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a b s t r a c t

This paper describes methods for forensic characterization of physical devices. This is

important in verifying the trust and authenticity of data and the device that created it.

Current forensic identification techniques for digital cameras, printers, and RF devices

are presented. It is also shown how these techniques can fit into a general forensic charac-

terization framework, which can be generalized for use with other devices.
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1. Introduction

The falling cost and wide availability of electronic devices

have led to their widespread use by individuals, corporations,

and governments. These devices, such as computers, cell

phones, digital cameras, and printers, all contain various

sensors, which generate data that are stored or transmitted

to another device. One example of this is a security system

containing a network of video cameras, temperature sensors,

alarms, computers, and other devices. In such a network, it

is important to be able to trust the data from each of these

sensors. Forensic techniques can be used to uniquely identify

each device using the data it produces. This is different from

simply securing the data being sent across the network

because we are also authenticating the sensor that is creating

the data. One technique that is used to authenticate a device

involves embedding information, or a watermark, into the sig-

nal generated by the device. This strategy has potential
1742-2876/$ – see front matter ª 2006 DFRWS. Published by Elsevier
doi:10.1016/j.diin.2006.06.014
problems in that the watermark could be attacked, allowing

untrusted data to appear authentic.

Identification through forensic characterization means iden-

tifying the type of device, make, model, configuration, and

other characteristics of the device based on observation of

the data that the device produces (Martone et al., 2006). The

characteristics that uniquely identify the device are called

device signatures.

There are many scenarios in which it is useful to character-

ize a device. One use is to verify the source camera and

authenticity of digital photographs in a court case. Another

would be to identify a printer that was used to perform

some illicit activity. For instance, the noise characteristics in

a digital image can be used as a signature of the camera that

produced it. Similarly, the ‘‘noise’’ characteristics of a print

engine can be used as a signature of the printer that generated

a document. For an RF device, such as a cell phone, the radia-

tion re-emitted after excitation from an external RF pulse
5 Parts of this research were supported by a grant from the National Science Foundation under Award Number 0219893, and by the U.S.
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Fig. 1 – Device characterization framework.
contains characteristics that are unique to each device’s make

and model.

This paper presents a framework for forensic characteriza-

tion. Current characterization techniques for digital cameras,

printers, and RF devices are presented in relation to the

proposed framework.

A block diagram of a general forensic characterization sys-

tem is shown in Fig. 1. A device to be characterized is first

excited by a specially designed ‘‘probe signal’’. For a printer

or camera, this signal might be a specially designed test

page to be printed or photographed. The device response

would then be a print or digital image. For an RF device or

other sensor, the probe signal might be a specially designed

RF pulse sent toward or through the device. The pulse will

interact with the device and be re-emitted. In this case, the

re-emitted signal would be the device response.

The device response is sampled and a set of features are

extracted from the sampled signal. These features are then

used to determine various information about the device using

standard classification techniques.

2. Characterization of digital cameras

In contrast to the analog world, where the depicted event in

a photograph has generally been accepted as reality, the

authenticity of digital images cannot be taken for granted.

This is especially true when it comes to legal photographic

evidence. Digitization of data, along with the availability of

digital processing tools, has made creation and manipulation

of digital images an easy task. As digital images and video con-

tinue to replace their analog counterparts, the importance of

reliable, inexpensive, and fast identification of authenticity

and origin of digital images increases. Reliable digital camera

identification would especially prove useful in the court. For

example, the identification could be used for establishing

the origin of images presented as evidence, or one could prove

that a certain image has been obtained using a specific camera

and is not a computer-generated image. Therefore, a reliable

and objective way to examine image authenticity is needed.

Not only is the general public rapidly replacing classical

analog cameras (film) with digital cameras, law enforcement

agencies are doing so as well. Agencies are increasingly rely-

ing on digital photography to create a visual record of crime

scenes, physical evidence, and victim’s injuries. One reason

for this is that a digital camera gives the photographer imme-

diate visual feedback of each picture taken. Digital images can

be readily shared using computer networks and conveniently

processed for queries in databases. Also, properly stored digi-

tal images do not age or degrade with usage. On the other

hand, thanks to powerful editing programs, it is very easy

even for an amateur to maliciously modify digital media and
create realistic looking forgeries. Forensic tools that help

establish the origin, authenticity, and the chain of custody

of digital images are essential to the forensic examiner. These

tools can prove to be vital whenever questions of digital image

integrity are raised.

