
Prototyping Experiences with

Classical IP and ARP over Signaled ATM Connections

(Prototyping Experiences with IP over ATM)

Christoph L. Schuba, Eugene H. Spa�ord

COAST Laboratory, Department of Computer Sciences, Purdue University,
1398 Computer Science Building, West Lafayette, IN 47907{1398

Berry Kercheval

Computer Science Laboratory, Xerox PARC, 3333 Coyote Hill Road,
Palo Alto, CA 94304{1314

This paper discusses a prototyping e�ort in the classical IP (internet

protocol) and ARP (address resolution protocol) over ATM (asynchronous

transfer mode) model. It introduces the important features of the involved

protocols, motivates the interaction between IP and ATM, and examines

several possible scenarios for it. The design and implementation of a driver

prototype for an ATM network adapter are described. The prototype

utilizes and dynamically manages signaled ATM connections in a way

that is transparent to user processes.

The paper shares our experiences from the design and implementation of

this prototype, such as the lessons learned how to deal with problems we

ran into that were not anticipated. The lessons of this paper are applica-

ble to a wide range of software prototyping e�orts, not only the system

described.

? To appear in the Journal of Systems and Software, III/1998.

1 Introduction

The internet protocol (IP) is the standard protocol on the Internet that pro-

vides the basis for a connectionless, best-e�ort packet delivery service. IP uses

an address resolution protocol (ARP) which is based on broadcast to dy-

namically bind high level protocol addresses to low level physical hardware

addresses.

The asynchronous transfer mode (ATM) is rapidly becoming acknowledged as

the base technology for the next generation of global communications. Both

the technology and the standardization process receive extensive acceptance

throughout the industry. Some of ATM's main characteristics are point-to-

point or point-to-multipoint connection-oriented communications with small

cells as data units and a good aggregate behavior. This particular form of cell

networking provides the capability for high speed transmission in local area

and wide area networks. Another strength of ATM are end-to-end quality of

service (QoS) guarantees to support applications with special QoS demands.

The combination of the well established place of IP in the data communication

world and the telephone companies' need for ATM as their new base technol-

ogy establish the need for the integration of IP and ATM. In spite of some

problems with the technology it promises a considerable service improvement

for data communications.

This paper explains one architectural proposal for the interaction between IP

and ATM and describes a prototype implementation. The physical topology

of ATM networks and the logical structure imposed by the IP model are not

easily mapped onto each other. To integrate the two di�erent communication

paradigms one can create logical IP subnetworks (LIS) in ATM that operate

2

and communicate independently of other LISs on the same ATM network.

A modi�ed form of ARP is used in an LIS to resolve IP to ATM addresses.

Before data can be transmitted between two ATM endstations, a connection

is established under the usage of a connection management module and data

is packaged and fragmented into small size ATM cells by an adaptation layer.

If other protocols besides IP utilize the ATM network an additional encap-

sulation of data becomes necessary to demultiplex received and reassembled

ATM cells if the protocols are all multiplexed over a single virtual channel.

2 Integration of Classical IP and ARP with ATM

We outline the main features of the two technologies, establish their im-

portance as data communication paradigms, motivate their integration, and

sketch several scenarios of their interaction. We concentrate on one speci�c

scenario: the utilization of ATM as a logical IP subnetwork. Building blocks

of this approach are the ATM address resolution protocol as a unicast server

based emulation of the classical broadcast address resolution protocol, and

connection management functionality as provided by the Q.2931 protocol.

The manipulation of transmitted network protocol data units between their

submission to the network layer and their transmission by ATM are detailed in

an appendix. These explanations are structured analogous to the lower layers

in the IEEE local area network model.

2.1 Classical IP and ARP

The internet protocol (IP) [Postel, 1981a] de�nes a best-e�ort, connectionless

delivery mechanism. It provides for the transmission of blocks of data (data-

3

grams) from sources to destinations over an interconnected system of networks.

IP imposes few requirements on utilized network technologies. Therefore, IP

can only guarantee an earnest attempt to deliver packets. A local area network

(LAN) protocol de�nes the physical and data link layer (DLL) in the ISO-OSI

(International Standards Organization - Open Systems Interconnection) ref-

erence model.

Concentrating on the IEEE approach of modeling networks (e.g., [IEEE

802.2]), the DLL is divided into medium access control (MAC) and logical

link control (LLC) sublayers. The LLC sublayer provides a common inter-

face for multiple network layer protocols to interoperate with di�erent MAC

sublayers and share the use of a data link. The MAC sublayer de�nes the mech-

anisms that are used to access, share, and manage a communication medium.

That includes channel management, collision detection and resolution, priority

handling, error detection and framing. Typical examples of LAN technologies

(MAC sublayer and physical layer) are de�ned by the family of IEEE 802.x

standards (e.g., CSMA/CD [IEEE 802.3], or DQDB [IEEE 802.6]). Figure 1

illustrates the correspondence between MAC & LLC and the DLL.

Physical Layer

Data Link Layer

Network Layer

1

2

3

Logical Link Control (LLC)

Medium Access Control (MAC)

Physical Layer (PHy)

IEEE 802.2

IEEE 808.3-9

OSI Layering IEEE Layering

Fig. 1. Correspondence between ISO and IEEE layering, in particular the correspon-

dence between data link layer and medium access control and logical link control

In this model two machines on a physical network can only communicate

4

if they know each other's MAC addresses. Determining a machine's MAC

address given its network layer address is known as the address resolution

problem.

2.2 ATM

Asynchronous transfer mode (ATM) was developed for use in broadband in-

tegrated services digital networks (B{ISDN) to carry data, voice, images, and

video tra�c in an integrated manner. ATM is not limited to B{ISDN and con-

tains physical layer and network layer functionality. Its architecture is based

on switching small �xed-length packets called cells. Some aspects of ATM are

currently de�ned by interim standards developed by a user and vendor group

known as the ATM Forum [Forum, 1996]. ATM provides for point-to-point

or point-to-multipoint, connection-oriented transmission of small data units.

ATM gives quality of service guarantees (i.e., it handles resource reservation,

o�ers bandwidth and latency guarantees), and exhibits a good aggregate be-

havior.

