SECURE OUTSOURCING OF SCIENTIFIC
COMPUTATIONS

Mikhail J. Atallah and John R. Rice
Department of Computer Sciences
Purdue University, West Lafayette, IN 47907, U.S.A.
email: {mja, jrr}@cs.purdue.edu

December 7, 1998

Abstract

We investigate the outsourcing of numerical and scientific computations using the following
framework: A customer who needs computations done but lacks the computational resources
(computing power, appropriate software, or programming expertise) to do these locally, would
like to use an external agent to perform these computations. This currently arises in many
practical situations, including the financial services and petroleum services industries. The
outsourcing is secure if it is done without revealing to the external agent either the actual data
or the actual answer to the computations. The general idea is for the customer to do some
carefully designed local preprocessing (disguising) of the problem and/or data before sending
it to the agent, and also some local postprocessing of the answer returned to extract the true
answer. The disguise process should be as lightweight as possible, e.g., take time proportional to
the size of the input and answer. The disguise preprocessing that the customer performs locally
to “hide” the real computation can change the numerical properties of the computation so that
numerical stability must be considered as well as security and computational performance. We
present a framework for disguising scientific computations and discuss their costs, numerical
properties, and levels of security. We show that no single disguise technique is suitable for a
broad range of scientific computations but there is an array of disguises techniques available so
that almost any scientific computation can be disguised at a reasonable cost and with very high
levels of security. These disguise techniques can be embedded in a very high level, easy-to-use
system (problem solving environment) that hides their complexity.

Table of Contents

INTRODUCTION

1.1 Outsourcing and Disguises

1.2 Difference Between Disguise and Encryption
1.3 Four Simple Examples

1.3.1 Matrix multiplication

1.3.2 Quadrature

1.3.3 Edge detection

1.3.4 Solving a differential equation

GENERAL FRAMEWORK

2.1 Need for Multiple Disguises

2.2 Atomic Disguises
2.2.1 Random numbers, vectors, matrices, functions, permutations, ...
2.2.2 Operator modification
2.2.3 Domain and dimension modifications
2.2.4 Coordinate system changes
2.2.5 Identities and partitions of unity

2.3 Key Processing

2.3 Disguise Programs

APPLICATIONS

3.1 Linear Algebra

3.2 Integration

3.3 Differential Equations

3.4 Optimization and Nonlinear Equations

3.5 Image Analysis

SECURITY ANALYSIS

4.1
4.2

4.3

Breaking Disguises

Attack Strategies

4.2.1 Statistical

4.2.2 Approximation theoretic
4.2.3 Symbolic code analysis
Disguise Strength Analysis
4.3.1 Linear algebra

4.3.2 Quadrature

4.3.3 Differential equations

5. PERFORMANCE ANALYSIS
5.1 Computation Resources
5.1.1 Basic results
5.1.2 Preservation of problem structure
5.2 Computation Accuracy and Stability
5.3 Network Resources

6. DESIGN OF A PROBLEM SOLVING ENVIRONMENT FOR DISGUISE

APPENDICES
A. Specification of Atomic Disguises
B. Example Disguise Programs for Applications

1. INTRODUCTION

1. Outsourcing and Disguise

Outsourcing is a general procedure employed in the business world when one entity, the customer,
chooses to farm out (outsource) a certain task to an external entity, the agent. The reasons for
the customer to outsource the task to the agent can be many, ranging from a lack of resources to
perform the task locally to a deliberate choice made for financial or response time reasons. Here we
consider the outsourcing of numerical and scientific computations, with the added twist that the
problem data and the answers are to be hidden from the agent who is performing the computations
on the customer’s behalf. That is, it is either the customer who does not wish to trust the agent
with preserving the secrecy of that information, or it is the agent who insists on the secrecy so as to
protect itself from liability because of accidental or malicious (e.g., by a bad employee) disclosure
of the confidential information.

The current outsourcing practice is to operate “in the clear”, that is, by revealing both data
and results to the agent performing the computation. One industry where this happens is the
financial services industry, where the proprietary data includes the customer’s projections of the
likely future evolution of certain commodity prices, interest and inflation rates, economic statistics,
portfolio holdings, etc. Another industry is the energy services industry, where the proprietary data
is mostly seismic, and can be used to estimate the likelihood of finding oil or gas if one were to drill
in a particular geographic area. The seismic data is so massive that doing matrix computations
on such large data arrays is beyond the computational resources of even the major oil service
companies, which routinely outsource these computations to supercomputing centers.