Image forensics is concerned with the following questions:

� Is this an ‘‘original’’ image produced by a digital camera, or

is it a computer-generated image? Was it created by cut and

paste operations from multiple images?

� Was this image captured by a camera manufactured by ven-

dor X or vendor Y? Did this image originate from camera X?

at time Y? at location Z? Is reliable identification possible

from processed images?

� Has this image been modified?

� Was this image manipulated to embed a secret message? Is

this image a stego-image or a coverimage?

There has been some effort in the digital watermarking

community to embed watermark in the captured image that

would carry information about the digital camera such as

a time stamp, or even biometric of the person taking the image

(Blythe and Fridrich, 2004). This technique only works if all

digital cameras implement it, which is not the case currently,

and will probably not change in the near future. The applica-

tion of this watermarking solution is mostly limited to a closed

environment such as ‘‘secure cameras’’ used by forensic

experts taking images at crime scenes (Blythe and Fridrich,

2004). Under these controlled conditions, the secure cameras

can provide a solution to the problem of evidence integrity

and origin. Another issue is that there is no completely secure

authentication watermarking algorithm that can survive all

attacks. Also the hardware system has to be secured from

unauthorized watermark embedding. In the absence of wide-

spread adoption of digital watermarks, it is important to

develop techniques that can help make statements about

the origin, authenticity and nature of digital images.

There are various techniques by which the source camera

of an image can be determined. Some techniques are simple

and straightforward. For example, the EXIF headers of most

digital still camera images contain information about the cam-

era type and the conditions under which the image was taken

(e.g., exposure, time). Additional information can be obtained

from the quantization table in the JPEG header (some cameras

use customized quantization matrices). This header data,

however, may not be available if the image is converted to

a different format, and can easily be removed or modified.

To overcome these problems, techniques that use only fea-

tures that are intrinsic to the camera itself need to be used.

The following three sections describe the workings of a digital

camera, as they relate to second and third blocks of the device

characterization framework in Fig. 1. Then, techniques for
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identifying the source camera of a digital image, using only

intrinsic features, are presented.

2.1. Imaging pipeline

The imaging pipelines of digital cameras are similar, irrespec-

tive of manufacturer or model. The basic structure of a digital

camera pipeline can be seen in Fig. 2.

First, light from a scene enters the camera through a lens

and passes through a set of filters including an anti-aliasing

filter. Next, the light is ‘‘captured’’ by a sensor. These sensors,

typically CCD or CMOS imaging sensors, are color blind in the

sense that each pixel captures only intensity information

from the light hitting it. To capture color information, the light

first passes through a color filter array (CFA), which assigns

each pixel on the sensor to one of the three (or four) colors

to be sampled. Shown in Fig. 3 are CFA patterns using RGB

and YMCG color spaces, for a 4� 4 block of pixels. The individ-

ual color planes are filled in by interpolation using the

sampled pixel values. There are a number of different inter-

polation algorithms, which could be used, and different

manufacturers use different interpolation techniques.

Finally, a number of operations are performed by the cam-

era, which include, but are not limited to, color interpolation,

white point correction and gamma correction. The image is

then written into the camera memory in a user-specified image

format (e.g., RAW, TIFF or JPEG). Although the operations and

stages explained in this section are standard in a digital camera

pipeline, the exact processing details in each stage vary from

one manufacturer to another, and even between different

camera models from the same manufacturer. This variation

from one camera model to another can be used to determine

the type of camera that a specific image was taken with.
2.2. Sensor noise

The manufacturing process of imaging sensors introduces

various defects, which create noise in the sampled pixel

values. Because this noise is directly related to manufacturing

defects, which can vary from one sensor to another, it can be

used to forensically characterize a digital camera. There are

two types of noise that are important to understand the

following sections.