Before data can be transferred between machines, a connection must be estab-

lished. These connections are called virtual channels (VC) and are identi�ed

hop-by-hop using a virtual path and virtual channel identi�er pair (VPI/VCI).

Data are transferred in the form of cells which are small �xed-size data packets

with a 48 byte payload and a 5 byte header. Each switch contains mappings

of input to output VC identi�ers. These can be (semi-) permanently installed,

(called permanent virtual circuits, or PVCs) or established at connection setup

time by a signaling protocol (called switched virtual circuits, or SVCs). The

switching of cells involves the appropriate change of VC information in the

cell header and a forwarding of the cell over the associated physical link. A

5

switch controller is associated with one or more ATM switches. It performs

management functions such as enabling or disabling ports, polling for status

information, or updating mapping information.

2.3 Motivation for the Integration of Paradigms

IP and ARP (Address Resolution Protocol) on the one hand and ATM on the

other represent very di�erent paradigms for data communication. What is the

motivation to integrate these two technologies?

IP is the main building block of the Internet, the global network of in-

terconnected networks. In the classical TCP/IP protocol hierarchy (see

[Comer, 1991a]) IP is the central protocol. It serves a hierarchy of proto-

cols (e.g., ICMP [Postel, 1981b], EGP [Mills, 1984], UDP [Postel, 1980], or

TCP [Postel, 1981c]), and integrates a wide variety of network technologies as

its underlying data link and physical layers. Its main concepts have ripened

to maturity and proven adequate for robust data delivery in interconnected

heterogeneous environments. IP has established its place in today's data com-

munication world. That is not expected to change in the foreseeable future.

ATM is rapidly becoming acknowledged as the base technology for the next

generation of global communications. Telecommunication industries are plan-

ning on implementing ATM because it meets internal telephony needs. The

integration of voice and data tra�c into one medium saves resources. It is

easier to multiplex separately addressed packets of voice and data than to

multiplex mixes of individual bits. Moreover, new services can be o�ered to

users, and the technology can be used to satisfy the telephone companies'

own need for increased data communications because of increased computeri-

zation. ATM deployment in the local area promises performance advances in

6

distributed computing with high bandwidth and low latency data communica-

tion requirements, such as required by some multimedia or interactive appli-

cations. Furthermore, ATM as a LAN technology promises easy connectivity

of existing hubs, bridges, and routers to future wide-area ATM networks.

ATM is not without its problems or detractors, however. For example, it is

not clear that classical telecommunication tra�c and data communication will

integrate well. Classical telecommunication can be described well by Poisson

models, whereas the burstiness of self-similar data tra�c does not change over

time (see [Leland et al., 1993]).

There are di�culties with scaling ATM and maintaining reliability. Virtual

circuits establish a hard state in the network for a call. The state of a con-

nection is distributed over intermediate switching equipment. Once a VC is

established, it is maintained until a message is received by one of the ends of

the call requesting a change in the state of the connection. The product law

of reliability ([Trived, 1982, Ch.1.10]), applicable to series systems of indepen-

dent components, such as the the links in a virtual circuit, demonstrates how

quickly system reliability degrades with an increase in complexity. An ATM

connection is a series system, because the hops of a connection are so interre-

lated that no data can be delivered if one link fails. De�ne for i = 1; 2; :::; n:

Ai :=\Link i is functioning properly." and Ri :=\Reliability of link i, i.e.,

probability that Ai functions properly". The probability Rs that the system

is functioning properly is then:

Rs = P (A1 \ A2 \ � � � \ An) =
Yn

i=1
Ri

This demonstrates how quickly the connection reliability degrades with an

increase in the number of links.

7

On the other hand parallel redundant systems have a reliability that ap-

proaches 100%:

Rp = 1�
Yn

i=1
(1� Ri)

The topology of IP internetworks and the capability of dynamic rerouting in

a highly redundant system such as the IP network layer results in a series-

parallel system that approaches the reliability of a parallel redundant system

(see [Trived, 1982, Ch.1.10] for an analysis of the reliability in series-parallel

redundant systems). ATM does not yet support any dynamic routing func-

tionality or network admission control.

For a more detailed discussion of bene�ts and drawbacks of ATM see

[Partridge, 1993, sections 4.2 and 4.10] and [Bertsekas and Gallager, 1992, sec-

tion 2.10]

The combination of the well established place of IP in the data communication

world and the telephone companies' need for ATM as their new base technol-

ogy establish the need for the integration of IP and ATM. In spite of some

problems with the technology it promises a considerable service improvement

for data communications.

2.4 Scenarios of Interaction

The IP over ATM Working Group of the Internet Engineering Task Force

(IETF) is chartered to develop standards for routing and forwarding IP pack-

ets over ATM subnets. In [Cole et al., 1996] the working group identi�es and

discusses several IP over ATM models: the classical IP over ATM model, the

routing over large clouds (ROLC) model, Ohta's \conventional" model, peer

8

models, the private network network interface (P{NNI) and integrated models,

and transitional models.

The remainder of this paper focuses on the classical IP over ATM model. We

give a brief description of the other models here.

The ROLC model supports SVCs as well a PVCs. It is currently work in

progress in the ROLC working group in the IETF. Endstations do not nec-

essarily share a common IP level network pre�x, and multiple SNAP address

formats and negotiation of parameters (such as MTU (maximum transfer unit)

size or method of encapsulation) are supported. The associated next hop rout-

ing protocol (NHRP) performs address resolution to accomplish direct con-

nections across IP subnet boundaries. The fact that ROLC based networks

are not part of a single administrative group creates several interesting issues,

such as security considerations and the need for a billing scheme.

Ohta's \conventional" model has the same network layer architecture as the

standard IP model, including its subnet architecture. However, IP level routers

are assumed to be able to forward data cell by cell, yielding a possible latency

advantage ([Cole et al., 1996, x8:3]).

Peer models are motivated by the rationale that routing complexities of future

ATM networks will be similar to routing over complex internets. The possi-

bility to embed IP level routing within the ATM network fabric leads to peer

models where IP routers are placed on a peer basis with corresponding entities

in an ATM network ([Cole et al., 1996, x8:4]).

The P{NNI and integrated models are based on the idea that a single routing

protocol be used for both IP and ATM. These protocols take into account

the IP and ATM network topologies, link state and node characterizations,

9

and calculate optimal routes for IP packets over heterogeneous topologies

([Cole et al., 1996, x8:5]).

