et al. [32]. 
In this approach, two tuples are selected randomly 
from the tuple space and a query is formed by making 
a bounding box of these two tuples. The bounding 

1. Available at http://usa.ipums.org/usa/ 

box gives the predicates for the sliding-window query 
and then the window size and step are also selected 
randomly from a fixed range. For the Adult dataset, 
the range for the window size is 20-30 and for the 
step is 10-20, while for the Census dataset, the range 
for the window size is 100-200 and for the step is 50­
100. The random query is then added to the workload 
if the sliding-window query meets the size constraint 
for the first step (8000 for the Adult dataset and 15000 
for the Census dataset). The imprecision bounds for 
all sliding-window queries are set based on the query 
size at the time of query evaluation. An imprecision 
bound of 10% for a sliding-window query means 
that, at each step, when the query is evaluated, the 
imprecision should be less than 10% of the query size 
at that time instance. 

The approach proposed by Cao et al. [8] for data 
stream anonymization tries to minimize the error due 
to generalization with a constraint that tuples must 
be published before the maximum delay deadline. 
Zhou et al. [9] propose an R-tree-based approach to 
anonymize the data stream and propose a minimum-
delay heuristic, where tuples are published as soon as 
they meet the privacy condition. They also propose 
a randomized algorithm to minimize a delay-based 
cost function and show that the accuracy can be 
further improved by taking the tuple distribution into 
account. In our experiments, we compare the pro­
posed approach (i.e., Total Imprecision Minimization 
- TIM) with the maximum delay heuristic (denoted by 
maxD) and the minimum delay publishing (denoted 
by minD). wFP and wFN are set to 1 for TIM. 

5.1 Varying Imprecision Bound 

For the ks-anonymity experiments, the value of ks 

is fixed and the query imprecision bound is varied 
from 15% to 35% with increments of 5 and the sum 
of the average query-bound violation for all predicate 
sliding-window queries is evaluated. The results for 
ks-anonymity are given in Figure 6 for the Adult 
dataset for ks values of 3, 4, 5 and 6. The minimum 
delay heuristic is better than the maximum delay 
heuristic but TIM gives the best results for all values 
of ks. 

For the Census dataset results for ks-anonymity are 
given in Figure 7 for ks values of 3, 4, 5 and 6. The 
performance of TIM is better than those of minD and 
maxD for all values of ks in the Census data. In this 
case, maxD performs better than minD as compared 
to the Adult dataset. The performance of maxD is 
dependent upon the maximum delay value. In the 
case of the Adult dataset, maxD only performs better 
than minD when the delay value is 2 as given in 
Figure 8(a) but the experiments were performed with 
δ = 5. For the Census dataset with δ = 25, observe 
that in Figure 9(a), the maxD heuristic is better than 
minD heuristic. 

http://usa.ipums.org/usa
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(a) ks = 3 (b) ks = 4 Sample size = 45k,  # Queries = 100,  k = 5
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Sample size = 45k,  # Queries = 100,  k = 6
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(c) ks = 5 (d) ks = 6 

Fig. 6. The sum of the average query-bound violation 
for k-anonymity for the Adult dataset 

(a) ks = 3 (b) ks = 4 Sample size = 1.2M,  # Queries = 300,  k = 5
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Sample size = 1.2M,  # Queries = 300,  k = 6
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(c) ks = 5 (d) ks = 6 

Fig. 7. The sum of the average query-bound violation 
for k-anonymity for the Census dataset 

