
Low-Threat Security Patches and Tools

Mohd A. Bashar�, Ganes h Kr is hnan, Mar kus G. Kuhn,

Eugene H. Spa�or d, S. S. Wags ta�, Jr .

COAST Labor at or y

Depar tment of Comput er Sci ences

Pur due Uni ver s i t y

1398 Depar tment of Comput er Sci ences

Wes t Laf ayet t e , IN 47907{1398

fkrishg,kuhn,spaf,sswg@cs.purdue.edu

Ab s t r a c t
We consi der the probl emof di st ri but i ng potent i al l y

dangerous i nf ormat i on to a number of compet i ng par-
t i es. As a prime exampl e, we f ocus on the i ssue of di s-
t ri but i ng securi t y patches to sof tware. These patches
impl i ci t l y contai n vul nerabi l i t y i nf ormat i on that may
be abused to jeopardi ze the securi t y of other syst ems.
When a vendor suppl i es a bi nary programpatch, di f -
f erent users may recei ve i t at di �erent t imes. The di f -
f erent i al appl i cat i ont imes of the patch create a wi ndow
of vul nerabi l i t y unt i l al l users have i nstal l ed the patch.
An abuser mi ght anal yze the bi nary patch bef ore oth-
ers i nstal l i t . Armed wi th thi s i nf ormat i on, he mi ght
be abl e to abuse another user's machi ne.

Arel at ed si tuat i on occurs i n the depl oyment of se-
curi t y tool s. However, many tool s wi l l necessari l y en-
code vul nerabi l i t y i nf ormat i on or expl i ci t i nf ormat i on
about securi t y \l ocal i sms. " Thi s i nf ormat i on may be
reverse-engi neered and used agai nst syst ems.

We di scuss several ways i n whi ch securi t y patches
and tool s may be made saf er. Among these are: cus-
tomi zi ng patches to appl y to onl y one machi ne, di s-
gui si ng patches to hi nder thei r i nterpretat i on, synchro-
ni zi ng patch di st ri but i on to shri nk the wi ndow of vul -
nerabi l i t y, appl yi ng patches automat i cal l y, and usi ng
cryptoprocessors wi th enci phered operat i ng syst ems.
We concl ude wi th some observat i ons on the ut i l i t y and
e�ect i veness of these methods.

1 Introduct i on
1 . 1 Th e g e n e r a l p r o b l e m

Suppos e Zel da wi s hes t o di s t r i but e s ens i t i ve i nf or -
mat i on t o Al i ce and Bob. Ther e ar e s ever al pot ent i al
pr obl ems i n t he pr oces s t hat we know how t o man-
age: pr event i ng ot her s f r omr eadi ng t he i nf ormat i on,
pr event i ng ot her s f r omal t er i ng t he i nf ormat i on, and
mar ki ng t he i nf ormat i on i n s uch a way t hat Al i ce and
Bob knowwho s ent i t . We knowhowt o s cal e t hes e s o-
l ut i ons a�or dabl y f or many s i t uat i ons . We al s o know
how t o con�gur e t he s ol ut i ons t o handl e cas es wher e

�Cur r ent addr es s : Al amadanga Kus ht i a, Bangl ades h.

Zel da s ends f r equent mes s ages t o di �er ent , but not
neces s ar i l y di s j oi nt , s et s of us er s , e . g. , mes s age 1 t o
Al i ce , Bob and Car ol ; mes s age 2 t o Al i ce ; and mes -
s age 3 t o Bob, Car ol and Davi d.

We have i dent i �ed a cl as s of s i t uat i ons t o whi ch
t her e ar e as yet no f ormal i zed s ol ut i ons . Thes e s i t -
uat i ons occur when Zel da di s t r i but es i nf ormat i on t o
Al i ce , Bob and ot her s who may be pot ent i al r i val s .
The i nf ormat i on o�er s each of t hema compet i t i ve ad-
vant age i f t hey r ece i ve and act on t he i nf ormat i on be-
f or e one of t he ot her s . Exampl es i nc l ude di s t r i but -
i ng �nanci al mar ket i nf ormat i on t o i nves t or s , and pr o-
vi di ng bi ddi ng s pec i �cat i ons t o pot ent i al cont r act or s .
Par t of t hi s pr obl emi s det ermi ni ng howt o di s t r i but e
and pr ot ect t he i nf ormat i on i n s uch a way as t o r e-
duce or e l i mi nat e t he t i me dur i ng whi ch t he di �er ence
i n knowl edge may be expl oi t ed. Anot her maj or par t
of t he pr obl em i s how t o s cal e any s ol ut i on t o l ar ge
number s of r ece i ver s , and how t o accompl i s h t hi s i n-
expens i ve l y.

