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Abstract

The rapid growth of the Internet facilitates the outsourcing of certain computations, in the
following sense: A customer who needs these computations done on some data but lacks the
computational resources (or programming expertise) to do so, can use an external agent to
perform these computations. This currently arises in many practical situations, including the
�nancial services and petroleum services industries. The outsourcing is secure if it is done
without revealing to the agent either the actual data or the actual answer to the computation.
In this paper we describe how representative operations matrix multiplication, matrix inversion,
solution of a linear system of equations, convolution, and sorting can be securely outsourced in
a practical sense.

The general idea is for the customer to do some carefully designed local preprocessing of the
data before sending it to the agent, and also some local postprocessing of the answer returned
by the agent to extract from it the true answer. The pre- and postprocessing should not take
time more than proportional to the size of the input, which is unavoidable because the customer
must at least read the input once. The purpose of the preprocessing step that the customer
performs locally is to \hide" the real data with suitably chosen noise, sending to the agent the
obfuscated data. The purpose of the postprocessing is to extract from the noisy answer returned
by the agent the true answer that the customer seeks.

Index Terms | Computer security, data hiding, outsourcing, matrix computations, convolution,

sorting
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1 Introduction

Outsourcing is a general procedure employed in the business world when one entity, the customer

C, chooses to farm out (outsource) a certain task to an external entity, the agent A. The reasons

for the customer to outsource the task to the agent could be many, ranging from a lack of resources

to perform the task locally to a deliberate choice made for �nancial reasons (it could be cheaper

to outsource). Here we consider the outsourcing of certain kinds of computations, with the added

twist that the data and the answers sought are to be hidden from the agent who is performing the

computations on the customer's behalf. That is, the customer's information (both the data and

the results obtained) is proprietary, and it is either the customer who does not wish to trust the

agent with preserving the secrecy of that information, or it is the agent who insists on the secrecy

so as to protect itself from liability because of accidental or malicious (e.g., by a bad employee)

disclosure of the con�dential data.

The current practice is that such outsourcing of sensitive and highly valuable proprietary data

is commonly done \in the clear," that is, by revealing both data and results to the agent hired

to perform the computation. One industry where this happens is the �nancial services industry,

where the proprietary data includes the customer's projections of the likely future evolution of

certain commodity prices, interest and ination rates, economic statistics, portfolio holdings, etc.

Another industry is the energy services industry, where the proprietary data is mostly seismic, and

can be used to estimate the likelihood of �nding oil or gas if one were to drill at the geographic spot

in question. The seismic data is so massive that doing multiplication and inversion of such large

matrices of data is beyond the computational resources of even the major oil service companies,

which routinely outsource these computations to a number of supercomputing centers.

In this paper we propose various schemes for outsourcing to an outside agent a suitably-modi�ed

version of the input data, in a way that hides the data from the agent and yet has the property

that the answers returned by the agent can easily be used to obtain the true answer { the one

corresponding to the true input data. The local computations take time proportional to the size of

the input, and the schemes we propose appear to work well experimentally, both from the point of

view of data-hiding and from the point of view of numerical stability.

The framework of this paper di�ers from what is found in the cryptography literature concern-

ing this kind of problem. Secure outsourcing in the sense of [2] follows an information-theoretic

approach, leading to elegant negative results about the impossibility of securely outsourcing compu-

tationally intractable problems. In addition, the cryptographic protocols literature contains much
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that is reminescent of the framework of the present paper, with many elegant protocols for cooper-

atively computing functions without revealing information about the functions' arguments to the

other party (cf. the many references in, for example, [22, 19]). Also reminescent of this work is the

server-aided computation literature, but most papers there deal with modular exponentiations and

not with numerical computing [15, 17, 20, 16, 13, 11, 3, 14, 10]). In this paper's framework, the

encryption methods we use are very straightforward and are similar to \one time pad" schemes:

For example, when we hide a number x by adding to it a random value r, then we do not re-use

that same r to hide another number y (we generate another random number for that purpose). If

we hide a sequence of such x's by adding to each a randomly genaretd r, then we have to be careful

to use a suitable distribution for the r's: If we know the distribution of the x's, then we can use a

distribution for the y's such that x + y is uniformly distributed (and hence reveals nothing about

the distribution of x, which might not be the case if r itself had been generated from a uniform

distribution).

The random numbers we use for disguises are not shared with anyone: They are merely stored

by the customer, and used locally to \undo" the e�ect of the disguise on the disguised answer

received from the external agent. Randomness is not used only to hide a particular numerical

value, but also to modify the nature of the disguise algorithm itself. For example, for any part of a

numerical computation, we will typically have more than one alternative for performing a disguise

(e.g., disguising problem size by shrinking it, or by expanding it, in either case by a random amount).

Which method is used is also selected randomly. This implies that, if our outsourcing schemes are

viewed as protocols, then they have the feature that one of the two parties in the protocol (the

external agent) is ignorant of which protocol the other party (the customer) is performing. Our

schemes are designed with the usual requirement that they should work even if their source code

is in the public domain.

Our methods are geared towards the numerical problems we consider, all of which are solvable in

polynomial time | but in our framework even \polynomial time" computation by the customer is

too expensive if it is not linear in the size of the input. We thus require that the local computations

done by the customer should be as light as possible, i.e., should take time that is proportional to

the size of the input (which is unavoidable because the customer must at least read the input once).

The time taken by the agent should not simply be polynomial: It should be proportional to the time

it would have taken to solve the problem locally (i.e., without outsourcing). We believe that for the

problems considered, and compared to the current practice, our proposed schemes are a substantial
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improvement. The experimental data from our \proof of concept" software implementation seems

to con�rm the practical viability of our methods.