5.2 Varying the Maximum Delay (δ) Parameter 
In the next experiment for the Adult dataset, ks is 
set to 3 and the query imprecision bound is set to 
20% of the sliding-window query size at the time of 
query evaluation. Then, the maximum delay value 
(δ) is varied from 2 time units to 20 time units 
as given in Figure 8. The total imprecision in Fig­
ure 8(b) is the sum of false-positives in Figure 8(c) and 
false-negatives in Figure 8(d). The total imprecision, 
false-positives, and false-negatives are calculated by 
adding, for all queries, the imprecision values at each 
query evaluation of the sliding-window query. The 
average query violation and the total imprecision for 
the minimum delay heuristic remain constant for all 
values of the δ as they are independent of the delay 
value. For the minimum delay heuristic, the false-
negatives are zero as given in Figure 8(d) because the 
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Sample size = 1.2M,  # Queries = 300,  k = 4
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Sample size = 45k,  # Queries = 100,  k = 3, Bound = 20%
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partitions are published without delay in the same 
time instance. TIM has the best performance in terms 
of the average query-bound violation and the total 
imprecision as given in Figure 8(a) and Figure 8(b). We 
can see in Figure 8(c) that as the δ value is increased, 
the total false-positives decrease for TIM as more data 
stream tuples are available to form partitions with less 
imprecision. Also, we can observe in Figure 8(d) that 
as the δ value is increased the false-negatives increase 
because more tuples are put on hold by the PPM. 
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(a) Average query-bound viola­
tion 

Sample size = 45k,  # Queries = 100,  k = 3, Bound = 20%
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Fig. 8. Varying the maximum delay (δ) parameter for 
the Adult dataset 

For the Census dataset, ks is fixed at 3 and query 
imprecision bound is fixed at 20% of the sliding-
window query size at the time of query evaluation. 
Then, the maximum delay (δ) value is varied from 
10 time units to 40 time units in increments of 5 
time units as given in Figure 9. Observe that TIM 
has the best performance in terms of the average 
query-bound violation and the total imprecision as 
given in Figures 9(a) and 9(b). For TIM, as the δ is 
increased, the false-positives decrease as given in Fig­
ure 9(c) because more data stream tuples are available 
to form partitions with fewer false-positives. On the 
other hand, the false-negatives increase as given in 
Figure 9(d) with the increase in the δ value as more 
tuples are held by PPM. 

5.3 Varying the Rate of Tuple Arrival λ for TIM 
The next experiment is performed to check the effect 
of the rate of tuple arrival on TIM. Intuitively, the 
higher rate of tuple arrivals should give better results 
because more data stream tuples are available at a 
given time instance to form partitions with fewer 
false-positives. For this experiment, we assume tuple 
arrival rates of 250, 500, 750, and 1000 tuples for Adult 
dataset at each time instance, a ks value of 3 and an 
imprecision bound of 25%. We can see in Figure 10(a) 
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Sample size = 1.2M,  # Queries = 300,  k = 3, Bound = 20%
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Sample size = 1.2M,  # Queries = 300,  k = 3, Bound = 20%
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(b) Total imprecision 
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(c) False-positives (d) False-negatives 

Fig. 9. Varying the maximum delay parameter (δ) for 
the Census dataset 

that, as the tuple arrival rate is increased, the sum 
of average query-bound violations decreases for all 
maximum delay values. 

(a) Adult dataset (b) Census dataset 

Fig. 10. Varying the rate of tuple arrival for TIM 

For the Census dataset the same trend as that of the 
experiment on the Adult dataset is visible. The perfor­
mance improves as the rate of tuple arrival increases. 
For this experiment, we assume tuple arrival rates of 
500, 750, 1000, 1250, and 1500 tuples for each time 
instance, a ks value of 3 and an imprecision bound 
of 20%. From Figure 10(b), observe that as the tuple 
arrival rate is increased the performance is improved 
because more data stream tuples are available to form 
partitions with fewer false-positives. 