Of par t i cul ar i nt er es t t o us ar e t he cas es of di s -
t r i but i ng s ecur i t y- r e l evant updat es and pat ches t o
s of t war e . When a vendor di s t r i but es a s ecur i t y- r e l at ed
pat ch t o cus t omer s , i t cont ai ns i mpl i c i t i nf ormat i on
about t he vul ner abi l i t y i nvol ved, and per haps of t he
expl oi t i t s e l f . The pat ch mus t be s ent t o cus t omer s
and us er s i f t he vul ner abi l i t y i s known t o ot her s . How-
ever , t he nat ur e of pat ch di s t r i but i on i s s uch t hat
many us er s may not r ece i ve (or us e) pat ch i nf orma-
t i on at t he s ame t i me as ot her s . Ther e ar e gl obal
di �er ences i n t i me zones , wor k weeks , hol i days , wor k-
l oads , and compet ence . Dur i ng t he t i me between t he
�r s t r ece i pt of t he pat ch, and t he appl i cat i on of t hat
pat ch t o t he l as t r emai ni ng machi ne needi ng i t may be
a l ar ge wi ndow of vul ner abi l i t y. Our concer n i s how
t o r educe t hi s vul ner abi l i t y, r ai s e t he cos t of expl oi t -
i ng i t , and ot herwi s e make t he pr oces s s af er f or al l t he
r ec i pi ent s .

The r emai nder of t hi s paper di s cus s es as pect s of
t he gener al s et of pr obl ems i n t he cont ext of vendor
pat ch di s t r i but i on. Al t hough t hi s does not have al l
t he char act er i s t i cs pr es ent i n t he gener al pr obl em, i t i s

onewithwhichmost peopleare familiar, andpresents
su�cient complexityandrisktowarrant concern. In
addition, we discuss howsome of our solutions may
be appliedto a closely-relatedproblem: that of pro-
tecting security tools developed or employed locally
toeachsite. Eachtool set contains animplicit list of
vulnerabilities|especiallyif customizedfor local con-
ditions and concerns|that may be exploited if the
tools are obtainedbyanother andanalyzed. Infact,
as noted in [8] and [5], the tools may be modi�ed
andthenusedas automatedattackmechanisms. This
represents a di�erent aspect of the general problem:
onewheredistributionmayalsooccur tounauthorized
parties of unknownnumber, andwhere thewindowof
vulnerabilitymaybearbitrarilylarge.

1. 2 Summary of poss i bl e sol ut i ons

This paper investigates howpatchdistributionand
securitytool distributioncanbe made safer. We ex-
plore methods of protecting this information during
distributionandemployment, anddiscuss the limita-
tions of any such protection. Although we suspect
that it maybe impossible to guarantee the complete
safetyof distributedvulnerability-relatedinformation,
we demonstrate that there maybe e�ectivemeans of
reducingthe riskassociatedwithsuchdistributions.

The cruxof the patchdistributionproblemis this:
howare we to distribute the solution of a problem
without betraying any information about the prob-
lem? This isdi�cultbecausethesolutionof aproblem
byits naturecontains clues about theproblem. Thus,
itmaywell be that thepatchdistributionproblemwe
consider cannot be solved in its entirety. Therefore,
we must also consider ways to reduce the associated
risk.

Inthefollowingsections, weconsider thesemethods
of reducing the risks accompanying security-relevant
patchdistribution:

� We can \customize" eachpatch or tool so that
eachone di�ers frommachine tomachine.

� Wecanintroduce \noise"tomaskchanges.

� We can synchronize patch distribution and ap-
plicationso that all users receive andinstall the
patchat the same time.

� Wecanuse automatedpatching: Part of the op-
erating systempatches itself whenit receives an
authenticated command over the network from
the vendor.

� Use cryptographicmethods toobscure patches.

Inwhat follows, weclassifysolutions as either soft-
ware or hardware solutions. The software solutions
are expectedtorunonstandardcomputer hardware.
Thehardwaresolutions requireeachcomputer tohave
special hardware or �rmware.

2 Sof tware sol uti ons
Thesesolutions will runonordinarycomputers ex-

cept that the vendor's computer mayrequire a good
randomnumber generator that might involve some
special hardware (cf. [4]). Also, one of the solutions
insection2.3uses time locks, whichmight use special
hardwaretosolveapuzzle. But this requires onlythe
machines usedinthe solution, andnouser machines,
tohave special hardware.

2. 1 Customi zat i on
Eachsite ormachinehas its ownuniqueOperating

System(OS) binarycode. Thevendor's compiler uses
aGoodRandomNumber Generator (GRNG) to de-
termine code arrangement, register assignment, vari-
able assignment, etc. 1 The vendor saves the sequence
fromtheGRNGusedfor eachsite sothat it canpre-
pare a patchthat applies only to that one particular
site. The patch is compiledusing the same random
numbers as themodule it �xes.

As di�erent sites have slightlydi�erent OS's, they
might have di�erent forms of a awandrequire dif-
ferent patches. Thus, if amalicious user looks at the
patchor compares the oldandnewbinaries to learn
what problemthe patch�xes, thenshemight not be
abletousethis knowledgetobreakintoanyother sys-
tems because perhaps onlyher systemhadthat form
of the bug. For example, if the awwere a bu�er
overow, thendi�erent versions of theOSmight have
di�erent o�sets fromthe bu�er toavariable or stack
returnaddress tooverwrite. However, someOSbugs
(designerrors)mayhavesuchgeneral naturethat they
applytoall (ormany) versions of theOSregardless of
the use of the GRNGwhenit was compiled. Thena
malicious user couldharmsystems that installedthe
patch later. These randomvariations in code for a
givenprogramare used also in section 2.2 Obfusca-
tionbelow.