We consider many science and engineering computational problems and investigate various
schemes for outsourcing to an outside agent a suitably disguised version of the computation in a
way that hides the customer’s information from the agent and yet the answers returned by the
agent can be used to obtain easily the true answer. The local computations should be as minimal
as possible and the disguise should not degrade the numerical stability of the computation.

4

2. The Difference Between Disguise and Encryption

The techniques presented here differ from what is found in the cryptography literature concerning
this kind of problem. Secure outsourcing in the sense of [?] follows an information-theoretic ap-
proach, leading to elegant negative results about the impossibility of securely outsourcing computa-
tionally intractable problems. In contrast, our methods are geared towards scientific computations
that may be solvable in polynomial time, (e.g., solution of a linear system of equations) or where
time complexity is undefined (e.g., the work to solve a partial differential equation is not related to
the size of the text strings that define the problem). In addition, the cryptographic protocols litera-
ture contains much that is reminiscent of the framework of the present proposal, with many elegant
protocols for cooperatively computing functions without revealing information about the functions’
arguments to the other party (cf. the many references in, for example, [?, ?]). The framework
of the privacy homomorphism approach that has been proposed in the past [?] assumes that the
outsourcing agent is used as a permanent repository of the data, performing certain operations on

it and maintaining certain predicates, whereas the customer needs only to decrypt the data from
the external agent’s repository to obtain from it the real data. Our framework is different in the
following ways:

e The customer is not interested in keeping data permanently with the outsourcing agent;
instead, the customer only wants to use temporarily its superior computational resources.

e The customer has some local computing power that is not limited to encryption and decryp-
tion. However, the customer does not wish to do the computation locally, perhaps because
of the lack of computing power or appropriate software or perhaps because of economics.

Our problem is also reminiscent of the server-aided computation work in cryptography, but there
most papers deal with modular exponentiations and not with numerical computing [?, ?, 7, 7, 7,
7,7,77.

Our problems and techniques afford us (as will be apparent below) the flexibility of using one-
time-pad kinds of schemes for disguise. For example, when we disguise a number z by adding to it
a random value r, then we do not re-use that same r to disguise another number y (we generate
another random number for that purpose). If we hide a vector of such z’s by adding to each a ran-
domly generated r, then we have to be careful to use a suitable distribution for the r’s. Throughout
this paper when we use random numbers, random matrices, random permutations, random func-
tions (e.g., polynomials, splines, etc., with random coefficients) etc.; it is always assumed that each
is generated independently of the others, and that quality random number generation is used (cf.
[?, Chap. 23], [?, Chap. 12], [?, ?, ?]).

The parameters, types, and seeds of these generators provide the keys to the disguises. We
show how to use a single key to generate multiple keys which are “independent” and which simplify
the mechanics of the disguise techniques. This key is analogous to the key in encryption but the
techniques are different.

The following simple example illustrates the difference between encryption and disguise. Con-
sider a string F' of text characters that are each represented by an integer from 1 to 256 (i.e., these
are byte strings). Suppose that Fj is an encryption of F' with one of the usual algorithms. Suppose
that Fy is a disguise of F' that is created as follows: (1) Choose a seed (the disguise key) for a
uniform random number generator and create a sequence G of random integers between 0 and 128,
(2) Set Fy = F1 + G. Assume now that F' is a constant (the single value 69) string of length N
and the agent wishes to discover the value of this constant. It is not possible to discover from Fj
the value 69 no matter how large N is. However, it is possible to discover 69 from F5 if N is large
enough. Since G is uniform, the mean of the values of G converge to 64 as N increases and thus,
as N increases, the mean of Fy converges to 133 = 64 + 69 and the rate of convergence is order
1/v/N. Thus, when 1/v/N is somewhat less than 1/2, we know that the mean of F is 133 and
that the character is 69. An estimate of N is obtained by requiring that 128/v/N be less than 1/2
or N be more than about 60-70,000.