5.4 Varying Weights (wFN , wFP ) for TIM 
In TIM, a partition is published when the expected 
false-negatives are greater than the expected false-
positives. In this experiment, weights are assigned to 
expected false-negative and false-positive values. By 
TIM14, it is meant that wFN is four times as that 
of wFP (and vice versa for TIM41). Observe that in 
Figure 11(a), for TIM14, there are more false-positives 
than for TIM and in Figure 11(b), there are less false-
negatives as partitions are published early. Similarly, 
for TIM41 as compared to TIM, the false-positives are 
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less and the false-negatives are more as partitions are 
held for a longer time by PPM. 
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Fig. 11. The imprecision for TIM using weights for the 
Adult dataset 

We compare false-positives and false-negatives for 
TIM, TIM14, and, TIM41 for the Census dataset in this 
experiment as given in Figure 12. TIM14 denotes that 
the value of wFN is four times as that of wFP . We 
can see that in Figure 12(a) and Figure 12(b) as more 
weight is given to EFN in TIM14, the false-negatives 
decrease and the false-positives increase. Similarly, for 
TIM41 the false-positives decrease and false-negatives 
increase as compared to TIM. 

(a) False-positives (b) False-negatives 

Fig. 12. The imprecision for TIM using weights for the 
Census dataset 

5.5 Duplicate Tuples Received within the Maxi­
mum Delay (δ) 

In the previous experiments, it has been assumed that 
the stream tuple-id values are not repeated. We now 
assume that a tuple-id can be repeated once within 

δthe maximum delay (δ) after time . The δ is set to 2 
10 and the total imprecision is plotted against ks. The 
repetition of tuple-id forces PPM to create overlapping 
leaf nodes in the R-tree to satisfy the ks-anonymity 
requirement. We can see in Figure 13(a) that maxD 
has the worst performance for all values of ks because 
more delay allows more overlapping leaf nodes while 
minD has the best performance. For TIM2 and maxD2, 

δknowing that a tuple-id is repeated after time , we 
set the δ to 5 and use an R+-tree with non-overlapping 
leaf nodes. This allows to reduce the total imprecision 
by an order of 3 as shown for TIM2 in contrast with 
minD. 

In this experiment, for the Census dataset, we as­
sume that a tuple-id can be repeated once within 

2 
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Fig. 13. Duplicate tuples received within the maximum 
delay (δ) 

δthe maximum delay (δ) after time . The δ value is 2 
set to 20 and the total imprecision is plotted against 
ks. The repetition of tuple-id forces the creation of 
overlapping leaf nodes in the R-tree to satisfy the ks ­
anonymity requirement. Notice that in Figure 13(b), 
the performance of minD is better than maxD and 
TIM due to fewer overlapping leaf nodes. For TIM2 
and maxD2, knowing that the tuple-id is repeated 

δafter time , the δ value is set to 10 and an R+-tree 2 
is used with non-overlapping leaf nodes. This allows 
to reduce the imprecision by an order of 3 for TIM2. 

5.6 ls-diversity and Stream Variance Diversity 
We use Attribute occupation as the sensitive attribute 
and the first six attributes as the QI attributes for 
the ls-diversity experiments on data streams using 
the Census dataset. All the tuples having the occu­
pation value as Not Applicable (0 in the dataset) 
in the Census dataset are removed leaving about 
700k tuples. The proposed algorithm in Listing 1 is 
used for ls-diversity with the constraint that each 
leaf node/equivalence class should be ls-diverse after 
splitting and before publishing. The experiment is 
conducted for the ls values of 3 and 4. For each 
value of ls, we vary the query imprecision bounds 
from 15% to 35% with increments of 5 and find the 
sum of average query-bound violation for all sliding-
window queries. The results are given in Figure 14 
and demonstrate that TIM has the lowest average 
query-bound violation for ls-diversity. 
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Fig. 14. ls-diversity for the Census dataset 

For the data stream variance diversity experiments, 
we use Attribute income as the sensitive attribute. All 
the tuples having the income value as Not Appli­
cable (9999999 in the dataset) in the Census dataset 

are removed, which leaves about 950k tuples. The 
experiments are conducted for the variance values 
V Vand , where V is the variance of the sensitive 200 100 

attribute in the dataset. For a variance diversity value 
, the query imprecision bound is changed from 15% 
to 35% and the sum of the average query-bound 
violation for each publishing approach is calculated. 
Similar to ks-anonymity and ls-diversity, each leaf 
node in the active R+-tree has to satisfy the variance 
diversity condition. The results for data stream vari­
ance diversity are given in Figure 15 and illustrate 
that TIM gives the best results as compared to minD 
and maxD. 
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Fig. 15. Stream variance diversity for the Census 
dataset 