2. 2 Obf uscat i on
Thepatchis disguised, but not enciphered, tohin-

der, but not completelyprevent, reverseengineering.
As insection2.1, Customization, thevendor's com-

piler uses a GRNGto determine code arrangement,
make register assignments, andother changes. How-
ever, nowthe patch is compiled using newrandom
numbers. The GRNGcould also be used to intro-
duce unnecessarily complex expressions by expand-
ing the parse tree in those portions of the OS that
are not time-critical. These changes wouldmake the
code muchmore di�cult for the attacker to analyze,
or possiblyrender the code impossible tounderstand.
Indeed, optimizationitself mayprovide su�cient ob-
fuscationof the program. Incontrast to section2.1,
noweachsite has the same versionof the OSgener-
ated by the same sequence fromthe GRNG. When
the vendor �xes the aw, he recompiles the OS us-
ing a newsequence fromthe GRNG. The malicious
user who compares the oldandnewbinary �les will

1A pseudo-randomnumber generator i s not appropr i ate, as

di scovery of the generator may al l ow an attacker to reproduce

the sequence of perturbat i ons i n the compi l at i on. Thi s comment

appl i es to the other schemes were we descr i be use of a GRNG.

�ndthousands (or more) of di�erences andthus have
greatdi�cultydiscoveringthesecurityaw. Thisway,
reverseengineeringthepatchbecomes almost as di�-
cult as reverse engineering the entire original vulner-
able version.

Ina slight variationof this idea, the changes are
drawnfroma database of harmless variations of the
compiledcodeconstructedwhentheOSwascompiled.
Almost all of thesemodi�cations are composedof se-
mantically equivalent changes of register assignment
or order of executionof commutativeoperations (e.g.,
b+a instead of a+b). Only a few, and possible no,
changes ina set repair a real securityproblem. The
malicious user examining the set of changes would
havetoexpendconsiderable e�ort eachmonthto�nd
asecurity�x, andsomemonths she would�ndnoth-
ing.

2. 3 Synchroni zed patch i nstal l at i on
Weassume that all the computers are onnetworks

andeachnetworkis connectedto some site whichin
turnis connectedtoacommonnetwork(e.g., adedi-
catedprivatenetwork, or theInternet). Asiteisunder
asingle administrative control andmaycontainmul-
tiple networks. Inone variation, eachsite has asecu-
rityclass as well. Higher securityclasses are assigned
to sites withgreater need for protectionandsmaller
chance of having malicious users. Every site has a
locally-trustedmachine designatedas the local patch
distributor throughwhichencryptedpatches andkeys
aredistributedtothe local computers.

Onthe next higher level inthe distributionhierar-
chy, there is a set of machines designatedas regional
distributors, eachof whichconnects logicallytotheset
of local distributors. The regional distributors, along
witharoot distributor, maybemaintainedbyaven-
dor, a cartel of vendors, or some independent body
servingthe industry. 2

Whena newpatch is issued, the root distributor
produces several encryptedversions of it usingdi�er-
ent keys|one keyfor eachsecurityclass|andsends
the encryptedpatches andkeys signedto all the re-
gional distributors. Regional distributors then send
the appropriate version of the encrypted patches to
all local distributors under their respective domains,
andthe local distributors forward it to all machines
withintheir respective sites. Having distributedthe
encryptedpatch, the regional distributors coordinate
among themselves to ensure that all sites with high
security class have receivedthe patch. Thenthe re-
gional distributors give out the keys to the local dis-
tributors in successive waves|sites with the highest
security class receive their keys �rst and those with
the lowest securityclass receive it last. The regional
distributors mayagaincoordinate among themselves
to ensure that all higher security sites have received
thekeys beforedistributingkeys tothe lower security
sites.

The above scheme does not work for a machine
that is either switchedo�or temporarilydisconnected

2We should note that this l oosel y corresponds to the current

l ogi cal organi zat i on of FIRST, the Forum of Inci dent Response

and Secur i ty Teams.

fromthenetworkwhenthepatchandthekeyaredis-
tributed. Tocorrect the situation, whenthis machine
boots upor reconnects backtonetworkandbefore it
executes anyother process, it contacts the local dis-
tributor andreceives anypatchthat might havebeen
issuedduringthe interveningperiod.

In a variation of this approach the patch is en-
ciphered and sent to all sites or made available by
ftp fromthe vendor. With it are included(inplain
text) instructions toinstall it at noonUniversal Time
(GMT) onacertainday, at whichtime thekeytothe
cipher will be revealed. Cli�Stoll �rst describedthis
scenario [12] andsuggestedthat one goodwayto re-
veal thekeywouldbetopublishit inanational news-
paper suchasUSA Today or theNew York Times. To-
daytheWWWmight beamore appropriatemedium
due to its worldwide coverage. Onemight use some
formof timelocks(�rst suggestedin[11] andindepen-
dentlydevelopedin[9]) toreveal the key(or keys) at
the same time indi�erent places.