Finally, our approach also di�ers from the privacy homomorphism approach that has been

proposed in the past [18]. The framework of the latter assumes that the outsourcing agent is

used as a permanent repository of the data, performing certain operations on it and maintaining

certain predicates, whereas the customer needs only to decrypt the data from the external agent's

repository to obtain from it the real data. Our framework is di�erent in the following ways:

� The customer is not interested in keeping data permanently with the outsourcing agent;

instead, the customer only wants to use temporarily its superior computational resources.

� The customer has some local computing power that is not limited to encryption and decryp-

tion. However, this local computing power is far less than that of the outsourcing agent. For

example, if the problem domain has to do with n�n matrices, then we shall typically assume

that the customer can a�ord to perform locally computations that take time proportional to

n2 but not n3, whereas the outsourcing agent has the resources to perform n3 operations (and

thus can invert such matrices, multiply them, etc).

The matrix and vector operations we consider here should be viewed as base computations, ones

that make possible the secure outsourcing of a wide variety of computations that can be decomposed

into a sequence of base computations (there are too many such decomposable problems to enumerate

here).

Throughout what follows we use random numbers, randommatrices, random permutations, etc.;

it is always assumed that each is generated independently of the others, and that quality random

number generation is used (cf. [7, Chap. 23], [21, [Chap. 12], [6, 12, 5]). It is not assumed that they

are generated from a uniform distribution, or in fact from any particular �xed distribution. Indeed,

for increased security, the exact form of the distribution used would itself be a variable, in the

sense that the customer would have a catalog of distributions and would switch from using one to

using another, to prevent the external agent A from knowing even the probabilistic characteristics

of what C is sending. For example, when generating a large random vector S, the various entries

of S should be generated from di�erent distributions in C's catalog of available distributions. If

all the n entries of S were generated uniformly in some interval centered at zero, then S would not

do a good job of \hiding" another (secret) vector V that it is added to; to see this, simply observe

that, in such a case, the sum of the n entries of V + S would be very close to the sum of the n

entries of V , thus partially compromising the composition of V .
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In sections 2{6 we present our schemes for important computations that can be securely out-

sourced. These are matrix multiplication, matrix inversion, solution of a linear system of equations,

convolution and sorting. We included sorting for theoretical rather than practical interest | we

are not aware of anyone who outsources sorting. We do know that the major oil services companies

outsource matrix operations and convolutions (it is somewhat surprising to see convolution there,

because O(n logn) computation time is not that expensive, whereas the O(n3) computation time

used by the matrix operations makes them exorbitantly expensive for large n). In each of the

sections 2{6, we describe schemes of increasing complexity, starting each section with schemes that

make no attempt at hiding the problem's dimension n, and ending it with a description of the

modi�cations needed to hide n.

We assume that the reader is familiar with the basic mathematical objects mentioned below.

For a review of the de�nitions of matrix product, matrix inversion, and their properties, we refer the

reader to [9] (which contains many other references). For a review of convolution and its properties,

we refer the reader to [1].

2 Matrix Multiplication

Assume that C wants to outsource the computation of the product of two n� n matrices M1 and

M2. (At the end of this section we explain how essentially the same method works for non-square

matrices.)

Notation 1 We use �x;y to denote the function that equals 1 if x = y and 0 if x 6= y (the so-called

\Kronecker delta" function).

2.1 A Preliminary Solution

The following is a preliminary algorithm for performing matrix multiplication using an external

agent. It satis�es the requirement that all local processing by C should take time proportional to

the size of the input, in this case O(n2).

1. C creates (i) three random permutations �1, �2, and �3 of the integers f1; 2; � � � ; ng, and (ii)

three sets of non-zero random numbers f�1; �2; � � � ; �ng, f�1; �2; � � � ; �ng, and f1; 2; � � � ; ng.

2. C creates matrices P1, P2, and P3 where P1(i; j) = �i��1(i);j, P2(i; j) = �i��2(i);j , and

P3(i; j) = i��3(i);j .
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Observe that the inverse of P1, P
�1
1 , satis�es

P�1
1 (i; j) = (�j)

�1�
�
�1

1
(i);j : (1)

Similar relations hold for the inverse of P2 and of P3, hence, any entry of the matrices P�1
1 ,

P�1
2 , and P�1

3 , is available to C in constant time.

3. C computes locally matrix

X = P1M1P
�1
2 : (2)

Observe that left-multiplying a matrix by P1 takes O(n2) time and amounts to permuting

its rows according to �1 and then multiplying each i-th resulting row by �i. Also observe

that right-multiplying a matrix by P�1
2 also takes O(n2) time and amounts to permuting its

columns according to �2 and then multiplying each j-th resulting column by (�j)
�1. Thus

X(i; j) = (�i=�j)M1(�1(i); �2(j)): (3)

4. C computes locally, in O(n2) time, the matrix

Y = P2M2P
�1
3 : (4)

5. C sends X and Y to A. A computes the product XY , which is

Z = XY = (P1M1P
�1
2 )(P2M2P

�1
3 ) = P1M1M2P

�1
3 (5)

and sends Z to C.

6. C computes locally, in O(n2) time, the matrix P�1
1 ZP3, which equals M1M2.

This completes the algorithm.

The above method may be secure enough for many applications, as A would have to guess two

permutations (from the (n!)2 possible such choices) and 3n numbers (the �i, �i, i) before it can

pin down M1 or M2.

2.2 An Improved Solution

The following scheme is more elaborate and gives somewhat better security because, in addition

to left- and right-multiplying a matrix to be hidden by the sparse random matrices Pi or their

inverse, the resulting matrix is further hidden by adding a dense random matrix to it. Of course

the above-mentioned multiplication by a Pi matrix or its inverse needs to be done in O(n2) time,

i.e., in time proportional to the size of the input matrices. The details follow.
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1. C locally computes matrices X = P1M1P
�1
2 and Y = P2M2P

�1
3 as was done in the previous,

preliminary scheme.