Transitional models are a compromise between the classical IP models and

the peer and integrated models. They realize the need for heterogeneous en-

vironments with complex routing topologies. The success of new technologies

often depends on their capability to be gradually introduced and coexists with

deployed technology. Transition models address this issues.

Logical IP Subnetwork

IP host

ATM switch

IP router

ATM network

Fig. 2. A logical IP subnetwork (LIS or LATM) appears to the IP layer as just

another LAN technology

The classical IP over ATM model takes advantage of the fact that IP can

make use of any networking technology that provides connectivity as a deliv-

ery subsystem, including ATM. The goal of this approach is to transmit IP

datagrams over an ATM LAN (see Figure 2). A logical IP subnetwork (LIS

or LATM) is a single ATM network, that is a direct replacement for the local

area network segment connecting IP routers and endstations in the classical

IP and ARP paradigm. All endstations are directly connected and they share

a common IP level network pre�x.

10

One LIS can grow to replace several LAN segments. Several LISs can operate

on the same ATM network. At least one IP router must be attached to each

LIS to integrate it with the rest of the internetwork. It is con�gured as a

member of one or several LISs and handles inter domain routing of datagrams

transparently. IP hosts on the same ATM network that are con�gured to

belong to di�erent LISs must not establish a connection to each other directly

through ATM, but must communicate with each other via an intermediate IP

router.

The previously mentioned necessity for the network layer to resolve its ad-

dresses to MAC addresses (see section 3) is not the only problem that has to

be solved to establish an LIS as a new subnetwork technology. In appendix

A we will explain the conversion between network layer protocol data units

(e.g., IP datagram) and ATM cells and the need for adaptation and encapsu-

lation layers and a convergence sublayer. Section 4.1 will outline our approach

to an integrated address resolution and call establishment in the presence of

switched virtual circuits.

3 The Protocols

Address resolution in an LIS, and ATM connection management are nontrivial

protocols. In this section we are concerned with their description.

3.1 ARP and InARP

The address resolution problem, e.g., determining a machine's MAC address

given its network layer address, has been solved in many di�erent ways. One

well known solution in the case of Ethernet as the LAN technology is ARP

11

([Plummer, 1982]). A machine S determines the MAC address of another ma-

chine D by broadcasting an ARP request containing D's network protocol

address. The machine that matches the network protocol address of an ARP

request responds with an ARP reply containing D's MAC address.

Inverse ARP 1 (InARP) is de�ned in [Bradley, 1992] and addresses a di�erent

problem. Given an established connection between two machines, they do

not have to know one another's higher level protocol addresses if the call

establishment was based on lower layer addresses. InARP is a protocol that

enables either endpoint of a connection to query the other one for its protocol

addresses.

3.1.1 Why Classical ARP is not su�cient

Classical ARP relies on an e�cient broadcast capability of the physical layer 2 .

Even if ATM multicast were already widely implemented, it is not advisable to

simulate broadcast by ATM's multicast connections, because of its poor scal-

ing. Point-to-multipoint connections o�er bidirectional communication only

between the originator and all destinations, but not among the destinations.

To simulate broadcast, each endstation would have to establish a point-to-

multipoint connection to all other endstations.

A di�erent approach, described in [Laubach, 1994], is to use a dedicated service

on the network that maintains a cache of address mappings. The mappings

are established through registration by each host at its boot time and are

periodically updated. The service replies to address resolution requests with

1 Note that we are talking about InARP, not reverse ARP. (RARP)

[Finlayson et al., 1984].
2 We are not considering a static address binding for ATM networks, because ATM

physical addresses are longer than IP addresses and cannot be freely chosen.

12

the desired mapping, or a negative acknowledgment, if the mapping is not

available.

ATM physical addresses are longer than IP addresses. Therefore IP cannot

use static address binding for ATM networks.

3.2 ATMARP and InATMARP

The ATM address resolution protocol (ATMARP) is basically the same proto-

col as ARP extended with support in a unicast server environment. ATMARP

answers the question: \Given a network protocol address, what is the associ-

ated ATM address?".

Inverse ATMARP (InATMARP) is the same protocol as InARP applied to

ATM networks. Given a virtual circuit identi�er between two endpoints, InAT-

MARP answers the question: \What are the other endpoint's network layer

and ATM address?" All hosts participating in an LIS must support these

extended protocols as de�ned in [Laubach, 1994]. Each LIS must have one

ATMARP server.

The ATMARP service contains the following elements which we will outline

in successive sections: address mapping registration, queries and positive or

negative replies, and mapping table maintenance.

3.2.1 Registration

ATMARP clients must start the ATMARP registration process with the server

before they can participate as a member of an LIS. Each client must initiate

a SVC connection to the server. Upon ATM call acceptance from any other

ATM endpoint, the server generates and transmits an InATMARP REQUEST to

13

the client asking it for its network layer to ATM address binding. Clients

must reply to each InATMARP REQUEST with an InATMARP REPLY. The server

will update his ATMARP table with the received mapping and a timestamp

unless a mapping for the same network layer address and an established VC

already exist.

3.2.2 Query and Reply

Once hosts in an LIS are registered they can request address resolutions for

other hosts in the same LIS via ATMARP REQUESTs. Clients generate and trans-

mit ATMARP REQUEST packets to the server. An ATMARP REPLY packet from the

server then contains the mapping which is used to build/refresh the clients

cache. An ATMARP NAK 3 packet from the server tells the client that the re-

quested mapping could not be resolved. It is an extension to classical ARP

adding to the robustness of the protocol by giving clients the ability to distin-

guish a cache miss from a fatal server failure.

3.2.3 Cache Maintenance

The ATMARP server maintains an ATMARP table that ideally contains the

network layer to ATM address mapping for all hosts participating in its LIS. It

is initially built by the InATMARP REPLY packets received from hosts at regis-

tration time. Clients maintain a similar table that contains mappings that they

previously requested from the server. The entries in the tables are aged peri-

odically. [Laubach, 1994] requires that client table entries remain valid for at

most 15 minutes and server table entries for at least 20 minutes. Before invali-

dating an entry that still has an open VC associated, a server must attempt to

3 nak is the abbreviation of negative acknowledgment.