One approach to time locks is to have each time
lock server solve an inherently sequential \time lock
puzzle" whichrequires a precise amount of comput-
ing tosolve, andwhose solutionis the key. This sort
of time lock puzzle probably would not be suitable
because some computers are muchfaster thanothers
andaclose approximationto synchronyis important
in patchdistribution. For example, one might be a
personal computer andanother aCruncher [3], which
cansolve\timelockpuzzles"requiringarithmeticwith
largeintegershundredsof times faster thanaPCcould
solve it. Inaddition, the \time lockpuzzle"must be
distributed synchronously, which is the same as the
original problemof distributingthe patchkeys.

Another approachto time locks is to use trusted
agents. These are tamper proof computers that pub-
lishpreviouslysecret valuesperiodically. Theseagents
can synchronize their internal clocks by a crypto-
graphic transactiononce everyfewdays. Besides re-
vealingsecret values periodically, theseagents alsore-
spond to requests of the form, \Here are values for
M and t. Please returnE(K;M), the encryptionof
messageM under the secret valueK whichyouwill
reveal at future time t ." To use a time lock agent
to distribute a patch, the vendor wouldmake sucha
request to each time lock agent withM = the key
for the patch. Thenthe vendor wouldsendthe mes-
sage(agent id; t ; E (K; M))toeachsiteservedbythat
agent. At time t , the site wouldgetK fromits time
lockagent, use this todecipherE (K; M), thenuseM
todecipher the patch, and�nallyinstall the patch.

Avariationof these trustedagents wouldbe for a
standardtime service suchasWWV, DCF77or NTP
to broadcast a signed time stamp periodically, say,
once per hour. The trusted agent is a smart card
whichcontains the public keyof the time service and
the patch key. It reveals the patch key as soon as
it receives the signed time stamp for a certain hour
(or a later hour). The smart cardhas a sessionkey
knownonlytoit andthe vendor, andthis keyis used
to loadthe patchkeyintothe smart card, alongwith
the releasehour.

2. 4 Automati c Patch Appl i cat i on
Part of the OSautomatically installs properlyau-

thenticatedpatches that it receives fromthe vendor
over the network. Of course, the patchmessage au-
thenticationwouldhave to be of the highest quality
andtheuser wouldhavetotrust thevendor. Thepart
of theOSthat installs patches wouldreplace some of
theOSbinary�les. If necessary, it wouldthenreboot
thesystem. Oneproblemis that di�erent systems are
con�gureddi�erently, andonemight havetoconsider
thiswheninstallingcertainpatches andeither not ap-
ply themor apply themdi�erently on di�erent sys-
tems. The user might not evenknowthat his OShad
beenpatchedunless he receivedmail about it or he
monitoredthe lastmodi�cationtimeof theOSbinary
�les. Special arrangement wouldhave tobe made to
patchmachines not connectedtoInternet.

Some users wouldworryabout having anOSfea-
ture that allows arbitrary modi�cation of their OS
uponreceipt of a special message fromanother com-
puter. Manyusersmightnotcare. Someone(theman-
ager or the automatic patchapplicator) should save
a copy of the old unpatchedOS binary �le in case
thepatchbreaks somethingandthe newOSdoes not
work. However, this copywouldneedtobe savedlo-
cally|the patchedversionmaynot runsowemust
allowthe remotepatcher torevert the oldOS.

This is the only patchapplication technique that
canhelpsites whose managers are inconsistent about
installingpatches, or where issues of scale are signi�-
cant. Systemadministratorsareoftenoverloadedwith
more important work, or ignorant of security issues,
or both. Patches must of course only be installed if
theyhavebeenauthorizedbysomehighlytrustworthy
entity, andif automatic tests before the patchinstal-
lationhave shownthat the patchis unlikelyto cause
anytroubles. After the patchhas beenperformed, a
number of automatedtests of the �xedfunctionality
shouldbeperformedandthe patchshouldbeundone
automaticallyif these tests fail.

3 Hardware sol uti ons
The following solutions require all user computers

to have special hardware or �rmware not found on
conventional machines. Speci�cally, someor all of the
instructions of theOSwouldbe enciphered|not sim-
plyencoded|andthe special hardware or microcode
woulddecipher some or all instructions either when
theyare fetchedfrommainmemoryor whentheyare
loaded fromdisk. In the latter case, mainmemory
wouldhave tobe protectedfromthe users view. For
example, the user could not get a core dump. By
having some the code enciphered, comparisons and
analysis of changes becomes muchmore di�cult or
impossible withinanylimitedtime period. Software
protection is not su�cient. The hardware must be
physically protected, for example, froma malicious
user attachingalogic analyzer toabus.

3. 1 Enci phered Operat i ng System
All OSbinary �les are encipheredbythe vendor.

Ablock cipher wouldbe best in this application, to
providerandomaccess totheencipheredinstructions.