The point of this example is that the encription cannot be broken in this case without knowing
the encryption key — even if one knows the encryption method. However, the disguise can be
broken without knowing the key provided the disguise method is known. Of course, it follows

that one should not use such a simplistic disguise and we provide disguise techniques for scientific
computations with security comparable to that of the most secure encryptions.

3. Four Simple Examples

The nature and breadth of the disguises possible are illustrated by the following.

1. Matrix Multiplication

Consider the computation of the product of two n x n matrices M; and M. We use ;4 to denote
the Kronecker delta function that equals 1 if z = 1 and 0 if z # y. The disguise requires six steps:

1. Create (i) three random permutations 7y, 79, and 73 of the integers {1,2,...,n}, and (ii)
three sets of non-zero random numbers {1, as, ..., an}, {81,062, .., On}, and {v1,72, ..., ¥}

2. Create matrices Pi, %, and Py where Pi(i,5) = a1Vr, 3y, [2(6,5) = Biyma(i),j, and
Ps(i,5) = Yk0ry(i),j- These matrices are readily invertible, e.g., Pfl(i,ju) = (ozj)_l'yﬂq(i) i
, 1 N

3. Compute the matrix X = PiM; Py . We have X (i,u) = (a;/B;) Mz (1 (i), m2(5))-
4. Compute Y = P,MyP; *.

5. Send X and Y to the agent which computes the product Z = XY = (P, M P, })(P,MyP; ') =
P1M1M2P3_1 and sends Z back to the customer.

6. Compute locally, in O(n?) time, the matrix PlePg, which equals M M.

This disguise may be secure enough for many applications, as the agent would have to guess
two permutations (from the (n!)2 possible such choices) and 3n numbers (the aq, (;, ;) before it
can determine M; or My. This example is taken from [?] where a much more secure disguise is
presented along with disguises for other linear algebra procedures (convolutions, solution of linear
systems, FFTs). All of these disguises require O(n?) computation which is the minimum possible
since the problem involve O(n?) data. The outsourced computations require O(n?®) operations.

2. Quadrature

The objective is to estimate
b
irllf f(z)dx
with accuracy eps. The disguise is as follows.

1. Choose X, = a,X7 = b and 5 ordered, random numbers X; in [a,b] and 7 values v; with
min|f(z)| & My < My =~ max |f(z;)]. (M1 and My are only estimate roughly).

2. Create the cubic spline g(z) with knots X; so that g(X;) = V;.

3. Integrate g(z) exactly from a to b to obrtain I.
4. Send g(z) + f(x) and eps to the agent for numerical quadrature and recive the value I back.

5. Compute Io — I; which is the answer.

All the computations made locally are simple, of fixed work, and independent of f(z) and eps.
The random vectors and matarices of the previous example are replaced by a “random” smooth
function. ONe has to determine 12 random numbers in order to break the disguise.

3. Edge Detection

The objective is to determine the edges in picture represented by an n x n array of pixel values
p(z,y) between 0 and 100,000 on the square 0 < z1y < 1. This disguise is as follows:

1. Set z,y = 0, X19, Y10 = 1, choose two sets of 8 ordered, random numbers with 0 < V;,Y; < 1,
choose 100 random values 0 leqV; ,, < 50,000, and choose four pairs (a;, b;) of positive, random
numbers with ¢; = mina;, a4 = maxa;, b = minb;, by = maxb;.

2. Create the bi-cubic spline s(z,y) so that s(z;,y;) = Vij.

3. Determine the linear change of coordinates from (X,Y’) to (U, V') that maps the unit square
into the quaddrilateral with vertices (a;, b;).

4. Send p(u(z,y),v(z,y)) + s(u(z,y),v(x,y)) to the agent for edge detection and receive the
image e(u,v) back showing the edges.

5. Compute e (z(u,v),y(u,v)) to obtain the edges.

This disguise uses the fact that adding a smooth pixel function to the image and making a smooth
change of coordinates does not add or delete any edges from the image. As in 1.3.1, the work of the
disguise is proportional to the size of the data for the computing (plus a small constant amount).
Here one must determine 124 random numbers in order to break the disguise.