2. C selects two random n�n matrices S1 and S2 (that is, matrices whose entries are random).

C also generates four random numbers �; ; �0; 0 such that

(� + )(�0+ 0)(0� � �0) 6= 0:

If the above is violated then we discard the four random numbers chosen and we repeat

the random experiment of choosing a new set of numbers; observe, however, that there is

zero probability that a random choice results in a violation of the above condition, hence

the random choice need not be repeated more than O(1) times (in practice, once is usually

enough).

3. C computes locally the six matrices X + S1, Y + S2, �X � S1, �Y � S2, �
0X � 0S1,

�0Y � 0S2. Then C sends these six matrices to agent A.

4. Agent A uses the six matrices it received in Step 3 to compute

W = (X + S1)(Y + S2) (6)

U = (�X � S1)(�Y � S2) (7)

U 0 = (�0X � 0S1)(�
0Y � 0S2) (8)

and sends the resulting matrices W;U; U 0 to C.

5. C computes locally matrices V and V 0 where

V = (� + )�1(U + �W ) (9)

V 0 = (�0 + 0)�1(U 0 + �00W ): (10)

Observe that V = �XY + S1S2, and V 0 = �0XY + 0S1S2.

6. C computes locally the matrix

(0� � �0)�1(0V � V 0)

which happens to equal XY (as can be easily veri�ed { we leave the details to the reader).

7. C computes M1M2 from XY by computing

P�1
1 XY P3 = P�1

1 (P1M1P
�1
2 )(P2M2P

�1
3 )P3 = M1M2:

This completes the algorithm.
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2.3 Non-square Matrices

We now turn our attention to the case when M1 and M2 are not square, i.e., when M1 is l �m

and M2 is m � n and hence M1M2 is l � n. Essentially the same method as above works in that

case, except that we have to carefully choose the sizes of the Pi and Si matrices. For the Si this is

straightforward: S1 must be l�m and S2 must be m�n, because each of them is added to matrices

having such dimensions. But for the Pi we have a potential source of conicting requirements: (i)

A Pi must be a square matrix (because we need to use its inverse { non-square matrices have no

inverse), (ii) the size of a Pi must be compatible with the number of rows of the matrices that it

(or its inverse) is left-multiplying, and (iii) the size of a Pi must be compatible with the number

of columns of the matrices that it (or its inverse) is right-multiplying. For example, as P2 is used

for left-multiplying M2, and M2 has m rows, there is a requirement that P2 should be m � m.

Luckily, the requirement stemming from the fact that P�1
2 right-multiplies M1 is compatible with

the previous one, because M1 has m columns. This is not an accident, and it is easy to verify that

there are no conicting requirements on the size of any of the Pi matrices that are used in the

algorithm, 1 � i � 3.

2.4 Hiding the Matrices' Dimensions

We briey sketch how to hide the dimensions of the matrices to be multiplied. Let M1 be an a� b

matrix and M2 be a b� c matrix. The problem of multiplying these matrices is replaced by one (or

a small number) of multiplications of matrices whose dimensions a0; b0; c0 are di�erent from a; b; c

(the new matrices are handled by using the methods already developed in the previous subsections).

Hiding the dimensions can be done by either enlarging or shrinking one (or a combination of) the

three relevant dimensions: We say that we have \enlarged" a if a0 > a, that we have \shrunk" a if

a0 < a (similarly for b0 and c0). Although for convenience we shall explain how to enlarge/shrink a

separately from how to enlarge/shrink b and c, it should be understood that these operations can

be done in many possible combinations (we give some examples below).

2.4.1 Enlarging the dimensions

Enlarging a (so that it becomes a0 > a) is done by appending a0�a additional rows, having random

entries, to the �rst matrix. Of course this causes the matrix product to have a0�a additional rows,

but these can be ignored.

Similarly, enlarging c (so that it becomes c0 > c) is done by appending c0�c additional columns,

having random entries, to the second matrix. Of course this causes the matrix product to have
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c0 � c additional columns, but these can be ignored.

On the other hand, enlarging b involves changes to both matrices, by appending b0 � b extra

columns to the �rst matrix and b0 � b extra rows to the second matrix. Furthermore, these addi-

tional rows and columns cannot have completely random entries because they would then interact

to corrupt the output: The output matrix has same dimensions after enlarging b as before | we

need to make sure the output matrix is not changed by the enlargement of b. This is achieved

as follows: Number the b0 � b extra columns 1; 2; � � � ; b0 � b, and similarly number the extra rows

1; 2; � � � ; b0 � b. Choose the entries of the odd-numbered extra columns (respectively, rows) to be

random (respectively, zero), and choose the entries of the even-numbered extra columns (respec-

tively, rows) to be zero (respectively, random). Verify that enlarging b in this way causes no change

in the matrix product.

Of course the above three operations can be done in conjunction with each other: We would

then �rst apply the enlargement of b, then the enlargements of a and c.

2.4.2 Shrinking the dimensions

Shrinking a is done by partitioning the �rst matrix M1 into two matrices: One M 0
1 consisting of

the �rst a� a0 rows, another M 00
1 consisting of the last a0 rows. The second matrix stays the same,

but to get the a� c matrix we seek we now have to perform both M 0
1M2 and M 00

1M2.

Similarly, shrinking c is done by partitioning the second matrix M2 into two matrices: One

M 0
2 consisting of the �rst c � c0 columns, another M 00

2 consisting of the last c0 columns. The �rst

matrix stays the same, but to get the a � c matrix we seek we now have to perform both M1M
0
2

and M1M
00
2 .