The first type of noise is caused by array defects. These

include point defects, hot point defects, dead pixels, pixel

traps, column defects and cluster defects. These defects cause

pixel values in the image to deviate greatly. For example, dead

pixels show up as black in the image and hot point defects

show up as very bright pixels in the image, regardless of image

content.

Pattern noise refers to any spatial pattern that does not

change significantly from frame to frame and is caused by

dark currents and photoresponse nonuniformity noise

(PRNU). Dark currents are stray currents from the sensor sub-

strate into the individual pixels. This varies from pixel to pixel

and the variation is called fixed pattern noise (FPN). FPN is due

to differences in detector size, doping density, and foreign

matter trapped during fabrication. PRNU is the variation in

pixel responsivity and is seen when the device is illuminated.

This noise is due to variations between pixels such as detector

size, spectral response, thickness in coatings and other imper-

fections created during the manufacturing process. The power

spectrum of the PRNU is continuous (Holst, 1998) with slightly

attenuated high spatial frequencies. Frame averaging will

reduce all the noise sources except FPN and PRNU. Although

FPN and PRNU are different, they are sometimes collectively

called scene noise, pixel noise, pixel nonuniformity, or simply

pattern noise.
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2.3. Image acquisition model

The raw signal that is captured by the sensor due to incoming

light (if no sources of noise are present) is represented by

matrix x¼ (xij), i e {1,2,.,m}, j e { 1,2,.,n}, where m� n is the

sensor resolution. A general model

yij ¼ hij

�
xij þ eij

�
þ xij (1)

can be written, where y¼ ( yij) represents the digitized output

of the sensor before any other camera processing occurs. The

factors hij are close to 1 and capture the PRNU noise, which is

a multiplicative noise. After removing the low frequency com-

ponent, the pattern noise component can be used as an intrin-

sic characteristic (fingerprint) of the sensor. The PRNU noise is

not present in completely saturated areas of an image where

all sensor pixels produce a constant maximum signal. It is

also clear from Eq. (1) that in very dark areas (when xij z 0)

the PRNU noise is largely suppressed.

The signal y goes through a chain of complex processing

before the final image file is stored on the camera’s memory

card. This processing includes neighborhood operations

such as demosaicing, color correction, and kernel based filter-

ing. Some operations may be nonlinear in nature, such as

gamma correction, white point correction, or adaptive color

interpolation (Lukas et al., 2006). The final pixel values

pij ¼ Jðyij;NðyijÞ; i; jÞ (2)

are assumed to be in the range [0, 255] for each color channel.

J is a nonlinear function of yij, the pixel location (i, j ), and

values y from a local neighborhood N( yij). This function is

heavily dependent on the camera model or manufacturer-

specific image processing algorithms used in different stages

described earlier.

2.4. Sensor-based characterization

One approach to camera identification is through analysis of

pixel defects. Geradts et al. (2001) point out that defective
pixels, such as hot pixels or dead pixels, can be used for reliable

camera identification even from lossy compressed images.

This type of noise is typically more prevalent in cheaper

cameras than in more expensive ones. The noise can be visu-

alized by averaging multiple images from the same camera.

These errors remain visible even after the image is com-

pressed by the camera.

This approach fails for cameras that do not contain any

defective pixels or cameras that eliminate defective pixels

by post-processing their images on-board. Also, the defective

pixels may not be obvious in every scene. In order to identify

the defective pixels, one either needs to have access to the

camera or have sufficiently many images from which the

defective pixels can be determined.

In Lukas et al. (2005) and Digital bullet scratches for im-

ages (2005), a different approach, based on sensor pattern

noise, is presented to the problem of camera identification

from images. The identification is based on pixel nonunifor-

mity noise, which is a unique stochastic characteristic for

both CCD and CMOS-based cameras. The presence of this

noise is established using correlation as in the detection

of spread spectrum watermarks. Reliable identification is

possible even from images that are resampled and JPEG

compressed.