5.7 Sample Size for Sample Mean to Stabilize 

In this experiment, the number of sliding-window 
queries violating bounds for TIM along with the sam­
ple mean (average query-bound violation) is given 
in Figure 16. We randomly select 500 queries (with 
window size = 25 and step = 1) of size ≥ 2500 in 
the first step and set imprecision bound to 30% of 
the query size. One of the important observations in 
this plot is the dependence of Poisson trials on query 
window size. The number of sliding-window queries 
violating bounds changes abruptly after intervals of 
about 25 time units. The dependence among trials 
will decrease if the query window size is reduced. 
Secondly, in Example 4, the sample size for tolerance 
|µ̄ − µ| < 2.5 with a 95% probability is found to be 
greater than 800. Observe that in Figure 16, after 800 
time-stamps, µ̄ is almost stable. 
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Fig. 16. Average query-bound violation versus Time 
for the Census dataset 
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5.8 Visual Representation of Heuristics 
The visual representations of the published partitions 
resulting from the approaches minD, maxD, TIM with 
R-tree, and TIM with R+-tree are given in Figure 17. 
1200 tuples with two attributes are randomly se­
lected (using a Normal distribution with µ = 50, σ = 
10, and cardinality = 100) and it is assumed that rate of 
tuple arrival λ = 200. Five random predicate sliding-
window queries are selected (the query size is greater 
than 400) with window size 5 and window step 2. The 
query imprecision bound is set to 15% of the sliding-
window query size at the time of query evaluation. 
The maximum delay δ is set to 3 time-units. The 
rectangles with the blue (darker) lines are the queries 
while the rectangles with the red (lighter) lines are 
the partitions generated by the heuristics at ks = 3. 
The partitions held by PPM are given in green (very 
light) color and the false-negative tuples inside these 
rectangle are marked by ∗ while the tuples outside 
the queries are marked by ×. 

The summary of the comparisons for minD, maxD, 
TIM with R-tree, and TIM with R+-tree is given in 
Table 1. In this table, AQV stands for the Average 
Query-bound Violation. Minimum delay publishing 
has zero false-negatives but the highest false-positives 
as visible in Figure 17(a). Observe that in Figure 17(b), 
maximum delay publishing allows to reduce the false-
positives but adds a lot more false-negatives. In com­
parison, the partitions published by TIM given in 
Figure 17(c) have the lowest total imprecision and 
violates the bounds for the minimum number of pred­
icate sliding-window queries. Figure 17(d) gives the 
partitions published by TIM using an R-tree instead 
of an R+-tree. It is visible that the R-tree approach 
creates overlapping leaf nodes resulting in higher 
false-positives. 

TABLE 1
 
Comparison of heuristics
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Total FP Total FN FP+FN AQV 

minD 403 0 403 3 

maxD 126 595 721 5 

TIM(R+-tree) 189 12 201 0 

TIM(R-tree) 328 10 338 4 

6 RELATED WORK 

In the related work, first the literature related to 
access control on data streams is reviewed and then 
research related to privacy preserving publishing of 
data streams is discussed. To the best our knowledge 
both the precision-bounded access control and privacy 
together for data streams has not been investigated 
before. 

Nehme et al. propose security punctuation-based 
access control framework for data streams [4], [35]. A 
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Fig. 17. Anonymization for two attributes with discrete 
normal distribution (µ = 50, σ = 10) 
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security punctuation is a predicate that defines access 
to stream data and is created by the user generating 
stream data. The security punctuation tuples are then 
interleaved in the data stream. The subjects are as­
signed roles on the server and can execute authorized 
queries on the incoming data stream. The server al­
lows the roles access to stream tuples according to the 
embedded security punctuation. 