Shrinking b is done by partitioning both matrices into two matrices. The �rst matrix M1 is

partitioned into an M 0
1 consisting of the �rst b � b0 columns, another M 00

1 consisting of the last b0

columns. The second matrixM2 is partitioned into anM 0
2 consisting of the �rst b�b

0 rows, another

M 00
2 consisting of the last b0 rows. The a� c matrix we seek is then M 0

1M
0
2 +M 00

1M
00
2 .

Doing all of the above three shrinking operations simultaneously results in a partition of each

of M1 and M2 into four matrices. If we denote by M1([i : j]; [k : l]) the submatrix of M1 whose

rows are in the interval [i; j] and whose columns are in the interval [k; l], then computing M1M2

requires the following four computations:

M1([1 : a� a0]; [1 : b� b0])M2([1 : b� b0]; [1 : c� c0]) +

M1([1 : a� a0]; [b� b0 + 1 : b])M2([b� b0 + 1 : b]; [1 : c� c0]);

M1([1 : a� a0]; [1 : b� b0])M2([1 : b� b0]; [c� c0 + 1 : c]) +
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M1([1 : a� a0]; [b� b0 + 1 : b])M2([b� b0 + 1 : b]; [c� c0 + 1 : c]);

M1([a� a0 + 1 : a]; [1 : b� b0])M2([1 : b� b0]; [1 : c� c0]) +

M1([a� a0 + 1 : a]; [b� b0 + 1 : b])M2([b� b0 + 1 : b]; [1 : c� c0]);

M1([a� a0 + 1 : a]; [1 : b� b0])M2([1 : b� b0]; [c� c0 + 1 : c]) +

M1([a� a0 + 1 : a]; [b� b0 + 1 : b])M2([b� b0 + 1 : b]; [c� c0 + 1 : c]):

3 Matrix Inversion

Assume that C wants to outsource the inversion of the n � n matrix M . The scheme we describe

next uses secure matrix multiplication as a subroutine. It satis�es the requirement that all local

processing by C takes time proportional to the size of the input, in this case O(n2) time. We �rst

give, in the next subsection, a scheme that does not concern itself with hiding n.

3.1 Inversion Scheme

1. C selects a random n � n matrix S. The probability that S is non-invertible is small, but if

that is the case then Step 4 below will send us back to Step 1 and we will have to start over

with another random matrix S. This need only be repeated O(1) times before S is invertible

(in practice, once is usually enough).

2. C outsources the computation of

M̂ =MS (11)

using secure matrix multiplication. As before, we use A to denote the agent used. Of course

after this step A knows neither M , nor S, nor M̂ .

3. C generates matrices P1; P2; P3; P4; P5 using the same method as for the P1 matrix in Steps

1 and 2 of the preliminary solution to matrix multiplication. That is, P1(i; j) = ai��1(i);j,

P2(i; j) = bi��2(i);j, P3(i; j) = ci��3(i);j, P4(i; j) = di��4(i);j , and P5(i; j) = ei��5(i);j where �1,

�2, �3, �4, �5 are random permutations, and where the ai, bi, ci, di, ei are random numbers.

Then C computes locally, in O(n2) time, the matrices

Q = P1M̂P�1
2 = P1MSP�1

2 (12)

R = P3SP
�1
4 : (13)

4. C sends Q to agent A, who tries to compute Q�1 and, if it succeeds, sends Q�1 back to C.

If it does not succeed then Q is not invertible, and hence at least one of S or M (possibly
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both) is non-invertible. When A detects that Q is non-invertible then it lets C know, and C

then does the following:

(a) C tests whether S is invertible by �rst computing Ŝ = S1SS2 where S1 and S2 are

matrices known by C to be invertible, and then sending Ŝ to A for the purpose of

inverting it.

Note: C is only interested in whether Ŝ is invertible or not, not in its actual inverse;

in fact C will discard S whether Ŝ is invertible or not. The fact that C will discard

S makes the choice of S1 and S2 less crucial than otherwise. Hence S1 and S2 can be

generated so they belong to a class of matrices known to be invertible, such as the Pi we

have been using (in such a case Ŝ can be computed by C locally, without outsourcing);

there are many other classes of matrices known to be invertible (cf. [8, 9]). It is unwise

to let S1 and S2 be the identity matrices, because by knowing S the agent A might learn

how we are generating these random matrices.

(b) If A can invert Ŝ then C knows that S is invertible, hence thatM is not invertible. If A

informs C that Ŝ is not invertible, then C knows that S is not invertible. In that case C

goes back to Step 1, i.e., chooses another S, etc. The number of time C has to go back

to Step 1 in this way is small (zero in practice) because of the high probability that a

randomly chosen S matrix is invertible.

Observe that Q�1 = P2S
�1M�1P�1

1 .

5. C computes locally, in O(n2) time, the matrix

T = P4P
�1
2 Q�1P1P

�1
5 :

It is easily veri�ed that T is equal to P4S
�1M�1P�1

5 .

6. C outsources to agent A the computation of

Z = RT (14)

using secure matrix multiplication. Of course the random permutations and numbers used

within this secure matrix multiplication subroutine must be independently generated from

those of the above Step 3 (using those of Step 3 would compromise security).

Observe that

Z = P3SP
�1
4 P4S

�1M�1P�1
5 = P3M

�1P�1
5 :
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7. C computes locally in O(n2) time P�1
3 ZP5, which equals M�1.