The pattern noise is caused by several different factors,

such as pixel nonuniformity, dust specks on optics, interfer-

ence in optical elements, dark currents, etc. The high

frequency part of the pattern noise is estimated by subtracting

a denoised version of an image from the original image. This is

performed using a wavelet-based denoising filter described in

the work by Mihcak et al. (1999). A camera’s reference pattern

is determined by averaging the noise patterns from multiple

images taken with that camera. This reference pattern serves

as an intrinsic signature of the camera. To identify the source

camera of a given image, the noise pattern from the image is

correlated with known reference patterns from a set of cam-

eras. If the correlation is above a certain threshold for one of

the reference patterns, then the camera corresponding to
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that reference pattern is the source camera. This approach is

shown to provide correct source camera identification be-

tween a set of nine cameras without a single misclassification

over several thousand images (Lukas et al., 2005). It is also pos-

sible to perform reliable identification from images that have

been JPEG compressed and/or resized, as well as to distinguish

between images taken by two cameras of the same model

(Lukas et al., 2005). Our experiments agree with these

published results.

Some assumptions made in this technique are open for

questioning. The wavelet denoising filter (Mihcak et al.,
1999), for example, assumes that the image in the wavelet

domain is a non-stationary Gaussian signal and that the

pattern noise is a stationary Gaussian signal. Since these as-

sumptions are satisfied only approximately, the pattern noise

extracted using the denoising filter is not Gaussian either.

Another problem is that the filter is applied to the image on

slightly overlapping blocks and it also pads image borders

with zeros. This leads to a small residual dependence between

all extracted noises. Furthermore, reference patterns of differ-

ent cameras are often slightly correlated due to the use of sim-

ilar or even the same image processing algorithms.
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2.5. Feature vector

In the works by Kharrazi et al. (2004) and Avcibas et al. (2004),

a technique is proposed in which a classifier is used to deter-

mine the source camera using a set of content independent

features extracted from the image. The feature vector is

constructed from average pixel values, RGB pair correlations,

center of mass distributions, RGB pair energy ratios, wave-

let-based features, and a blind image quality metric. This

technique is shown to provide close to 90% classification

accuracy across five different cameras (Kharrazi et al., 2004).

Further experiments need to be performed to determine

whether this method is capable of distinguishing between

similar camera models or between cameras of the exact

same model. Also, the large number of images needed to train

a classifier for each camera may not always be available.

2.6. Color filter analysis

Most digital cameras capture color images using a single sen-

sor in conjunction with a color filter array. As a result, roughly

only one third of the samples are captured by the camera and

the other two thirds are interpolated. This interpolation intro-

duces correlations between the samples of a color image. The

noninterpolated samples are unlikely to be correlated in the

same way as the interpolated samples.

Bayram et al. (2005), proposed a method based on the ob-

servation that both the size of the interpolation kernel and

the demosaicing algorithm vary from camera to camera. The

source camera of a digital image is identified based on estima-

tion of the color interpolation parameters used by the camera.

This method is limited to images that are not highly com-

pressed since the compression artifacts suppress and remove

the spatial correlation between the pixels created by the CFA

interpolation.

Furthermore, the interpolation operation is highly nonlin-

ear, making it strongly dependent on the nature of the

depicted scenery. These algorithms are fine-tuned to prevent

visual artifacts such as over-smoothed edges or poor color
transitions in busy parts of the image. On the other hand, in

smooth parts of the image these algorithms exhibit a more lin-

ear characteristic. Therefore, smooth and nonsmooth parts of

images are treated separately (Bayram et al., 2005). Since no

a priori information is assumed on the size of interpolation

kernel, probability maps are obtained for varying the sizes of

kernels. When viewed in the frequency domain, these proba-

bility maps show peaks at different frequencies with varying

magnitudes indicating the structure of correlation between

the spatial samples. The classifier relies on two sets of fea-

tures: the set of weighting coefficients used for interpolation,

and the peak locations and magnitudes in the frequency spec-

trum. A Support Vector Machine (SVM) classifier is used to test

the effectiveness of the proposed features.