14

revalidate the mapping by generating and transmitting an InATMARP REQUEST.

Entries without an associated open VC are deleted. ATMARP table entries

exist until they are aged or invalidated. Teardown of an SVC does not remove

ATMARP table entries.

There are other occasions when the server can update his table. When the

server receives an ATMARP REQUEST over a VC, whose associated network layer

and ATM address match the table entry, the server can update the timeout

on that entry. To add robustness, the server examines the source information

of received ATMARP REQUESTs. If there is no table entry present for the source

network address, the server adds the source information mapping to its table

associated with the VC.

3.2.4 Unresolved Issues

Several issues remain unresolved by [Laubach, 1994]. If only one server per

LIS assumes the task of address resolution, the service depends on the overall

reliability of that server machine. A protocol that embodies a replicated AT-

MARP service is desirable. Currently the ATMARP service is reached via a

well known address. A mechanism should exist for determining the ATMARP

service access point dynamically.

3.3 Connection Management

Communications in ATM are based on a connection-oriented model. Before

user data can be transmitted, a virtual circuit has to be established. VCs come

in two forms: permanent VCs, and signaled VCs. Permanent VCs are stati-

cally con�gured and installed into the switching tables of the ATM switches.

Signaled point-to-point and point-to-multipoint connections over an ATM net-

15

work are dynamically established, maintained, and cleared on a need basis uti-

lizing a signaling protocol, such as the Q.2931 protocol (see [Forum, 1994]), a

broadband signaling standard.

The initiator of a connection speci�es desired characteristics for the connection

and relies on Q.2931 to establish or to report the failure of establishment of

a call. Q.2931 neither supports any routing functionality nor provides for call

acceptance or forwarding policies.

switch S1 switch S2

host D

host S

SCC HCCSCCHCC

connection management

Fig. 3. ATM connection management

Each entity participating in connection management must have an associated

process that handles Q.2931 protocol messages. We distinguish between host

call control (HCC) and switch call control (SCC) processes. Figure 3 depicts

the interrelation among the switching processes and their relationship to either

ATM switches or end systems. All HCC and SCC processes have some state

about local network con�guration, such as port identi�cation, routing informa-

tion, and address information for neighboring HCC and SCC processes. This

state can be acquired through static con�guration, or dynamic discovery and

update protocols. HCC processes can initiate the establishment and release of

calls. A HCC process communicates with the application or the internetwork-

ing sublayer and the Q.2931 module to coordinate their interaction regarding

o�ering, acceptance, and release of each call. A SCC process is responsible for

interfacing peer Q.2931 instances on the ATM switches. It accepts incoming

16

call requests from other SCC or HCC processes and determines the outgo-

ing port which should be used when routing the call. Routing information is

accessed through a route manager on the ATM switch.

ATM interface

 HCC

Device Driver IP module

wire/fiber

User Space

Kernel

Fig. 4. Integration of connection management into a host

Figure 4 sketches the integration of the connection management into a host.

An HCC module is associated with each ATM interface. It interacts with the

ATM interface to learn about requirements for the establishment or release

of connections. It communicates with its peer SCC and HCC processes on

remote switches and hosts over well known signaling PVCs.

4 Experiences and Lessons

We implemented a prototype of this system under SunOS 4.1.3 for ForeRun-

ner SBA{100 and ParcNic ATM host adapters. The connection management

code used was an implementation of Q.2931 by Bellcore, called Q.Port (see

[Bellcore, 1995]). During the development we learned the following lessons.

17

4.1 Model

It is advantageous to develop a model one can follow closely during the

implementation to convince oneself of its completeness and correctness, and

facilitate its stepwise testing and extension.

In the previous sections we have established the complexity of classical IP

and ARP over ATM in an SVC{based subnet as a whole. To deal with the

complexity of the functional requirements it is important to devise a model

that guides design and implementation of the system. We will describe several

additional advantages that a good model can contribute to the design and

implementation process.

Even from the limited perspective of one participating host a variety of func-

tions need to be performed. In our example, the system has to integrate con-

nection management, address resolution, protocol and adaptation layer en-

capsulation, as well as segmentation and reassembly. The system has needs to

handle exceptions such as expired timers for incomplete reassembly, or tem-

porary bu�ering of outgoing packets for which establishment of an SVC is in

progress.

The functional modules in ATM as a LAN technology contribute actions as

well as pieces of information. It is possible to describe actions, e.g., call estab-

lishment, or address resolution, that have taken place with the amount and

relationship of address information that has been gathered. That means the in-

teraction between signaling protocol and address resolution protocol in an LIS

can be reduced to a conceptually much simpler problem, which is described

by a �nite state automaton. The states in our model are the possible com-

binations of network layer address, medium access control sublayer address,

18

switched virtual circuit identi�er, and signaling code speci�c call handle in

regard to one destination network layer address. The set of possible states is

identical for the ATMARP server and its clients (i.e., all participants of an

LIS). The transitions are �red by events based on user data tra�c, connection

protocol messages, address resolution protocol messages, or timer expiration.

Figure 5 serves as an example for the described automaton. It shows a subset

of the automaton that is required to describe the complete system. This subset

is su�cient for understanding of our approach. The complete automaton can

be generated by applying all possible events to an initially empty state (see

state (0) in Figure 5 and all resulting states, until a complete transition table

is created. New states and actions associated with the state transitions are

determined by careful study of the involved protocol speci�cations.

NL address NL address

ATM address

NL address

ATM address

VC identifier

Call Handle

packet ATM ARP Call Establishment
network layer (NL)

(0) (1) (2) (3)

Fig. 5. Example for a complete resolution process. This graph is a subset of the real

automaton

Figure 5 depicts a scenario where a network layer packet is passed to our mod-

ule and neither a known ATM address mapping, nor an established switched

virtual circuit to the destination address is present (State (0)). The �rst tran-

sition results in bu�ering the packet, sending an ATMARP REQUEST to the AT-

MARP server, and recording that this request was sent (State (1)). If the

ATMARP REPLY contains the desired mapping, it moves the automaton into a

state where the mapping network layer address to ATM address is complete

19

(State (2)). A fresh timer value will be associated with this mapping (not

shown in Figure 5) and the recorded request will be cleared. The next ac-

tion at this point is to send an attempt message to the HCC and record this

attempt. Once an originated--call--connected message from the HCC is

received, we move into the fully resolved state, store the associated VC iden-

ti�er and call handle, clear the recorded attempt, and send all network layer

packets that were enqueued up to that point (State (3)). All successive packets

to the same address will be sent over the associated SVC directly.