The security of the above follows from

1. the fact that the calculations of M̂ and Z are done using secure matrix multiplication, which

reveals neither the operands nor the results to agent A, and

2. the judicious use of the matrices P1; � � � ; P5 for \isolating" from each other the three separate

computations that we outsource to A; such isolation is a good design principle whenever

repeated usage is made of the same agent, to make it di�cult for that agent to correlate the

various subproblems it is solving (in this case three). Of course less care needs to be taken if

one is using more than one external agent (more on this later).

3.2 Hiding the Matrix Dimension

Hiding n is achieved by (i) using the dimension-hiding version of matrix multiplication in the

scheme of the previous section, and (ii) in Step 4, performing the inversion of Q by inverting a

small number of n0 � n0 matrices where n0 di�ers from n.

If we wish to hide the dimension of Q in Step 4 by enlarging it (i.e., n0 > n), then we need only

modify Step 4 so that it inverts one n0 � n0 matrix Q0 de�ned as follows, where O0 (respectively,

O00) is an n� (n0� n) (respectively, (n0 � n)� n) matrix all of whose entries are zero, and S0 is an

(n0 � n)� (n0 � n) random invertible matrix:

Q0([1 : n]; [1 : n]) = Q;

Q0([1 : n]; [n+ 1 : n0]) = O0;

Q0([n+ 1 : n0]; [1 : n]) = O00;

Q0([n+ 1 : n0]; [n+ 1 : n0]) = S0:

Of course the inversion of Q0 is not performed by sending it directly to the agent A as the zeroes in

it would reveal n. Rather, the inversion of Q is done by using the scheme of the previous subsection

(which does not worry about hiding dimensions | this is acceptable because the dimension of Q0

is di�erent from the n that we seek to hide).

The case of shrinking dimension is more subtle, and relies on the following fact [1]: If X =

Q([1 : m]; [1 :m]) is invertible (m < n), Y = Q([m+1 : n]; [m+ 1 : n]), V = Q([1 : m]; [m+1 : n]),

W = Q([m+ 1 : n]; [1 :m]), and D = Y �WX�1V is invertible, then

Q�1([1 :m]; [1 :m]) = X�1 +X�1V D�1WX�1;
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Q�1([1 : m]; [m+ 1 : n]) = �X�1V D�1;

Q�1([m+ 1 : n]; [1 : m]) = �D�1WX�1;

Q�1([m+ 1 : n]; [m+ 1 : n]) = D�1:

The above suggests that the modi�ed Step 4 would partition Q into four matrices X , Y , V , W ,

then use the secure matrix multiplication scheme of the previous section (possibly with dimension-

hiding) and the inversion scheme of the previous subsection (possibly with dimension-enlargement)

to compute the four pieces of Q�1 described in the above equations.

4 Linear System of Equations

One of the most common uses of matrix inversion is in the solution of a system of linear equations

Mx = b where M is a known square n � n matrix, b is a known column vector of size n, and x

is a column vector of n unknowns. However, a more numerically stable method of solving such a

system is Gaussian Elimination [8], which takes M and b as input and produces x as output if M

is nonsingular (otherwise it returns a message that M is singular). Therefore we need to consider

the situation where C needs to outsource the solution of the linear system of equations Mx = b,

that is, obtain x without having to reveal to A either M or b.

The scheme we describe below satis�es the requirement that all local processing by C take time

proportional to the size of the input, in this case O(n2) time.

4.1 Outsourced Linear System Solution

1. C selects a random column vector V of size n and a random nonsingular matrix S of size

n� n.

2. C generates matrix P using the same method as for the P1 matrix in Steps 1 and 2 of the

preliminary solution to matrix multiplication. That is, P (i; j) = ai��(i);j , where � is a random

permutation, and where the ai are random numbers.

3. C computes the following

M̂ = SMP�1; (15)

b̂ = SMP�1V + Sb; (16)

where the matrix multiplication involving S is securely outsourced, and the other operations

are done locally (they take O(n2) time).
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4. C outsources to agent A the solution of the linear system M̂x̂ = b̂. That is, C sends to A

both M̂ and b̂. If M̂ is singular then C gets a message from A saying so, and C can conclude

that M itself is singular. Otherwise C gets back from A the column vector x̂ where

x̂ = M̂�1b̂: (17)

5. C computes locally

P�1x̂� P�1V (18)

which is the answer x, because

M(P�1x̂� P�1V ) = MP�1x̂�MP�1V

= MP�1(M̂�1b0)�MP�1V

= MP�1(PM�1S�1)(SMP�1V + Sb)

�MP�1V

= MP�1V + b�MP�1V

= b:

This completes the algorithm.

The security of the above follows from the fact that M is hidden through permutation and

scaling by right-multiplication by P�1, and left-multiplication by the random matrix S. Also, the

actual solution is hidden with the addition of an additive random component (SMP�1V ) to the

right hand side of the system of equations.

4.2 Hiding the Dimension

We only describe how to hide n by embedding the problemMx = b into a larger problem M 0x0 = b0

of size n0 > n; shrinking the dimension can be done by using something akin to the equation at the

end of the section on matrix inversion.

Notation 2 In what follows, if X is an r�c matrix and Y is an r0�c matrix (r < r0), the notation

\Y = X(�; [1 : c])" means that Y consists of as many copies of X as needed to �ll the r0 rows of

Y ; the last copy could be partial, if r does not divide r0.