Users receive onlythe encipheredbinary�les. Torun
the OS, either (a) the encipheredOS is loaded into
mainmemory and the microcode or hardware deci-
phers eachinstructionas it is fetchedor (b) theentire
OS is decipheredwhen it is loaded intomainmem-
ory anduser access to it is deniedby locating both
RAMand processor in a tamper resistant module.
Thepatchis encipheredwiththe samekeyas theOS
sothat it mayreplace theproper OSbinary�les. En-
cipheringmakesthepatchunintelligiblesothat its in-
stallationneednot be synchronized. The cipher must
be simple so that performance will not be degraded.
Theblocksizemust be largeenough(e.g., � 128bits)
to prevent cryptanalysis with a logic analyzer. The
keymight be the same for everymachineor eachma-
chinemight have its ownkey. The latter choice com-
plicates patchdistributionbut provides excellentcopy
protection for the OSas well as for applicationpro-
grams that usethesamemechanism. TheCPUwould
fetchinstructionseither directlyfrommemoryor from
memory throughdecoding hardware. Amultiplexor
chooses the source of the instruction.

3. 2 Certai n Modul es Enci phered
Asmall number of OS instructions, suchas a se-

curitymodule or part of a patchthat wouldreveal a
security hole, are enciphered. To execute programs
e�ciently, the enciphered instructions are placed in
one segment anda segment ag tells whether its in-
structions are encipheredor not. Seeing this ag, the
instructiondecoder woulddecipher instructions from
this segment beforeexecutingthem. Sinceonlyrarely
wouldinstructions have tobe deciphered, amore se-
cure (andprobablyslower) cipher couldbe usedthan
if all instructions were encipheredas insection3.1.

4 Methods of Customi zati on and Ob-
f uscati on of Bi nary Fi l es

In this model, which we summarized in sections
2.1and2.2, the vendor carries out certaincode rear-
rangement and/or modi�cations sothat the resulting
binary executable looks quite di�erent fromthe un-
patchedversion, while remaining functionallyequiva-
lent except for the patch. Here are some of the ways
inwhichthese rearrangements or modi�cations may
be performed:

4. 1 Intra-bl ock code rearrangement
There is normally more than one way in which

we can order the independent computations inside
a basic block so that the resulting object code has
the optimumcost interms of instructioncounts and
load/stores. Such orderings are normally obtained
fromtopological sorts of the dependence graphfor a
block. Aho, Sethi and Ullman [1] present an algo-
rithmtogenerateoptimal orderings for evaluatingthe
nodes of aDAGrepresenting the basic block. When
applyingapatch, we canreorder the computations in
someof thebasicblockssothat thea�ectedblocksare
still optimal, but lookverydi�erent fromthe original
blocks, especiallysince the instructionlevel optimiza-
tionwill often select verydi�erent instructions after
some reordering.

4.2 Change of control ow
Wecanalter the threadof executioninaprogram

without changing its functional behavior by altering
theorder of executionof someof the independent ba-
sic blocks, thus altering the look of the binary exe-
cutable. Inthe global dataowanalysis phaseduring
compilationof a program, we cangenerate a depen-
dence graph betweenbasic blocks. Any ordering of
the basic block execution sequence produced by the
topological sort of thedependence graphwill be func-
tionallycorrect.

Duringpatchapplication, we canopt for analter-
native executionsequence (as producedbyatopolog-
ical sort) for someof the basic blocks throughjumps,
therebyalteringthe binaryexecutable. Onemust de-
velopanalgorithmto analyze the e�ect of the mod-
i�edexecutionsequence onthe register contents and
tochange the executable code accordingly.

4. 3 Register and vari abl e renami ng
We can rename all the data registers used in the

program. Interchangingsome variable addresses con-
sistentlywill also change the appearance of the pro-
gram. Usuallysecuritypatcheschangeonlyafewlines
of code. Sometimes only the type of a variable is
corrected, one line of code is added or removed, or
a branchcondition is slightlymodi�ed. Because the
samecompiler andthe same compile options are usu-
allyusedto create boththe oldandnewexecutable
binary, we will observe only a fewbytes of changed
machinecode. Thecodeproducedbycompilers allows
easyrecognitionof subroutine boundaries. Therefore,
evenif part of the machine code has been relocated
andmany absolute addresses in the code have been
changed, simple lengthcomparisons andsearches for
the longest commonsubsequencewill quicklyidentify
those subroutines that have beenmodi�ed. This al-
lows the attacker toconcentrateher reverseengineer-
ing e�orts onto a fewsubroutines, whichcan save a
lot of time.

We suggest therefore the development of the fol-
lowingmechanism. Take the code generationmodule
of anexistingcompiler andaddalgorithms that allow
manyvariations inthe machine code produced. The
codegeneratorandoptimizer of acompiler oftenmake
anarbitraryselectionamongmanydi�erent machine
instructionsequences that all ful�ll the same purpose
andthat are comparable inmemoryandruntimee�-
ciency. If these alternativemachine sequences canbe
identi�edbythe code generator, the selectionof the
machine code sequence actually used can be deter-
minedbyarandomnumber generator (GRNG). This
way, byprovidinganewseedvalue for theGRNGas
acompiler option, we cancause the compiler togen-
erate a newexecutable binary, whichshows inmost
bytes signi�cant di�erences fromanyexecutable gen-
eratedpreviouslyfromthe sameor anysimilar source
code.