A similar technique, presented by Popescu and Farid (2005),

assumes a linear model for the periodic correlations intro-

duced by CFA interpolation. The assumption is that each inter-

polated pixel is correlated to a weighted sum of pixels in

a small neighborhood centered about itself. While perhaps

overly simplistic when compared to the highly nonlinear na-

ture of most CFA interpolation algorithms, this simple model

is both easy to parameterize and can reasonably approximate

the CFA interpolation algorithms. Note that most CFA algo-

rithms estimate a missing color sample from neighboring sam-

ples in all three-color channels. For simplicity, however, this

technique ignores these interchannel correlations and treats

each color channel independently. In practice, neither the spe-

cific form of the correlations (i.e., the parameters of the linear

model) nor which samples are correlated to their neighbors

Table 1 – Banding frequencies

Printer model Principal banding
frequencies (cycles/inch)

HP LaserJet 5MP 37, 74

HP LaserJet 6MP 132, 150

HP LaserJet 1000 27, 69

HP LaserJet 1200 69

HP LaserJet 4050 51, 100

Samsung ML-1450 16, 32, 100, 106
Variance/
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Fig. 6 – Diagram of printer identification.
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are known. To simultaneously estimate both, the expectation

maximization (EM) algorithm is used (Dempster et al., 1977).

3. Characterization of printers

Printed material is a direct accessory to many criminal and

terrorist acts. Examples include forgery or alteration of docu-

ments used for purposes of identity, security, or recording

transactions. In addition, printed material may be used in

the course of conducting illicit or terrorist activities. Examples

include instruction manuals, team rosters, meeting notes, and

correspondence. In both cases, the ability to identify the de-

vice or type of device used to print the material in question

would provide a valuable aid for law enforcement and intelli-

gence agencies. We also believe that average users need to be

able to print secure documents, for example, boarding passes

and bank transactions (Delp, 2002; Chiang et al., 2004, 2005;

Mikkilineni et al., 2006).

Additionally, there are a number of applications in which it

is desirable to be able to identify the technology, manufac-

turer, model, or even specific unit that was used to print

a given document.

Forensic characterization of a printer involves finding

intrinsic features in the printed document that are character-

istic of that particular printer, model, or manufacturer’s prod-

ucts. This is referred to as the intrinsic signature. The intrinsic

signature requires an understanding and modeling of the

printer mechanism, and the development of analysis tools

for the detection of the signature in a printed page with arbi-

trary content (Ali et al., 2003, 2004; Mikkilineni et al., 2004a,b,

2005a,b; Arslan et al., 2005).

Techniques that use the print quality defect known as

banding in electrophotographic (EP) printers as an intrinsic sig-

nature to identify the model and manufacturer of the printer

have been previously reported by Mikkilineni et al. (2004a)

and Ali et al. (2003, 2004). We showed that different printers

have different sets of banding frequencies that are dependent

upon brand and model. This feature is relatively easy to esti-

mate from documents with large midtone regions. However,

it is difficult to estimate the banding frequencies from the

text. The reason for this is that the banding feature is present

in only the process direction and in printed areas. The text

acts as a high energy noise source upon which the low energy

banding signal is added.

One solution for identifying intrinsic signatures in text,

previously reported by Mikkilineni et al. (2004b, 2005a,b), is
to find a feature or set of features, which can be measured

over smaller regions of the document such as individual text

characters. If the print quality defects are modeled as a texture

in the printed areas of the document, then texture features

can be used to classify the document. These types of features

can be more easily estimated over small areas such as inside

a text character.

An understanding of the EP (laser) printing process is nec-

essary in order to gain insight into the types of features that

can be used to describe these printers. The first thing to note

is that in the printed output from any printer there exist de-

fects caused by electromechanical fluctuations or imperfec-

tions in the print mechanism (Ali et al., 2003). Because these

‘‘print quality defects’’ are directly related to the printer

mechanism, they can also be viewed as an intrinsic signature

of the printer. The major components of these intrinsic signa-

tures are stable over time and independent of the consum-

ables in the printer.

Fig. 4 shows a side view of a typical EP printer. The print

process has six steps. The first step is to uniformly charge

an optical photoconductor (OPC) drum. Next, a laser scans

the drum and discharges specific locations on the drum. The

discharged locations on the drum attract toner particles,

which are then attracted to the paper that has an opposite

charge. Next, the paper with the toner particles on it passes

through a fuser and pressure roller, which melt and perma-

nently affix the toner to the paper. Finally, a blade or brush

cleans any excess toner from the OPC drum.