For example, if in the above r0 = 2:5r then the notation would mean that Y ([1 : r]; [1 : c]) =

Y ([r + 1 : 2r]; [1 : c]) = X , and Y ([2r+ 1 : 2:5r]; [1 : c]) = X([1 : 0:5r]; [1 : c]).
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The larger problem M 0x0 = b0 of size n0 > n is de�ned as follows. The matrix M 0 and vector

b0 are de�ned as follows, where O0 (respectively, O00) is an n � (n0 � n) (respectively, (n0 � n)� n)

matrix all of whose entries are zero, S0 is an (n0 � n)� (n0� n) random invertible matrix, and y is

a random vector of length n0 � n:

M 0([1 : n]; [1 : n]) =M;

M 0([1 : n]; [n+ 1 : n0]) = O0;

M 0([n+ 1 : n0]; [1 : n]) = O00;

M 0([n+ 1 : n0]; [n+ 1 : n0]) = S0;

b0([1 : n]) = b;

b0([n+ 1 : n0]) = S0y:

Then the solution x0 to the system M 0x0 = b0 is x0([1 : n]) = x and x0([n+1; n0]) = y. Note that he

zero entries of O0 and O00 do not betray n because Step 3 of the scheme of the previous subsection

hides these zeroes when it computes M̂ = SMP�1. We can even avoid having O0 and O00 be zeroes

if, in the above, we make

1. O0 a random matrix (rather than a matrix of zeroes),

2. O00 =M(�; [1 : n]),

3. S0 = O0(�; [n+ 1 : n0]),

4. b0 = (b+O0y)(�).

If the random choices made for y and O0 result in a noninvertible M 0, then we repeat until we

get an invertible M 0. Assuming M 0 is invertible, the solution x0 to the system M 0x0 = b0 is still

x0([1 : n]) = x and x0([n+ 1; n0]) = y, because

Mx+ O0y = b0([1 : n]) = b+O0y

and hence Mx = b.
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5 Convolution

Assume that C needs to outsource the computation of the convolution of two vectors M1 and M2

of size n each, indexed from 0 to n � 1. The convolution M of M1 and M2 is a new vector of size

2n, denoted M =M1 
M2, such that

M(i) =
iX

k=0

M1(k)M2(i� k): (19)

Convolution takes O(n2) time if done naively, O(n logn) time if the Fast Fourier Transform (FFT)

is used [1].

The scheme we describe below satis�es the requirement that all local processing by C take O(n)

time.

5.1 Convolution Scheme

1. C selects two random vectors S1 and S2, of size n each (that is, vectors whose entries are

random). C also generates �ve positive random numbers �; �; ; �0; 0 such that

(� + �)(�0+ �0)(0� � �0) 6= 0:

If the above is violated then we discard the �ve random numbers chosen and we repeat

the random experiment of choosing a new set of numbers; observe, however, that there is

zero probability that a random choice results in a violation of the above condition, hence

the random choice need not be repeated more than O(1) times (in practice, once is usually

enough).

2. C computes locally the six vectors �M1+S1, �M2+S2, �M1�S1, �M2�S2, �0M1�
0S1,

�0M2 � 0S2. Then C sends these six vectors, in the above order, to agent A.

3. Agent A uses the six vectors received from C to compute three convolutions, one for each

pair of vectors received:

W = (�M1 + S1)
 (�M2 + S2) (20)

U = (�M1 � S1)
 (�M2 � S2) (21)

U 0 = (�0M1 � 0S1)
 (�0M2 � 0S2) (22)

A then sends W;U; U 0 to C.
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4. C computes locally the vectors V and V 0 where

V = (� + �)�1(�U + �W ) (23)

V 0 = (�0 + �0)�1(�U 0 + �00W ): (24)

Observe that V = ��M1 
M2 + S1 
 S2, and V
0 = ��0M1 
M2 + 0S1 
 S2.

5. C computes locally the vector

��1(0� � �0)�1(0V � V 0);

which happens to equal M1 
M2 (as is easily veri�ed). This completes the algorithm.

The security of the above scheme is based on the fact that the six vectors received by A do

not enable it to discover M1 or M2, as A does not know the numbers �; �; ; �0; 0 and the vectors

S1; S2.

5.2 Hiding the Dimension

Hiding the dimension by expanding the problem size is straightfowrad by \padding" the two input

vectors with zeroes (the details are easy and are omitted). The zeroes do not betray the value of

n because Step 2 hides these zeroes by adding random numbers to them.

Hiding the dimension by shrinking the problem size is done in two steps: (i) Replacing the

convolution of size n by three convolutions of size n=2 each, and then (ii) recursively hiding (by

shrinking or by expanding) the sizes of these three convolutions. If su�ces for the depth of the

recursion in (ii) to be O(1). That (i) is possible is seen as follows. For an n-vector M , let M (even)

(respectively, M (odd) denote the (n=2)-vector consisting of the even (respectively, odd) numbered

entries of M . It is easy to verify that

(M1 
M2)
(odd) =M

(even)
1 
M

(odd)
2 +M

(odd)
1 
M

(even)
2 ;

(M1 
M2)
(even) =M

(even)
1 
M

(even)
2 + Shift(M

(odd)
1 
M

(odd)
2 );

where Shift(x) shifts the vector x by one position. This implies that the following three convolu-

tions, involving vectors of size n=2 each, are enough to obtain M1 
M2:

1. (M
(even)
1 +M

(odd)
1 )
 (M

(even)
2 +M

(odd)
2 )

2. (M
(even)
1 �M

(odd)
1 )
 (M

(even)
2 �M

(odd)
2 )

17



3. M
(odd)
1 
M

(odd)
2

Adding and subtracting the results of the above convolutions (1) and (2) enables us to obtain

M
(even)
1 
 M

(odd)
2 + M

(odd)
1 
 M

(even)
2 and M

(even)
1 
 M

(even)
2 + M

(odd)
1 
 M

(odd)
2 : The former is

recognized as (M1 
M2)(odd), and the latter allows us to obtain (in conjunction with the result of

convolution (3)) (M1 
M2)(even).