4. Solution of a Differential Equation

The objective is to solve the two point boundary value problem

y' +ai(2)y +az(2)Y = f(z,y)y(s) = Yo, Y (b) = Y;
The disguise is as follows.
1. Choose a spline g(z) as in 1.3.2 above.

2. Create the function
u(z) = g" + ai(z)g’ + az(z)g

3. Send the problem

y" + a1 (2)Y' + az(x)g = f(z,y) +u(z)y(a) = 1/0 + u(a),y(b) = y1 + u(b)

to the agent for solution and recieve z(z) back

4. Compute z(x) — g(z) which is the solution.

This disguise applies the problem’s mathematical oerator to a known function and then combines

the real and the artificial problems. Here one must determine 12 random numbers to break the
disguise.

This paper is organized as follows. In Section 2 the general framework for disguise of scientific

problems is presented including atomic disguise techniques, key management and “programming”
disguises. The detailed specifications of these disguises are given in Appendix A. Section 3 presents
applications of these techniques to five broad areas of scientific computation. The details for these
applications are given in Appendix B. The security of disguises is analyzed in Section 4 for attacks
using statistical, approximation theoretic and symbolic code analysis methods.

References

1]

2]

3]

[4]

[5]

[6]

[7]

M. Abadi, J. Feigenbaum, J. Killian, On hiding information from an oracle, J. of Computer
and System Sciences, 39, pages 21-50, 1989.

M.J. Atallah, K.N. Pantazopoulos, E.H. Spafford. Secure outsourcing of some computations,
Department of Computer Sciences CSD-TR-96-074, Purdue University, 1996.

P. Beguin, J-J. Quisquater. Fast server-aided RSA signatures secure against active attacks,
CRYPTO, (1995), 57-69.

B. Dole, S. Lodin, and E. H. Spafford. Misplaced trust: Kerberos 4 session keys, in Proceedings
of 4th Symposium on Network and Distributed System Security, IEEE Press, (1997), 60-71.

D. E. Eastlake, S. D. Crocker, and J. I. Schiller, RFC-1750 Randomness Recommendations
for Security, Network Working Group, December (1994).

S. Garfinkel and E. H. Spafford. Practical UNIX & Internet Security, O’Reilly & Associates,
second edition, (1996).

S-J. Hwang, C-C. Chang, W-P. Yang. Some active attacks on fast server-aided secret com-
putation protocols for modular exponentiation, Cryptography: Policy and Algorithms, LNCS
1029, (1996), 215-228.

S-I. Kawamura, A. Shimbo. Fast server-aided secret computation protocols for modular expo-
nentiation, Proc. of IEEE J. on Selected Areas in Communications, 11(5), (1993), 778-784.

D. E. Knuth, The Art of Computer Programming, Volume 2, Addison Wesley, second edition,
1981.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

C-S. Laih, S-M. Yen, Secure addition sequence and its application on the server-aided secret
computation protocols, AUSCRYPT, (1992), 219-230.

C-H. Lim, P. J. Lee. Security and Performance of server-aided RSA computation protocols,
CRYPTO, (1995), 70-83.

T. Matsumoto, K. Kato, H. Imai, Speeding up secret computations with insecure auxiliary
devices, CRYPTO, (1988), 497-506.

B. Pfitzmann, M. Waidner, Attacks on protocols for server-aided RSA computation, EURO-
CRYPT, (1992), 153-162.

J-J. Quisquater, M. de Soete, Speeding up smart card RSA computations with insecure co-
processors, Smart Card 2000, North Holland, (1991), 191-197.

R. L. Rivest, L. Adleman, and M. L. Dertouzos, On data banks and privacy homomorphisms,
in (Richard A. DeMillo, editor), Foundations of Secure Computation, Academic Press, (1978),
169-177.

B. Schneier, Applied Cryptography, Wiley, second edition, (1996).

A. Shimbo, S. Kawamura, Factorization attacks on certain server-aided computation protocols
for the RSA secret transformation, Electronic Letters, 26(17), (1990), 1387-1388.

D. R. Stinson, Cryptography: Theory and Practice, CRC Press, Boca Raton, FL, (1995).

G. J. Simmons, editor, Contemporary Cryptology: The science of Information Integrity, IEEE
Press, (1992).