The automaton exists concurrently in many di�erent instances in a host: once

for each destination network layer address. Ideally this automaton has to be

augmented to note which encapsulation type is associated with each connec-

tion. As explained in appendix A.1, our approach assumes that LLC/SNAP

encapsulation is present. State (0) as in Figure 5 is the initial state. The set

of �nal states is empty because this protocol does not have a natural termi-

nation. The initial state (0) never needs to be instantiated until a transition

to state (1) is �red, because no data needs to be stored for state (0).

We chose this model because it has several nice features. Its simple struc-

ture is easy to understand. It instruments a structured implementation and

assists the designer in convincing himself of its completeness and correctness.

Furthermore, the model facilitates the stepwise testing and extension of the

implementation. That is particularly important if the prototyping e�ort is un-

dertaken by a project team, rather than a single person. For a functionally

restricted prototype, a partial implementation of the automaton is su�cient.

A stepwise extension is generally possible without the modi�cation of the

already implemented parts.

20

4.2 Modloadable Driver Software and Modularization of Code

For code development in driver modules it may be advantageous using the

capability of dynamically loadable kernel modules at runtime, if available

on the development platform.

Several operating systems, e.g., SunOS, have the capability to link object code

into the kernel at runtime without halting or rebooting the machine. This ca-

pability can save time. Time for compilation is saved if only the driver code

and not the whole kernel need to be recompiled for a test run. Time consum-

ing system reboots become less frequent. Usually, little work is necessary to

write wrappers to make modules (un)loadable. Commands exist for loading,

unloading, and displaying the status of loaded modules.

In our design all system components, except for the implementation of the sig-

naling code were contained in the loadable module. That means our prototype

contributes considerably to the runtime size of the kernel. A production version

of this project would have to move as many components of the system outside

the kernel and keep only core functionality in the kernel that is performance

critical, such as runtime IP address to VC identi�er lookup. This approach

o�ers the promise of reusing user level components of the implementation for

ports to di�erent hardware platforms. It also makes user level development

environments available during the implementation, which are often \better"

than the tools available for kernel development.

4.3 Separation of Development and Test Platform

It is advantageous to make a conscious decision at what time to use the

development platform as the test platform, and at what time to separate

the two.

21

In our example we could use the ATM interface as a secondary network in-

terface on a development machine, or on a di�erent machine dedicated to

testing.

In an early stage of the development of low level software, such as device

drivers, frequent crashes of core system software components need to be ex-

pected. Crashes can cost considerable time to restart a typical development

machine to its pre crash setup. Furthermore, in today's computing environ-

ments, it is not uncommon that remote users depend on network services or �le

systems o�ered by the development machine, in particular if the development

is a group e�ort.

At an advanced stage of the development process unifying development and

test machine can be advantageous. It provides the developer with day to day

usage experience under realistic working conditions, and possibly even pro-

vides additional motivation to do a really thorough job, because his work

environment directly depends on the quality of his product.

4.4 Clear Text Kernel Debugging Interface

Adding a clear text debugging interface to low level modules is a very pow-

erful mechanism.

One of the main disadvantages in low level system code development is the

limited availability of good development tools. A simple, yet very powerful

mechanism, is to add a device �le interface (e.g., /dev/atm debug) to the

driver that supports �le system primitives, such as open(), close(), read(),

write(), select(), and ioctl(). We implemented a simple parser in the driver

that could act on \input" from a user space application (called \tuning ap-

plication"). This allowed us to download all kinds of testing parameters (e.g.,

22

connection states or ATMARP database state) into the driver and to upload

debugging output and data structure contents for closer examination. Our

driver performed its own memory management, so it was possible to reset all

available driver data structures to initial or previously saved states. Test runs

could be automated and misbehavior reconstructed for closer examination.

An advantage of this approach over the usage of a kernel debugger is that the

interaction with the driver's internal debugging code can easily be automated

and used by shell or Perl scripts.

UNIX System V o�ers the process �le system mechanism to read and write the

virtual address space of any process. The shortcomings of this mechanisms for

our purpose is that kernel modules usually run on behalf of some process or an

interrupt handler. It is di�cult to keep track which process will be the right

one to examine. Furthermore, an interface to the module allows to directly

invoke actions that are implemented in the module.

4.5 Graphical User Interface

Adding a graphical user interface (GUI) to drive the test environment can

improve the ease of testing, and increase productivity and quality of the

developed software.

The use of a graphical user interface (GUI) as a frontend to the UNIX style

command line interface of the con�guration application not only increased

our productivity, but also aided in the deployment of the software. We ex-

tended the debugging interface to be regularly used for driver con�guration.

The initial UNIX style command line interface of the con�guration applica-

tion became too tedious and time consuming. We wrapped a graphical user

interface around the con�guration application. Tcl/Tk was used for building

23

the GUI. We were impressed by the little amount of time and code required to

build a fairly sophisticated user interface with logging and help text facilities.

It increased productivity of the developers because it o�ered an easy to use

interface for repetitive debugging and con�guration commands. It is consid-

erably easier to select a few options with a mouse and click on a \commit"

button than to type cryptic command line options. We believe the GUI also

aided in the adoption of the software by the test group, because of the ease of

con�guration, availability of \help" information and documentation for each

option. Additionally, such a command line frontend makes it possible to collect

action logging for investigation of misbehaving systems.

4.6 Future Model Improvements

In section 4.1 we already described a simple model that we used during the de-

sign and implementation phase of the project. Again, the model instrumented

a cleanly structured implementation and assisted us in convincing ourselves

of its completeness and correctness. Furthermore, the model facilitated the

stepwise testing and extension of the implementation.