In EP printing, some causes of the artifacts in the printed

output are fluctuations in the angular velocity of the OPC

drum, gear eccentricity, gear backlash, and polygon mirror

wobble. These imperfections in the printer are directly tied

to the electromechanical properties of the printer and create

corresponding fluctuations in the developed toner on the

Table 2 – Printers used for classification

Manufacturer Model DPI

Brother hl1440 1200

HP lj4050 600

Lexmark e320 1200

HP lj1000 600

HP lj1200 600

HP lj5M 600

HP lj6MP 600

Minolta 1250W 1200

Okidata 14e 600

Samsung ml1430 600
train\test lj5m lj6mp lj1000 lj1200 E320 ml1430 ml1450 hl1440 1250w 14e Output class 

lj5m 296

lj6mp 1 256

lj1000 2 284

lj1200 7 2 289

E320 0 300 0
ml1430 1 299

ml1450 0 300 0
hl1440 0 259

1250w 0 292 5
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Fig. 7 – Classification results using 300 ‘‘e’’s from 12 point Times text documents.
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printed page (Lin et al., 2002; Chen and Chiu, 2001). The fluctu-

ations in the developed toner can be modeled as a texture.

Since the mechanical properties that contribute the most to

these fluctuations, such as gear ratios, do not change over

time, they can be used reliably to intrinsically identify

a printer. In the following sections, two techniques for identi-

fying the printer, which created a document, are described.

3.1. Halftone images

In EP printing, the major artifact in the printed output is band-

ing, which is defined as artifacts due to quasiperiodic fluctua-

tions in process direction parameters in the printer. These are

primarily due to fluctuations in the angular velocity of the OPC

drum and result in non-uniform scan line spacing. This

causes a corresponding fluctuation in the developed toner

on the printed page (Lin et al., 2002). The banding artifact ap-

pears as alternating light and dark bands perpendicular to the

process direction (the direction the paper passes through the

printer). The main cause of banding is electromechanical fluc-

tuations in the printer mechanism, mostly from gear back-

lash. Because these fluctuations are related to the gearing,

the banding frequencies present in the printed page directly

reflect mechanical properties of the printer.

To estimate the banding frequencies of an EP printer, test

pages with midtone graylevel patches created using a line

fill pattern were printed and analyzed (Ali et al., 2003). These

patterns were printed on a set of EP printers and then
each pattern was scanned at 2400 dpi. Each scanned image,

img(i, j ), was then projected horizontally to produce projðiÞ ¼P
j imgði; jÞ shown in Fig. 5a. Fourier analysis of the projections

was then obtained such as in Fig. 5, which shows spikes at

132 cycles/inch and 150 cycles/inch. Table 1 shows a list of

printers and their principle banding frequencies as found by

this method.

Detection and measurement of the banding signal in docu-

ments with large midtone regions, such as those with graphic

art, can easily be done using methods similar to that used to

produce Table 1.

3.2. Forensic characterization of printed text

Detection of the banding signal in text is difficult because the

power of the banding signal is small with respect to the text,

and because only a limited number of cycles of the banding

signal can be captured within the height of one text character.

Instead, all the print quality defects, including the banding,

are lumped together and considered a texture in the printed

regions of the document. Features are then extracted from

this texture to be used as an intrinsic signature of the printer.

Features are extracted from individual printed characters,

in particular, the letter ‘‘e’’s in a document. The reason for

this is that ‘‘e’’ is the most frequently occurring character in

the English language. Each character is very small, about

180� 160 pixels and is non-convex, so it is difficult to perform

any meaningful filtering operations in either the pixel or
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Fig. 9 – Power spectrum produced by the circuit model. The carrier frequency of the probe signal is 246 MHz.
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transform domain if the area of interest is only the printed

region of each character. To model the texture in the printed

regions, gray level co-occurrence texture features, as described

by Haralick et al. (1973) and Conners et al. (1984), as well as two

pixel based features are used (Mikkilineni et al., 2005a).

Gray level co-occurrence texture features assume that the

texture information in an image is contained in the overall

spatial relationships among the pixels in the image (Haralick

et al., 1973). This is done by first generating the Graylevel

Co-occurrence Matrix (GLCM). This is an estimate of the

second order probability density function of the pixels in the

image. The features are statistics obtained from the GLCM as

described by Mikkilineni et al. (2005a).