Role-based access control for data streams have 
been proposed by Carminati et al. [5], [36]. In their 
framework, there are two types of temporal con­
straints. First is the interval constraint during which 
the role can access stream data. Second is the window 
constraint that limits access to the data stream for each 
role according to the authorized view defined by the 
sliding-window query predicate. They consider two 
types of privileges over the authorized data that is 
read privilege for selection and projection operations 
and aggregate privilege for Min, Max, Count, Avg, 
and Sum operations. In the current paper, we follow 
the access control specification of Nehme et al. and 
Carminati et al. but further consider the privacy-
preservation along with the precision-bounded access 
control. 

Cao et al. have proposed CASTLE for continuously 
anonymizing data streams [8]. They extend the defi­
nition of k-anonymity for data streams and propose 
a clustering algorithm that publishes anonymized 
clusters before a given maximum delay deadline. 
The measure used to assess the quality of published 
clusters is the information loss metric [37] that does 
not consider the information loss due to delay in 
publishing. To overcome this shortcoming, Zhou et al. 
proposed a delay-based anonymization quality mea­
sure that increases the information loss as the publish­
ing delay increases [9]. They propose a randomized-
algorithm based on the R-tree. The data stream tuples 
are added to the active R-tree and the leaf nodes of 
the tree due at each time instance are published. The 
due time for each leaf node is evaluated randomly 
based on the information loss. They further use the 
distribution density of the data stream to improve the 
algorithm. Both Cao et al. and Zhou et al. suppress 
the time-stamp attribute in the anonymized stream. 
However, the time-stamp attribute is required to eval­
uate any predicate sliding-window query over the 
anonymized stream. 

Dwork et al. have proposed differential privacy 
for data streams considering a single aggregate 
query [38]. Cao et al. further extend the model to 
sliding-window queries over data streams [39]. Dif­
ferential privacy is achieved by adding random noise 
to original query results and offers better privacy 
guarantees than generalization, however syntactic 
anonymization techniques (e.g., generalization) pro­
vide better precision [40]. In the current paper our 
focus is on generalization and we further explore 
precision bounds for sliding-window queries over 

privacy-preserving data streams. 
Access control and privacy techniques have been 

investigated for static relational data. LeFevre et 
al. [13], [24] and Iwuchukwu et al. [32] have pro­
posed workload-aware anonymization for micro data 
publishing. Work has been done on micro data 
anonymization with accuracy and privacy constraints 
[22], [41], [42]. We have proposed the concept of im­
precision bounds for accuracy-constrained access con­
trol on relational data [22]. However, the access con­
trol on data streams presents different challenges be­
cause of the temporal constraints defined by sliding-
window query predicates. In the data stream litera­
ture, access control and privacy-preserving publish­
ing have been considered in isolation. However, we 
propose a unified precision-bounded access control 
framework for privacy-preserving data streams. 

7	 CONCLUSIONS 

Precision-bounded access control for privacy-
preserving data streams has been proposed. The 
access control administrator defines the permitted 
view of the data stream along with the required 
precision. The privacy protection mechanism applies 
generalization to the stream data such that the 
privacy requirement is met and imprecision bound 
for the maximum number of sliding-window queries 
is satisfied. An algorithm has been proposed to 
minimize the total imprecision and experiments have 
been performed to compare the performance. In 
future work, we plan to extend the access control 
enforcement to Enclosed semantics. Also, in this paper, 
only sliding-window queries have been considered. 
We plan to add landmark, snapshot, and historical 
queries to the set of permitted queries. 
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APPENDIX A 
PROOFS 

Theorem A.1. Decisional PACE problem is NP-complete. 