6 Sorting

Asssume that C needs to outsource the sorting of a sequence of numbers E = fe1; � � � ; eng with the

ei taken from a set equipped with a total ordering relationship (without loss of generality let us

assume that the ei are real: ei 2 R, i = 1; � � � ; n). E is not to be revealed to the outsourcing agent.

This can be done as follows.

C selects a strictly increasing function f : E 7! R, such as

f(ei) = �+ �(ei + )2 (25)

where �; �;  are known to C but not to A. In fact, even the nature of f could be hidden from A

if C selects the function f from a large catalog of functions; the rest of this section assumes the

above quadratic form for f . Observe that for the above f to be stricly increasing,  must be chosen

such ei +  � 0 for all i.

The scheme we describe below satis�es the requirement that all local processing by C take O(n)

time.

1. C chooses �, �, and  locally, thus de�ning the function f (as explained above).

2. C chooses locally a random sorted sequence � = (�1; � � � ; �l) of l numbers. This is done by

randomely \walking" on the real line from MIN to MAX where MIN is smaller than the

smallest number being sorted andMAX is larger than the largest number being sorted. This

random \walking" is implemented as follows. Let � = (MAX �MIN)=n. C generates the

sorted sequence � as follows:

(a) Randomely generate �1 from a uniform distribution in [MIN;MIN + 2�].

(b) Randomely generate �2 from a uniform distribution [�1; �1+ 2�].

(c) Continue in the same way until you go past MAX , at which time you stop. The total

number of elements generated is l for some integer l.
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Observe that � is sorted by construction, that each random increment has expected value �,

and that the expected value of l is (MAX �MIN)=� = n.

3. C produces locally the sequences

E 0 = f(E) (26)

�0 = f(�); (27)

where f(E) is the sequence obtained from E by replacing every element ei of E by f(ei).

4. C concatenates a copy of the sequence �0 to E0, obtaining E0 [ �0. Then C generates a

randomly permuted version (call it W ) of E0 [ �0.

5. C sends W to agent A, who sorts it and sends back a sorted version of W , call it W 0.

6. C receives W 0 and removes from it the sequence �0. C can do this in O(n) time because W 0

and the saved copy of �0 are already sorted. This produces a sequence Ê, which is a sorted

version of E0 = f(E).

7. C computes f�1(Ê), which is equal to a sorted version of E. This completes the algorithm.

The above scheme reveals n because the number of items we send to A for sorting has expected

value 2n. To change this from 2n to m + n where m is unrelated to n, we would have to modify

Step 2 so that � = (MAX �MIN)=m where m di�ers from n (hence the expected value of l

in Step 2 becomes m). This hides problem size by expanding it. Hiding it by shrinking is done

by partitioning the problem into a constant (small) number of problems, each of which is then

recursivey sorted, i.e., by outsourcing with size-hiding (using shrinking or expansion). The sorted

pieces are then merged locally by C, in linear time.

7 Experimental Results and Practical Observations

The purpose of the experimental work is not only to have \proof of concept" software, but also to

shed some light on the numerical properties of the schemes proposed, namely, the di�erence between

the answer we obtain and the answer that would have been obtained if all of the computations had

been done locally (i.e., without using our outsourcing schemes). If computers had in�nite precision

(or if we use sophisticated software that simulates such precision) then the di�erence is, of course,

zero. We report a series of experimental results for the secure outsourcing algorithms presented in

the previous sections. The algorithms have been implemented in ANSI C++, compiled with the GNU
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g++ compiler and executed in double precision on a SUN SparcStation 20 running the Solaris

5.4 operating system. In the results that are reported the following metrics are used.

Vector Metrics For a vector V of size n we use the following norms

� jjV jj1 =
Pn

i=1 jV (i)j

� jjV jj2 =
pPn

i=1 jV (i)j
2

� jjV jj1 = max1�i�n jV (i)j

For two vectors of size n, V and V̂ we use the following errors

� Absolute Error: �abs = jjV̂ � V jj

� Relative Error: �rel =
jjV̂�V jj
jjV jj

where the norms involved can be any of the three norms de�ned above.

Matrix Metrics For a matrix M of size m� n we use the following norms

� jjM jj1 = max1�j�n
Pm

i=1 jM(i; j)j

� jjM jjF =
qPm

i=1

Pn
j=1 jM(i; j)j2, where F stands for the Frobenius norm.

� jjM jj1 = max1�i�m
Pn

j=1 jM(i; j)j

For two matrices of size m� n, M and M̂ we use the following errors

� Absolute Error: �abs = jjM̂ �M jj

� Relative Error: �rel =
jjM̂�M jj
jjM jj

� Maximum Absolute Error: �max = max1�(i;j)�(m;n) jM̂(i; j)�M(i; j)j

where the norms involved can be any of the three norms de�ned above.

General Metrics For a sequence of length K of pairs of matrices f(M̂i;Mi); i = 1; � � � ; Kg, or

vectors f(V̂i; Vi); i = 1; � � � ; Kg, we de�ne the average absolute error as

1

K

KX
i=1

�abs(M̂i;Mi); or;
1

K

KX
i=1

�abs(V̂i; Vi)
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We de�ne the average relative error similarly as

1

K

KX
i=1

�rel(M̂i;Mi); or;
1

K

KX
i=1

�rel(V̂i; Vi)

The average �max is de�ned similarly. The root-mean-square error (RMS) is de�ned, for any of the

three norms, as

vuut 1

K

KX
i=1

(jjM̂i �Mijj)2; or;

vuut 1

K

KX
i=1

(jjV̂i � Vijj)2;

The experimental results reported are based on a sequence of trial inputs that were randomly

generated. The averages are taken over these sequences of inputs. The error results that are

reported are based on the value obtained through secure outsourcing and the value that is computed

by the normal local implementation of the relevant algorithm. The number of trials for convolution

was 1; 000, while for the other three algorithms the number of trials was 100 because of the enormous

size of the computations. Indicative numbers are reported for three di�erent sizes of the input. For

convolution, we give the error on vectors of size 10, 100, and 1; 000. For matrix multiplication we

report results for products of square matrices 10� 10, 50� 50, and 100� 100. The results for the

solution of linear systems of equations are for 10, 50, and 100 unknowns. Finally the results for

matrix inversion are for matrix sizes of 10� 10, 50� 50, and 100� 100. The actual entries of the

matrices and vectors in the above experiments were typically two to three digits long, i.e., between

10 and 1; 000, generated randomly.