Fig. 6 shows the block diagram of the printer identification

scheme for text documents proposed by Mikkilineni et al.

(2005a). Given a document with an unknown source, referred

to as the unknown document, this process can be used to iden-

tify the printer that created it. For testing purposes, the Foren-

sic Monkey Text Generator (FMTG) described by Mikkilineni

et al. (2004a) is used to create random documents with known

statistics to be classified.

The first step is to scan the document at 2400 dpi with

8 bits/pixel (grayscale). Next, all the letter ‘‘e’’s in the docu-

ment are extracted. A set of features are extracted from

each character forming a feature vector for each letter ‘‘e’’ in

the document. Each feature vector is then classified individu-

ally using a support vector machine (SVM) classifier.

The SVM classifier is trained with 5000 known feature

vectors. The training set is made up of 500 feature vectors

from each of 10 printers listed in Table 2. Each of these feature

vectors generated are independent of one another.

Let J be the set of all printers {a1, a2,.,an} (in our work

these are the 10 printers shown in Table 2. For any f e J, let

c(f) be the number of ‘‘e’’s classified as being printed by printer

f. The final classification is decided by choosing f such that

c(f) is maximum. In other words, a majority vote is performed

on the resulting classifications from the SVM classifier.

Using this process with the GLCM feature set, a high classi-

fication rate can be achieved between the 10 printers listed in

Table 2. A classification matrix showing these results using

300 letter ‘‘e’’s from 12 point Times documents is shown in

Fig. 7. Each entry of the matrix is the number of ‘‘e’’s out of

the 300 in the test document that were classified as the printer

listed at the heading of its column.

In Mikkilineni et al. (2005b), the performance of this printer

identification technique was tested for other font sizes, font

types, paper types, and age difference between training and

testing data sets. The classification results in these cases

remain near 90% except for the case where the training data

are older than the testing data, in which case the classification

rate is near 70%.

4. Characterization of RF devices

In certain situations, it is of interest to remotely identify the

types of devices that are located in an environment. In order

to detect wireless devices, the environment must be probed.

This reduces to a problem of determining the properties of

an RF circuit by sending it a specially designed probe signal
and examining the re-emitted RF signal from the device. The

re-emitted signal contains unique distortion that is generated

by nonlinearities in the RF circuitry of the device. This distor-

tion is used to characterize the device.

The probe signal is specially designed to produce inter-

modulation distortion (IMD) products (Pedro and Carvalho,

2003) in the circuitry of the RF device. IMD products are pro-

duced when a two-toned probe signal encounters nonlinear

components in a device. A two-toned signal refers to a signal

composed of two sinusoids at different frequencies f1 and

f2¼ f1þD, where D is the two-tone offset value. A simplified

model of a nonlinear device is represented by a power series

(Steer and Khan, 1983) as defined in Eq. (3). In the frequency

domain, the power series is used to identify the frequency

locations of the IMD products (Generalized power series

analysis of intermodulation distortion in a mesfet amplifier:

simulation and experiment, 1987). The IMD product locations

are defined by Eq. (4) and the order of the IMD product is

defined as o¼ |n1|þ |n2| (Golikov et al., 2001), where n1 and n2

are integers

yðtÞ ¼
XN

i¼0

aixðtÞi (3)

fimd ¼ �n1f1 � n2f2 (4)

A circuit model is used to simulate the front-end of an RF

circuit, as shown in Fig. 8. The power series of order three is

used to model the nonlinearities in the circuit. The coeffi-

cients a0, a1, a2, and a3 characterize the circuit. Both filters

have the same frequency response characteristics. The noise

is modelled by a Gaussian Random Variable, N(m, s2). This

model generates a power spectrum using the fast Fourier

transform. The power spectrum contains IMD products that

are created by the power series equation. An example of this

power spectrum is shown in Fig. 9.

Five circuit models are created. The coefficients used in

each circuit model are shown in Table 3. Each coefficient is re-

sponsible for producing amplitude peaks of the IMD products.