The followingmechanisms can(among others) be
usedtovarythe output of machinecode:

� Memorylocations of variables canbe permuted.

� Sequential instructions canbe permuted, as long
as this will not alter theprogramsemantics. The
optimizer keeps a great deal of data about how
instructions dependoneachother, therefore this
shouldnot bedi�cult to�gure out.

� The order of procedures inthe �nal code canbe
permuted.

� Code segments that are not markedas being in
some time-critical inner loop can be generated
using suboptimal but semantically identical ma-
chinesequences.

� The memory layout of code canalso be reorga-
nizedbyinsertingmanyjumpcommands.

� Simple boolean expressions can be replaced by
more complicatedequivalent expressions. If the
attacker tries todevelopautomatic software that
is supposedtoreversethis arti�cial complication,
shemight quicklyface anumber of NP-complete
problems.

The compiler shouldsupport a \critical" directive
to signal especially time-critical parts of the source
code toexclude themfromsuboptimal modi�cations.
For therest of thesoftware, it is perfectlyacceptableif
the pseudo-randomvariations inthe code generation
process cause the code produced to take some more
time andmemorythanwiththe normal optimization
techniques.

If the GRNGseedvalue is changedfor everydis-
tributedsoftware version, the attacker will �ndthat
reverse engineering only the di�erences between the
oldandnewversions is at least as di�cult as reverse
engineeringthe oldsoftwareversionalone andsearch-
ing init for securityproblems. This way, the goal of
securepatchdistributionwill havebeenaccomplished
nicelyfor binary�les.

5 Hardware-supported decrypti on:
cryptoprocessors

Withspecial hardware capable of decodinganen-
cryptedinstructionbefore feeding it to the CPU, we
maybe able toapplyanencryptedpatchdirectly to
thebinaryexecutable. Thiswouldpreventauser from
seeingthedecryptedversionof the patch.

Apatchwill beencryptedandbeappliedtothebi-
naryexecutable inthe encryptedform. CPUcontrol
logic recognizes anencryptedinstructionbyaspecial
marker onthe segment. In the instructiondecoding
phase of the executioncycle for anencryptedinstruc-
tion, theroutineinstructiondecodingwill bepreceded
bya decrypting stepinwhichthe encryptedinstruc-
tionwill be decoded by a hardwareddecoding unit
withanembeddeddecryptionkey.

Toavoidhavinga longer clockcycle time because
of the decryptingphase, wemayprefetchsome of the
encryptedinstructions andpipeline themthroughthe
decryption unit. To keep the decryption pipelining
scheme simple, wemayleave the branchinstructions
inthepatchunencryptedinthe �rst place.

Apartfromthecostof theadditional hardware, this
schemerequires somecentral authoritytodecidewhat
the encryptinganddecryptingkeys will be.

Whywouldusers buya cryptoprocessor |ama-
chine that executes encryptedprograms? One mar-
keting advantage is that software wouldbe cheaper
for a cryptoprocessor because the vendor knows that
it canbe usedononlyonemachine. Copyprotection
is enforced.

The ideal solutionwould somehowhave to avoid
havinganyoneoutsidethesoftwaredevelopment team
get access to the plain text version of the software,
boththe oldunpatchedandthenewpatchedversion.
That wouldcertainlyprovide the highest level of se-
curityandwouldat thesametimeallowe�ectivesoft-
ware piracyprevention. Mechanisms that completely
prevent (evenhardware) access to the executedsoft-
ware include:

� Secure main board packages as implemented in
the ABYSS system[13]. The CPU, the RAM,
andsome peripheral devices are all enclosedina
tamper-proof package. Software is stored inen-
cryptedformonaharddiskoutside the security
shieldor loadedinencryptedformoveranetwork.
The(machinespeci�c) decryptionkeysarestored
inabatterybu�eredRAMinsidethesecurepack-
age. The software is decryptedwhenit is loaded
fromexternal storage intothe RAM. The secure
packageprevents hardwareobservationof thede-
crypted software in the systemRAMor on the
systembus lines. The operatingsystemkernel is
also loadedencryptedinto the machine andcan
thereforenot bemodi�edtoreleasetheprotected
software.

� Cryptoprocessors perform the decryption be-
tweenthememoryinterfaceof theCPUchipand
the on-chipcache. The securitypackage is lim-
ited to the CPUpackage, whichsimpli�es man-
ufacture and servicing, and avoids memory ca-
pacity limitations. Cryptoprocessors have �rst
been described in [2] and existing implementa-
tions include the DS5002FPmicrocontroller and
theiPowersecurityprocessor. Another important
referencefor cryptoprocessors is [6]. Acryptopro-
cessor concept suitable for operationinamodern
multitaskingworkstation, inwhichit is not even
necessary to trust the operating system, is the
TrustNo1processor concept describedin[7].