Although the model proved to be very useful, we have since discovered that

it should be applied di�erently. We had modeled the relationship between

IP addresses, ATM addresses, and VCs as one mapping entity, which caused

quite some redundancy. The relationship should rather be modeled such that

states are represented by data entries in a relational fashion. The relations

must describe the functional dependencies among the di�erent address and

identi�er entities that are mapped onto each other. The basic idea here is that

the mappings can be described without loss of information in 5NF 4 , not in

4 NF stands for normal form. See [Date, 1991, chapter 21] for a description of

24

1NF such as in our model. The advantages are a reduction of the degree of

redundancy in the state information, a smaller automaton and therefore easier

model, and the possibility of a simpli�ed enforcement of integrity constraints.

This proposal for future improvements was not implemented.

4.7 Performance

We tested the performance of our system. The test con�guration consisted

of a SparcStation 10 (SS10) with the experimental ParcNic card, one or two

PARC-built ATM (BADLAN) switches and either a SparcStation-20 (SS20)

with a prototype Sun ATM card (SAHI) or a SparcCenter-1000 with a Fore

SBA-200 card (see Figure 6). The prototype driver was not extensively tuned

for best performance; e�ort was concentrated more on correct behavior and

robustness than on raw speed, as it was desired to use this code daily.

SS-10
ParcNic

SC-1000
FORE SBA-200

BADLAN
switch

BADLAN
switch

SS-20
Sun SAHI

Fig. 6. Test con�guration. Two switches (BADLAN) connect a set of workstations

(Sparc Stations with a variety of di�erent host adapters)

The primary performance measurement tool used was the ttcp program

widely available on the net. This programs tests memory-to-memory speed

normalization theory in relational database design.

25

through TCP or UDP connections. Between the SS10 and the SS20 we mea-

sured 32 Mbit/sec using TCP and 45 Mbit/sec using UDP. At this point the

machine with our experimental implementation was essentially CPU bound.

It was not surprising that the amount of bu�ering available for a given stream

a�ects the throughput dramatically. Using ttcp's feature for specifying socket

bu�er space, we saw a linear increase in throughput up to the value above.

Sending raw cells, the CPU maxes out at about 19,000 cells/sec, or

0.9Mbit/sec. This apparently poor performance must be viewed in the light

of the architecture of SunOS network interface drivers, which impose a rather

large overhead on each "packet", whether a fully assembled CPCS-PDU pre-

sented by the SAR chip or a single cell on a raw channel.

We believe that the limiting factors a�ecting performance are the SunOS

TCP/IP architecture, S-Bus bandwidth and Interrupt latency.

The signaling performance was above expectations. Using Bellcore's Q.port

version 1.3 interfaced to our code we measured circuit setup times of about

65 milliseconds per hop. There should be no di�culty meeting the ITU's rec-

ommended setup time of 9 seconds.

5 Conclusions

This paper described a prototyping e�ort in the classical IP (internet proto-

col) and ARP (address resolution protocol) over ATM (asynchronous transfer

mode) model.

It introduced the main features of IP, ARP and ATM, gave a number of argu-

ments why there is a strong push towards integrating these two technologies,

26

and provided an overview of possible scenarios of integration. The remainder

of the paper concentrated on the classical IP and ARP over ATM subnetwork

model.

The main contributions of this paper are the experiences gained during the

design and implementation of the described system, such as the discussion of

our mapping resolution model that is based on a �nite state machine. Further

experiences include the bene�ts of dynamicly loadable kernel components,

the trade-o�s involved with combining development and test platforms, the

advantages of a clear text debugging interface, and the advantages of graphical

user interfaces for con�guration and testing.

Acknowledgements

This work was sponsored in part by the US Advanced Research Projects

Agency under contract DABT63{92{C{0034 and by a gift from SUNMicrosys-

tems to the COAST laboratory.

We would like to thank Bryan Lyles and Carl Hauser for their technical in-

sight and encouragement. Ron Frederick provided valuable help (and no small

amount of code) with the driver prototype.

References

[Armitage and Adams, 1993] Armitage, G. J. and Adams, K. M. (1993). Packet

Reassembly During Cell Loss. IEEE Network, pages 26{34.

[Atkinson, 1994] Atkinson, R. J. (1994). RFC{1626 Default IP MTU for use over

ATM AAL5. Network Working Group.

27

[Bellcore, 1995] Bellcore (1995). Q.port - Portable ATM Signaling Software.

Bellcore, Bell Communications Research, Piscataway, NJ.

[Bertsekas and Gallager, 1992] Bertsekas, D. and Gallager, R. (1992). Data

Networks. Prentice{Hall, Englewood Cli�s, New Jersey, second edition.

[Biagioni et al., 1993] Biagioni, E., Cooper, E., and Sansom, R. (1993). Designing

a Practical ATM LAN. IEEE Network, pages 32{39.

[Boudec, 1992] Boudec, J.-Y. L. (1992). The Asynchronous Transfer Mode: A

Tutorial. Computer Networks and ISDN Systems, 24:279{309.

[Bradley, 1992] Bradley, T. (1992). RFC{1293 Inverse Address Resolution Protocol.

Network Working Group.

[Chao et al., 1994] Chao, H. J., Ghosal, D., Saha, D., and Tripathi, S. K. (1994). IP

on ATM Local Area Networks. IEEE Communications Magazine, pages 52{59.

[Cole et al., 1996] Cole, R. G., Shur, D., and Villamizar, C. (1996). RFC{1932 IP

over ATM: A Framework Document. Network Working Group.

[Comer, 1991a] Comer, D. E. (1991a). Internetworking with TCP/IP. Prentice{

Hall, Englewood Cli�s, New Jersey, second edition.

[Comer, 1991b] Comer, D. E. (1991b). Internetworking with TCP/IP, volume II.

Prentice{Hall, Englewood Cli�s, New Jersey.

[Date, 1991] Date, C. J. (1991). An Introduction to Database Systems, volume I.

Addison{Wesley Publishing Company, Inc., �fth edition.

[Finlayson et al., 1984] Finlayson, R., Mann, T., Mogul, J., and Theimer, M. (1984).

RFC{903 A Reverse Address Resolution Protocol. Network Working Group.

[Forum, 1994] Forum, A. (1994). ATM User{Network Interface Speci�cation,

Version 3.1. Prentice{Hall, Englewood Cli�s, New Jersey. Q.2391.

[Forum, 1996] Forum, A. (1996). ATM User{Network Interface Speci�cation,

Version 4.0. ATM Forum.