The RMS for all the algorithms is reported in all three norms while the relative, absolute and

maximum are reported only for the in�nity norm. Observe that �abs � �max for vectors using the

in�nity norm, so that for the solution of linear systems and the convolution we only report the �abs

in norm in�nity.

Speaking in general terms, the absolute error in norm in�nity is an indication of the number of

decimal digits that are correct. For example, an error of 10�p would imply that at least p decimal

digits are correct.

We observe that in all four algorithms, the error is very small but tends to increase as we scale

the size of the input. This is expected as the accumulation of round-o� errors becomes larger

for larger inputs. Let us mention that our implementation has adopted no special techniques for

error control or higher accuracy. We have implemented the outsourcing algorithms described in a

straightforward manner, using LU decomposition with implicit partial pivoting for matrix inversion

and linear system solution and plain computer algebra for convolution and matrix multiplication.
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In this sense, the results reported here should be considered as an upper bound on the error {

smaller errors would result if we had used sophisticated numerical methods for error control.

100 trials RMS, jj � jj1 RMS, jj � jjF RMS, jj � jj1 �abs, jj � jj1 �rel, jj � jj1 �max

size: 10� 10 2:115e� 10 9:947e� 11 1:667e� 10 2:268e� 10 2:569e� 16 6:446e� 11

size: 50� 50 1:342e� 08 1:997e� 09 4:231e� 09 5:322e� 08 2:643e� 15 4:381e� 09

size: 100� 100 1:853e� 07 1:169e� 08 1:982e� 08 3:079e� 06 4:025e� 14 1:489e� 07

Table 1: Error metrics for secure matrix multiplication

1; 000 trials RMS, jj � jj1 RMS, jj � jj2 RMS, jj � jj1 �abs, jj � jj1 �rel, jj � jj1

size: 10 9:797e� 08 2:476e� 08 1:726e� 08 2:055e� 08 2:622e� 16

size: 100 1:088e� 05 7:853e� 07 3:078e� 07 5:680e� 07 8:178e� 16

size: 1000 1:652e� 03 3:465e� 05 8:629e� 06 2:276e� 05 3:491e� 15

Table 2: Error metrics for secure convolution

100 trials RMS, jj � jj1 RMS, jj � jj2 RMS, jj � jj1 �abs, jj � jj1 �rel, jj � jj1

size: 10 4:512e� 10 1:627e� 10 8:273e� 11 2:053e� 11 3:248e� 12

size: 50 3:445e� 07 5:812e� 08 2:007e� 08 9:463e� 09 2:100e� 09

size: 100 1:599e� 04 1:979e� 05 5:008e� 06 1:742e� 06 2:097e� 07

Table 3: Error metrics for secure solution of linear systems

100 trials RMS, jj � jj1 RMS, jj � jjF RMS, jj � jj1 �abs, jj � jj1 �rel, jj � jj1 �max

size: 10� 10 2:725e� 13 7:504e� 13 1:172e� 12 2:652e� 13 1:048e� 13 7:292e� 14

size: 50� 50 3:810e� 08 1:821e� 08 3:142e� 08 7:927e� 08 9:248e� 09 1:028e� 08

size: 100� 100 1:697e� 06 5:857e� 07 1:467e� 06 1:731e� 05 2:692e� 06 1:205e� 06

Table 4: Error metrics for secure matrix inversion

8 Further Remarks

All of the schemes described in this paper assume the use of a single external agent. If more than

one agent is available, then by randomly choosing from the available pool of agents we can a�ord

to do less data hiding. This was pointed out earlier in the context of one particular scheme, but
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all of our schemes could be simpli�ed if they were allowed to make use of more than one agent.

(Intuition makes one expect a tradeo� between the number of available agents and the amount

of hiding needed.) Future research in this area may well encounter problems for which secure

outsourcing can be achieved only by using more than one external agent.

A multi-agent environment raises many interesting questions, including:

� Whether it is reasonable to assume that mutiple external agents will not conspire with each

other against the customer, by sharing with each other the data that the customer sends

them.

� If external agents are conspiring against the customer, how they can overcome the problem of

\matching" the relevant subcomputations outsourced by the customer to each of them (from

among the potentially huge number of computations outsourced to them by the customer).

The customer can make this task di�cult by

{ deliberately interleaving the temporal ordering of the jobs outsourced to achieve better

security, and

{ deliberately outsourcing \fake" computations.

The above two obfuscation techniques make sense even in a single-agent environment.

� How one goes about proving that the secure outsourcing of a particular problem inherently

requires at least k external (non-conspiring) agents, k > 1.

We also note that the scheme proposed in this paper solves an interesting problem related to the

distributed scheduling system described by Chapin and Spa�ord in [4]. The work described there

provided an architecture to distribute large computations without disclosing information about the

machines doing the computation, and without sacri�cing control of those machines. The drawback

to that scheme was that the users did not have a means of hiding their data and computation from

the machine owners. The method described here addresses that concern, and enables outsourcing

to take place in an environment that is not completely de�ned.
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