Althoughcryptoprocessors provide in our opinion
the basis for the most secure patchdistributioncon-
cepts, theyareat themomentmoreof academicinter-
est, becausetheyarecurrentlyavailableonthecivilian
marketonlyformicrocontrollerapplications andthere
exists todaynocryptoprocessor for personal computer
applications. Therefore, the cryptoprocessor concept
shouldbeconsideredasanideal solutionandshouldbe
documentedas areference for systematic comparison
withother patchdistributionconcepts, but consider-
ing the lackof existing hardware, these concepts are
probablynot what we shouldrecommendinthe near

future. Wecouldof course consider developingsucha
chipbasedonanexistingmicroprocessor design.

6 The costs
It is not easytomodifya compiler tomake it use

aGRNGtodetermine code arrangement, register as-
signments, etc. Thus, the methods describedin sec-
tion2.1, Customization, andsection2.2, Obfuscation,
have ahighcost intool development. Customization
has the additional cost of compilingtheprogramonce
for eachcustomer, eachcompilationusinga di�erent
seed for the GRNG. If there are tens of thousands
of customers and hundreds of thousands of lines of
code to be compiled, this cost will preclude the use
of customization. Customizationcouldbemade feasi-
ble bycustomizing the OSonly for a special class of
customerswhopayfor this service. Thevendorwould
compilethepatchonceforeachspecial customer(each
timewithauniqueGRNGseed) andoncemore for all
regular customers together (using one more GRNG
seed). Incontrast, obfuscationrequires that the OS
be compiledonlyonce per release. One vendor (HP)
maintains adatabase of customer options that might
serve as a model for the record keeping needed for
customization.

Amajor cost of synchronizedpatchinstallation, as
described in section2.3, is the creationof the patch
distributionhierarchy. Of course, patches are already
distributednow. Perhaps aslight modi�cationof the
present systemwould su�ce. If cryptography is to
be used, then an appropriate cryptosystemmust be
chosenand implemented; the political andkeyman-
agementissues likelymakethis solutionunworkableat
present, especially for a global customer base. Like-
wise, time locks would add to the cost if they were
used.

One cost of automatic patch application, as de-
scribed in section 2.4, is the development of the OS
module that applies patches and the authentication
systemit uses. Another cost is againthe creationof
apatchdistributionhierarchy. The installationmod-
ulemust knowwhichfeatures of theOSwereselected
when the OSwas created so that it will not try to
patchanon-existentmodule. Itmustalsoknowwhich
version of the OS is currently running. Customers
shouldbeable toundoapatchthat theydonot want.
The people we have askedabout this approachover-
whelmingly said they did not want automatic patch
applicationontheir systems, either because of secu-
rityriskor becausethehighfrequencyof modi�cation
hinders isolationof fault causes.

The cost of the hardware solutions are the special
hardware, �rmware or software to decipher instruc-
tions and/or protect mainmemory fromdirect user
access. This includes the cost of tamperproof pack-
aging. There are also the costs of the cipher, of key
management, andof encipheringmanycopies of the
OS. The latter cost maybe as prohibitive as that of
compiling many copies of the OS as in section 2.1.
What if a customer bought many systems? Would
they have di�erent keys or the same key? Anaddi-
tional cost of the methoddescribed in section3.2 is
the redesignof theOStoput all securityfunctions in

one segment.

7 Present practice
What dovendors currentlydoabout patches? We

askedsome, andhere is asummaryof their responses.
(All of thevendors whorespondedspokewithus only
onconditionof anonymity.)

One vendor simply issues the patch and forgets
about it. If the patch�xes a securityaw, the patch
startswithamessage like, \This patch�xes asecurity
aw. Install it nowor else the consequences are your
problem." This vendor estimates that about half of
its customers actuallyinstall patches.

Another vendor built aprototype of anautomatic
patchinstallationsystemsimilar tothat describedin
section2.4. Itwasneverput intousebecauseasurvey
of their customers foundthat theywouldhavenothing
todowithit. This vendor uses the following system
todistribute patches: Aservice agent calls customers
whopayfor patchserviceandtells themwhat patches
are available. Over the telephone, the customers se-
lectthepatches theywant, andtheserviceagentsends
thesepatches tothembyexpressmail. Inaddition, all
patches arepostedonawebsite fromwhichanycus-
tomer candownloadwhatever shewants. Aswiththe
secondvendor, security�xes carryamessage, \Install
this soonor else it is your problem."

8 Our recommendati ons
Basedonour studyto date, we recommendauto-

matic patch application provided users can be con-
vinced to accept it. It is e�ective and its costs are
moderate. If users will not accept it, thenour second
choice is acombinationof thetechniques presentedin
sections 2.2and2.3. The cost shouldbe onlyslightly
more thanthe automatedapplicationmethodandit
wouldbe nearlyas e�ective. The encipheredOSap-
proachmaybecome feasible some dayif vendors pro-
duce cryptoprocessors toprohibit programcopying.

9 Future work
Many of the issues examined in this paper raise

morequestions thanweanswer here.
Howmuchof this paper applies to security tools,

too? Consider the issues raisedinsection2.1, for ex-
ample. Could we customize a password checker to
makeitworkonlyononemachine? If anOSwerecus-
tomized, wouldanaudit tool have to be customized
ina compatible way? Some questions whicharise in
that sectionarewhereinacompiler tousetherandom
numbers (intermediatecodeor �nal code generation),
what are the best ways tomake randomchoices, and
howthis maya�ect programe�ciency? Eventually,
wemight produce acompiler withthis sort of GRNG
controlling its code generation. We discuss some of
this inother sections of the paper, but the issues are
not resolved.