Proof: The proof is by reduction from Partition: 
Partition Given a finite set A and a size function 
s(ai) ∈ Z+ for each ai ∈ A. Does there exist a subset, 
A ⊆ A such that 

s(ai) = s(aj ) ? 
I Iai∈A aj ∈A−A

For each ai ∈ A, construct multiple tuples equal 
to s(ai). These tuples form a set of distinct pairs of 
the form (tuple, count). This construct is similar to 
that in [24]. In each (tuple, count) pair, the tuple is 
a point in the d-dimensional unit-hypercube defined 
by a vector [01, . . . , 0i−1, 1i, 0i+1, . . . , 0d, ] (i.e., the ith 

co-ordinate is 1 and all others are 0). The union of all 
such pairs is the data stream tuples T received at the 
given time instance. The solution of partition problem 
will split the unit-hypercube into two regions. In this 
d-dimensional unit-hypercube, construct two sliding-
window Queries q1 and q2 having both size and step 
equal to one and query predicates covering each of the 
partitions resulting from splitting the d-dimensional 
unit-hypercube. 

The partition problem for A can be reduced to the e s(ai)following: Let ks = , Bq1 = 1, Bq2 = 1 and qv = 2 
1. Is there a ks-anonymous multidimensional partitioning 
for T such that impq1 ≤ Bq1 and impq2 ≤ Bq2 ? We 
claim that there is a solution to the ks-anonymous 
multidimensional partitioning for T satisfying the 
imprecision bound for the sliding window queries q1 

and q2 if and only if there is a solution to the partition 
problem for A. 

Suppose there exists a ks-anonymous multidimen­
sional partitioning for T satisfying the imprecision 
bound for the queries q1 and q2. The partitions will 
define two multidimensional regions R1 and R2 such e e e s(ai)that count(t) = count(t) = k = .t∈R1 t∈R2 2 
The count(t) values in R1 and R2 will give the two 
disjoint subsets of A that define an equal partitioning 
of A. 

In the other direction, suppose there is a solution 
to the partition problem for A. The solution will 
define two disjoint subsets A1 and A2. From these two 
subsets, we can find the multidimensional partitions e e 
R1 and R2 such that count(t) = s(ai)t∈R1 s(ai )∈A1e e 
and count(t) = s(ai). The impreci­t∈R2 s(ai)∈A2 

sion for the Query q1 and q2 is less than Bq1 and Bq2 

as the false positives and false negatives are zero. 
Finally, a given solution to the decisional ks ­

anonymous multidimensional partitioning problem 
with imprecision bounds can be verified in polyno­
mial time. All the multidimensional partitions are 
checked to see if they satisfy the ks-anonymity re­
quirement and that the imprecision bounds for the 
queries are satisfied. 

Theorem A.2. Let X1[j], . . . , Xn[j] be an independent 
Poisson trial at time instance j. Xi[j] is a random variable 
that is 1 if a sliding-window query, say Qi (size = w and 
step = 1), evaluated at time instance j violates the impre­
cision bound otherwise is 0. The Var[Xi] ≤ b for b ≥ 0,e eSn 1X[j] = Xi[j], µ̄ = X[i], µ = E[X[j]], and i=1 S i=1 
x > 0, we have: 

bn 
S ≥ (9)

Pr[|µ̄− µ| > x]x2 

Proof: First, we find Var[µ̄] and then use Cheby­
shev’s inequality to find the lower bound on the 
sample size.  S n  1

Var[µ̄] = Var Xi[j] (10)
S2 

j=1 i=1 

1 
S n   

= Var Xi[j]
S2 

j=1 i=1 

(pairwise independence assumption) 
S n 

1 ≤ b (Var[Xi] ≤ b)
S2 

j=1 i=1 

nb ≤ (11)
S 

The Chebyshev’s inequality states that 

Var[µ̄]
Pr[|µ̄− µ| > x] ≤ (12) 

x2 

Using the expression for Var[µ̄] from Equation 11 
and Chebyshev’s inequality in Equation 12, we get 

bn 
S ≥ 

Pr[|µ̄− µ|]x2 