28

[Heinanen, 1993] Heinanen, J. (1993). RFC{1483 Multiprotocol Encapsulation over

ATM Adaptation Layer 5. Network Working Group.

[Kercheval, 1994] Kercheval, B. (1994). ATMARP: An Architecture Proposal. IP

over ATM working group.

[Laubach, 1994] Laubach, M. (1994). RFC{1577 Classical IP and ARP over ATM.

Network Working Group.

[Leland et al., 1993] Leland, W. E., Taqq, M. S., Willinger, W., and Wilson, D. V.

(1993). On the self-similar nature of Ethernet tra�c. In Proceedings of ACM

SIGCOMM '93, pages 183{193. also in Computer Communication Review 23 (4),

Oct. 1992.

[Mills, 1984] Mills, D. (1984). RFC{904Exterior Gateway Protocol Formal

Speci�cation. Network Working Group.

[Partridge, 1993] Partridge, C. (1993). Gigabit Networking. Addison{Wesley

Publishing Company, Inc.

[Plummer, 1982] Plummer, D. C. (1982). RFC{826 An Ethernet Address Resolution

Protocol. Network Working Group.

[Postel, 1980] Postel, J., editor (1980). RFC{768 User Datagram Protocol. Network

Information Center.

[Postel, 1981a] Postel, J. (1981a). RFC{791 Internet Protocol. Information Science

Institute, University of Southern California, CA.

[Postel, 1981b] Postel, J., editor (1981b). RFC{792 Internet Control Message

Protocol. Information Sciences Institute, USC, CA.

[Postel, 1981c] Postel, J., editor (1981c). RFC{793 Transmission Control Protocol.

Information Sciences Institute, USC, CA.

[Postel and Reynolds, 1988] Postel, J. and Reynolds, J. K. (1988). RFC{1042

A Standard for the Transmission of IP Datagrams over IEEE 802 Networks.

Network Working Group.

29

[Postel and Reynolds, 1994] Postel, J. and Reynolds, J. K. (1994). RFC{1700

Assigned Numbers. Network Working Group.

[Suzuki, 1994] Suzuki, T. (1994). ATM Adaptation Layer Protocol. IEEE

Communications Magazine, pages 80{83.

[Trived, 1982] Trived, K. S. (1982). Probability & Statistics with Reliability,

Queuing, and Computer Science Applications. Prentice{Hall, Englewood Cli�s,

New Jersey.

A From PDUs to Cells

In this section we explain the necessary encapsulations and modi�cations for

the conversion of IP datagrams to ATM cells. Figure A.1 sketches the di�erent

stages of this process: LLC encapsulation (sections A.1 and A.2), adaptation

layer convergence (section A.3.1), and segmentation and reassembly (section

A.3.2). It is important to indicate that we concentrate on the adaptation of the

TCP/IP protocol suite to ATM. Multiprotocol encapsulation and convergence

are de�ned for a variety of other protocols and types of applications, which is

beyond the scope of this paper.

PDU

routed non ISO PDU payload

CPCS - PDU

ATM cell

LLC encapsulation

Convergence

Segmentation and Reassembly

header payload

LLC SNAP

OUI PID DSAP SSAP Ctrl

 Pad.

ATM cell

 UU LEN CPI CRC (FCS)

Hdr

CPCS-PDU payload CPCS-PDU trailer

payloadpayload Hdr

Fig. A.1. The transformation from a network layer PDU to ATM cells

As mentioned above, the basic unit of data transmission in the TCP/IP proto-

30

col suite is called a datagram. [Postel, 1981a, section 3.1] de�nes the contents

of datagram headers (20 { 60 octets long) and the possible length of its protocol

data unit (up to 216 � 1 octets incl. header). [Postel, 1981a] also standardizes

the fragmentation and reassembly of datagrams within the IP layer.

ATM cells are 53 bytes long. The �rst 5 bytes are header information. They

contain the VC identi�er that is used in ATM switches, across user network

interfaces (UNI), and network network interfaces (NNI) for routing. Addi-

tionally, cell headers contain a payload type identi�er, a priority bit, and a

checksum, called header error control (HEC). Cells that cross the UNI also

contain generic ow control information. The remaining 48 bytes are called

the data portion or payload. Cells are rather small compared to IP datagrams.

ATM cell layout is de�ned in [Forum, 1994].

A.1 Multiprotocol Encapsulation

[Heinanen, 1993] describes two methods for carrying routed and bridged pro-

tocol data units (PDU) over an ATM network. In contrast to [Heinanen, 1993]

we will not concentrate on the aspects of bridging. PDUs can be carried over

a single ATM VC if they contain additional protocol identi�ers. This �rst

approach is called LLC encapsulation, because the respective PDUs are pre-

�xed by an IEEE 802.2 LLC header and its possible extensions. The second

approach is called VC based multiplexing. It does higher{layer protocol mul-

tiplexing by using a separate VC for each di�erent protocol.

We chose LLC encapsulation, because we preferred not to establish several

di�erent VCs between the same pair of hosts. However, we acknowledge the

advantage of VC based multiplexing if the dynamic creation of large numbers

of ATM VCs is economical and the applied charging model does not excessively

31

depend on the number of simultaneous VCs.

A.2 LLC Encapsulation

LLC encapsulation applies to di�erent types of data communication services:

Type 1, an unacknowledged connectionless mode, Type 2, a connection{

oriented mode, and a hybrid Type 3, a semi{reliable mode. We consider net-

work layer protocols that operate over LLC Type 1.

0 8 16 24 31
LLC/SNAP encapsulation

DSAP SSAP Ctrl

OUI PID (Ethertype)

LLC/SNAP

header

routed non

ISO PDU

Fig. A.2. LLC/SNAP encapsulation of routed non ISO PDU

The pre�xing IEEE 802.2 LLC header consists of three one octet �elds. It is

possibly followed by an IEEE 802.1a subnetwork attachment point (SNAP)

header. Figure A.2 depicts the layout of an IP datagram (routed, non ISO

PDU) pre�xed by its LLC/SNAP header. This format is compatible with

the header format speci�ed in [Postel and Reynolds, 1988], the speci�cation

of encapsulating IP datagrams and ARP requests and replies on IEEE 802

networks. The value 0x03 in the LLC Control �eld speci�es an unnumbered

information command PDU. A LLC header value of 0xAA-AA-03 indicates the

presence of a SNAP header. A SNAP header contains 2 �elds: A three octet

organizationally unique identi�er (OUI) and a two octet protocol identi�er

(PID). A value of 0x00-00-00 for the OUI speci�es that the following PID is an

ethertype. Valid values for the PID are de�ned in [Postel and Reynolds, 1994,

32

pp.168]. We will use only the values for IP datagrams (0x0800) and for ARP

frames (0x0806).