The coefficients for Circuit 1 are chosen to model experimen-

tal data (Martone and Delp, 2006). The coefficients for the

Table 3 – Coefficient values used in circuit model, where
m [ 10L6

Circuit 1 Circuit 2 Circuit 3 Circuit 4 Circuit 5

a0 1900m 190 000m 19m 3800m 2850m

a1 3m 300m 0.03m 6m 4.5m

a2 1.5m 150m 0.015m 3m 2.25m

a3 1.5m 150m 0.015m 3m 2.25m

Table 4 – Feature extraction details

Feature Location IMD order Feature value

1 f1 1 y1¼V ( f1)

2 f2 1 y2¼V ( f2)

3 2f1� f2 3 y3¼V (2f1� f2)

4 2f2� f1 3 y4¼V (2f2� f1)
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remaining circuits are chosen based on the coefficients of Cir-

cuit 1. The coefficients for Circuit 2 are chosen to create ampli-

tude peaks far greater than those produced by Circuit 1. The

coefficients for Circuit 3 are chosen to create amplitude peaks

far less than those produced by Circuit 1. Circuit 4 and Circuit

5 create amplitude peaks similar to the amplitude peaks of

Circuit 1.

Multiple power spectra are generated by varying the car-

rier frequency f1 in the probe signal. The energy values in

the power spectra are dependent on f1. A power spectrum is

therefore denoted as Sf1
. f1 ranges from 241 MHz to 499 MHz

in increments of 0.5 MHz (this creates 517 power spectra).

The amplitude values in each power spectrum are denoted

by y, where yðfÞ ¼ Vf1
ðfÞ. The function Vf1

ð,Þ returns the am-

plitude at frequency f, where f ranges from 240 MHz to

500 MHz.

Two data sets are created for each RF circuit model. Data

set 1, denoted as DS1j, contains 517 spectra for each circuit j.

The noise created for the power spectra of data set 1 is

N(2, 2.5).1 Data set 2, denoted as DS2j, contains 517 spectra

for each circuit j. The noise created for the power spectra

of data set 2 is N(0, 2).

4.1. Feature extraction and results

For a given power spectrum, four amplitudes are extracted

and used as features. The amplitudes are extracted based on

the locations of the first and third order IMD products. Feature

extraction details are shown in Table 4. The four features are

then used to form a feature vector as follows: Y¼ [y1 y2 y3 y4].

A feature vector is formed for each power spectrum in DS1j

and DS2j. The average feature values for DS1j are shown in

Table 5. This table shows that the features from Circuits 4

and 5 are close in value. The average feature values for DS2j

are similar (within 2 dBm) to the values in Table 5.

Six classification systems are used to classify the feature

vectors: SVM, binary tree classifier (BTC), distance classifier

(Fukunaga, 1990), Gaussian maximum likelihood classifier

(GMLC) (Hoffbeck and Landgrebe, 1995), Parzen-window clas-

sifier, and a K nearest neighbor (K-NN) classifier. The feature

vectors from DS1j are used to train the classifiers. The feature

vectors from DS2j are used to test the classifiers.

The classification results are shown in Table 6. These

results are explained by examining the mean of each feature

for each circuit as shown in Table 5. The average feature

values for circuits 2 and 3 are well separated thereby leading

to a perfect classification. The average feature values between

Table 5 – Average feature values in data set 1 (all entries
are in units of dBm)

Circuit y1 y2 y3 y4

1 �36.09 �36.03 �50.27 �50.07

2 3.91 3.97 �10.27 �10.07

3 �76.11 �75.94 �90.31 �90.06

4 �30.12 �30.09 �44.22 �44.10

5 �32.58 �32.67 �46.69 �46.63

1 Mean and variance of the noise are in units of dBm.
Circuits 1, 4, and 5 are close and result in classification errors.

The majority of the errors are for Circuits 4 and 5 since their

amplitudes are similar.

5. Conclusion

Forensic characterization of devices is important in many

situations today and will continue to be important for many

more devices in the future. We have presented an overview

of current characterization techniques for digital cameras,

printers, and RF devices. All of these techniques follow the

general forensic characterization framework shown in Fig. 1.

This framework, we believe, can be applied to many other

types of devices and systems.
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