These questions arise insection2.2: Canwe show
it is NP-hard to �nd a security �x in this collec-
tion of changes? Or canwe think of anydisassem-
bly tools that would facilitate discovery of the real
security�x? Howgoodare disassemblers? Are zero-
knowledge proof techniques relevant here? Can one

useprogrammutationtechniques [10] togenerate the
false changes? Manymutants are equivalent andmay
be usedtogenerate pseudochanges. Are 100changes
enough?

The automatic patch installer of section 2.4 is a
highly system-dependent mechanism. Some vendors
(e.g. SunSoft)o�eralreadycomfortableandsemiauto-
matic patchinstallationsystems. Wecoulddevelopa
completelynewstateof theartautomaticpatchdistri-
butionsystemfor one speci�c environment, anddoc-
ument its designconcepts, the practical experiences,
andtheunresolvedproblems insomepapers. Alterna-
tively, wecouldtrytoimproveexistingsemiautomatic
patchsystems withadditional functionalities towards
fullyautomatedoperation.

Here are some questions concerning Section 3.
What ciphers shouldbe used? Whenthe programis
swappedout, shouldits datavariables be enciphered?
Howdowerecover or repair system\crashes"or com-
ponent failures if we cannot recover the key? Can
wecombine this mechanismwithother cryptographic
needs onthe system.

Wehope tobe able toanswer some of these ques-
tions with our future research. In particular, we
would like to evaluate our approaches using a well-
documentedsecuritythreat.

10 Acknowledgement
Portions of this workwere supportedby contract

F30602-96-1-0334fromRomeLaboratory(USAF), by
sponsors of theCOASTLaboratory.

References
[1] A. Aho, R. Sethi, and J. Ullman. Compi l -

ers, Pri nci pl es, Techni ques, and Tool s . Addison-
Wesley, Reading, Massachusetts, 1988.

[2] Robert M. Best. Preventingsoftwarepiracywith
crypto-microprocessors. In Proc. IEEE Spri ng
COMPCON80 San Franci sco, Cal i f orni a, pages
466{469, February25{28, 1980.

[3] ChrisCaldwell. TheDubnerPCCruncher|ami-
crocomputer coprocessor card for doing integer
arithmetic. J. Recreat i onal Mat hemat i cs , 25(1),
1993. This hardware is available fromH& R
Dubner, 449BeverlyRoad, Ridgewood, NewJer-
sey07450.

[4] Donald E. Eastlake, Stephen D. Crocker, and
Je�rey I. Schiller. RFC{1750 Randomness Rec-
ommendat i ons f or Securi t y. Network Working
Group, December 1994.

[5] Daniel Farmer and Eugene H. Spa�ord. The
COPS security checker system. In Proceedi ngs
of t he Summer 1990 Useni x Conf erence, pages
165{170, Berkeley, CA, June, 1990. Usenix As-
sociation.

[6] S. T. Kent. Prot ect i ng Ext ernal l y Suppl i ed Sof t -
ware i n Smal l Comput ers . Ph.d. thesis, Mas-
sachusetts Institute of Technology, Cambridge,
Massachusetts, March, 1981. MITLaboratoryfor
Computer Science, MIT/LCS/TR-255.

[7] M. Kuhn. Sicherhei tsanalyse ei nes Mi kroprozes-
sors mi t Busverschl �ussel ung. Diploma the-
sis, Lehrstuhl f�urRechnerstrukturen, Universit�at
Erlangen-N�urnberg, Erlangen, July, 1996.

[8] TimPolk. Automated tools for testingcomputer
systemvulnerability. Technical Report NISTSP
800{6, National Instituteof Standards andTech-
nology, 1993.

[9] Ronald L. Rivest, Adi Shamir, and David A.
Wagner. Time-lock puzzles and timed-release
crypto. Preprint, 9pages.

[10] F. SaywardandD. Baldwin. Heuristics for de-
terminingequivalenceof programmutations. Re-
searchReport 161, Georgia Institute of Technol-
ogy, April, 1979.

[11] EugeneH. Spa�ord. Thepros andcons of disclo-
sure. InConference on Syst ems Admi ni st rat i on
and Net work Securi t y. USENIX, May, 1995. In-
vitedaddress not inproceedings.

[12] Cli� Stoll. Telling the goodguys: Disseminat-
ing informationonsecurityholes. InProceedi ngs
of t he Fourt h Aerospace Comput er Securi t y Con-
f erence, pages 216{218, Washington, DC, 1988.
IEEEComputer Society.

[13] ComerfordWhite. ABYSS: Atrusted architec-
ture for softwareprotection. InProc. 1987 IEEE
Symposi um on Securi t y and Pri vacy, Oakl and,
Cal i f orni a, pages 38{51. IEEEComputer Society
Press, April 27{29, 1987.