The use of IP and ARP must be only consistent within its LAN type. It

is not necessary that it be consistent across all other types of subnetwork

technologies.

A.3 The Adaptation Layer

ATM networks are not designed to exclusively transmit connectionless data

packets such as IP datagrams. Several kinds of higher level data (such as

datagrams, voice samples, or video frames) must be packaged into ATM cells

e�ciently. This process is referred to as adaptation. It is performed by an

adaptation layer that is conceptually located between IP and ATM. It consists

of a convergence sublayer, and a segmentation and reassembly sublayer.

A.3.1 Convergence

Four classes of applications were determined by the former CCITT that would

require di�erent types of service. ATM adaptation layers (AALs) are optimized

for their associated class of applications. Depending on which class of applica-

tion is used, the convergence sublayer performs functions such as multiplexing,

cell loss and error detection, or timing recovery. AAL5 is the ATM adapta-

tion layer 5, designed for connectionless data applications. It provides the most

e�cient and functional convergence layer for this class of applications: it is op-

timized to introduce little header overhead, to require little cell handling cost

in host interfaces, and to resemble common data communications interfaces,

such as those for Ethernet.

33

0 8 16 24 31
AAL5 CPCS-PDU

payload

padding

trailer
CPCS-UU CPI LEN

CRC (FCS)

Fig. A.3. AAL5 CPCS{PDU

The convergence sublayer is further subdivided into an upper and lower half,

the service speci�c convergence sublayer (SSCS), and the common part con-

vergence sublayer (CPCS), respectively. We assume a null SSCS, because the

CPCS functions provide su�cient processing for network and transport layers

such as TCP/IP.

The AAL5 frame format is speci�ed in [Heinanen, 1993, section 3] and depicted

in Figure A.3. AAL5 appends a trailer to the CPCS protocol data unit (PDU).

See [Atkinson, 1994] for a discussion on the default IP maximum transfer unit

(MTU) for use over ATM AAL5. The carried PDU is padded such that the

total number of octets of the frame is a multiple of the number of octets in

the ATM payload (48 octets).

The �elds CPCS{UU (user{to{user indication) and common part indicator

(CPI) are both one octet long. Users can transparently transfer user to user

information in the CPCS{UU �eld. It can contain any value. The CPI �eld

has currently no function except for 64{bit alignment of the AAL5 trailer. It

contains a null value. The length �eld determines the length of the payload

�eld in octets. The cyclic redundancy check (CRC), also referred to as frame

check sum (FCS), protects the entire PDU except the CRC �eld itself.

34

A.3.2 Segmentation and Reassembly

We mentioned above that the carried PDU is padded by null characters. Let

jnamej denote the length of entity name in octets. The number of octets P

required for padding (P 2 [0; jATM payloadj � 1]) is determined by formula

(A.1).

The segmentation and reassembly (SAR) sublayer is responsible for breaking

the CPCS{PDU into cells at the sender side and reassembling cells into frames

at the receiver side. One of the features of connection{oriented transmission

technologies is that data is delivered in sequence. Therefore it is su�cient to

ag the �nal cell of each frame to signal its completion of reassembly. This

ag is the user signaling bit, the last bit of the payload type identi�er.

jCPCS�PDU payloadj+ P + jCPCS�PDU trailerj=

jLLC=SNAP hdrj+ jPDUj+ P + 8=

8 + jPDUj+ P + 8= k � 48

= k � jATM payloadj

=) P =((jPDUj+ 16 + 47) div 48) � 48� jPDUj � 16 (A.1)

B Glossary

AAL5 ATM Adaptation Layer 5

ARP Address Resolution Protocol

ATM Asynchronous Transfer Mode

ATMARP ATM Address Resolution Protocol

B{ISDN Broadband Integrated Services Digital Network

CCITT International Telegraph and Telephone Consultative Committee

COAST Computer Operations, Audit and Security Technology

35

CPCS Common Part Convergence Sublayer

CPCS{UU CPCS User{to{User indication

CPI Common Part Indicator

CRC Cyclic Redundancy Check

CSL Computer Science Laboratory

CSMA/CD Carrier Sense Multiple Access w/ Collision Detection

DLL Data Link Layer

DQDB Distributed Queue Dual Bus

EGP Exterior Gateway Protocol

FCS Frame Check Sum

HCC Host Call Control

HEC Header Error Control

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IP Internet Protocol

ISDN Integrated Services Digital Network

ISO International Standards Organization

InARP Inverse Address Resolution Protocol

InATMARP Inverse ATM Address Resolution Protocol

LAN Local Area Network

LATM Local Area Network ATM

LIS Logical IP Subnetwork

LLC Logical Link Control

MAC Medium Access Control

MTU Maximum Transfer Unit

NF Normal Form

NHRP Next Hop Routing Protocol

36

NNI Network Network Interface

OSI Open Systems Interconnection

OUI Organizationally Unique Identi�er

PARC Palo Alto Research Center

PARCNIC PARC Network Interface Card

PDU Protocol Data Unit

PID Protocol Identi�er

PNNI Private Network Network Interface

PVC Permanent Virtual Circuit

QoS Quality of Service

RARP Reverse Address Resolution Protocol

ROLC Routing Over Large Clouds

SAR Segmentation and Reassembly

SCC Switch Call Control

SNAP Subnetwork Attachment Point

SSCS Service Speci�c Convergence Sublayer

SVC Switched Virtual Circuit

TCP Transmission Control Protocol

UDP User Datagram Protocol

UNI User Network Interface

VC Virtual Circuit

VCI Virtual Circuit Identi�er

VPI Virtual Path Identi�er

WAN Wide Area Network

WATM Wide Area Network ATM

37

