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Abstract

System administrators face trade-o�s concerning the volume of audit data to collect and retain. Not all
approaches have easily quanti�ed costs, but lossless compression o�ers an adjustable trade-o� of storage
for compute time. Compression techniques designed into the data format can complicate software that

consumes the data, and are not adjustable to suit the needs of diverse sites. General-purpose compression
tools permit some adjustment, but cannot exploit sophisticated models of the data. The toolkit described
here simpli�es tailoring compression tools to the properties of the data at any time after the data format

is speci�ed. Using the toolkit, a few days of work de�ning models can achieve compression 13% better
than gzip on an existing commercial audit format, with many known properties of the data remaining
to be exploited by re�nements of the models for still better compression. A customized compression tool

could also be designed to permit recovery of data from a compressed stream without decompressing the
entire stream.

1 Introduction

Computer systems store and process information whose disclosure, alteration, or unavailability could have
economic or strategic costs. Audit logs may help detect orchestrated or accidental events that could compro-
mise con�dentiality, integrity, or availability. Log records may suggest what went wrong and how, the extent
of the damage, how to recover, and how to prevent a recurrence. The log may help determine accountability
for negligent or deliberate acts, or provide valuable evidence if legal action is appropriate. It may be used
retrospectively to reconstruct and understand incidents that were not anticipated when logging was estab-
lished, and it may be combined with other sources of information in the investigation of a larger event in
which the computer system played only an incidental role. Administrative choices about the resources to be
dedicated to auditing are complicated by the variety of uses to which audit logs may be put.

Audit logs contain records of simple events frequently seen in normal operation. Records revealing
questionable activity, if any, appear amid long sequences of unremarkable events. The rate of log growth can
make signi�cant demands on computing and storage: Mounji[10] reports that systems with modest-sized
user communities can collect hundreds of megabytes of audit data per day, and the peak rate observed for
a single machine in this laboratory was equivalent to 97 megabytes per day during a period of heavy use.

Administrators have some options in managing the storage demands. Preselection criteria allow the
logging of only selected subsets of auditable events, and the retention period for old logs can be set by
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policy. Both options have costs. The cost of preselection is a risk that insu�cient information may be
available to understand an event after the fact. The cost of a short retention period is the risk that no
information may be available if an unusual event is questioned some time after it occurred.

In setting selection and retention policy, the administrator must negotiate a trade-o� of storage capacity
against these risks, which are di�cult to quantify in economic terms. Another option, lossless compression
of audit logs, also involves a trade-o�, but the trade is storage capacity against compute time, whose value
is easily quanti�ed. By pairing a generic compression technique with more or less sophisticated models of
the data, compute cost and compression ratio can be balanced. The nine compression levels of gzip[1, 2]
illustrate the idea, but this work concerns the construction of models to achieve better compression than
gzip. The techniques and tools described can be applied to other sources of data that, like audit logs, are
highly structured. As described in Section 7, they may also be used to compress data such that portions of
the compressed stream can be recovered without decompressing from the beginning.

2 Techniques in current use

Auditing systems now available include design features intended to keep storage demands reasonable. Sec-
tion 2.1 describes two examples from current practice of addressing space concerns directly in the canonical
concrete syntax of the audit log. Abstract syntax is used here to denote the inherent structure and content
of a data stream, without regard to any encoding of that stream on a physical medium. A concrete syntax

speci�es the details of representation on a physical medium, de�ning such things as delimiters or length
encodings by which data described by the abstract syntax can be recoverably stored or transmitted in a
concrete form. Many concrete syntaxes can be de�ned for a given abstract syntax, so canonical distinguishes
the concrete syntax that is documented as the audit log format, and that developers of log-consuming tools
are expected to implement. Section 2.2 describes another approach, using a simpler canonical concrete
syntax and a general-purpose compression tool, whose output may be regarded as an alternative concrete
representation of the same abstract syntax.

2.1 Hand-optimized concrete syntax

The Solaris Basic Security Module, a commercial system in current use[9], and the Common Intrusion
Speci�cation Language (CISL)[3], a cross-platform e�ort now in development, both illustrate the approach
of addressing space concerns in the canonical concrete syntax design.

2.1.1 Solaris BSM

The BSM audit log is a sequence of audit `tokens' constructed from the internal binary representations of
kernel data. Some of these representations encode more than one value (for example a device driver and a
unit number) into a single integral �eld; others are bit-mapped collections of boolean �ags. In some cases
the �ags are overloaded so the correct interpretation depends on values of other �ags or �elds.

2.1.2 Common Intrusion Speci�cation Language (CISL)

The Common Intrusion Detection Framework (CIDF)[13] working group was convened by the Defense Ad-
vanced Research Projects Agency with representation from industry, academia, and research organizations.
CISL, a component of the CIDF e�ort, is de�ned at a high level, but Section 5 of the document is devoted
to a binary concrete syntax. An example of the compression techniques included in the CISL design is the
encoding of length shown in Figure 1. The encoding of any variable-size object is preceded by a length,
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l < 28 ) 1 l

l < 216 ) 2 l

l < 232 ) 4 l

Figure 1: Length encoding in the Common Intrusion Speci�cation Language

which can be up to 32 bits. To make the encoding more compact, only one octet is transmitted if the length
is less than 256, or only two if it is less than 16 384. The length itself is then preceded by an octet value 1,
2, or 4, indicating the number of octets occupied by the length value.

2.2 General-purpose compression tools

Although the hand-optimization techniques can reduce the space consumed by an audit log, they must be
applied during the initial design of the format. At that stage of design, the space considerations compete for
attention with other design goals, which should include adequacy of the captured data for the purposes of
audit, and simplicity of implementation for programs that will need to consume the audit log. By contrast,
a general-purpose compression tool can be placed underneath any �le format even if it was not anticipated
in design. It can compress a format that was designed with no attention to space e�ciency, or one whose
original design does not yield the space e�ciency needed for a new application. If compression is available
as a separate layer and decoupled from initial format design, designers can attend to the goals of usability
of the log and simplicity of tool construction.

Intuitively, the structure and repetition in audit data contribute to compressibility. Intuition is bolstered
by the performance of completely general-purpose data compression tools such as gzip, which can reduce
Solaris BSM audit data in this laboratory to 6�7 percent of its original size without any special knowledge
of what it is compressing. This may be adequate for many applications; where better compression is needed,
a tool that is tailored to the characteristics of the data can be used.

3 A systematic approach

An audit format fed to a generic compression tool creates a clear layer boundary but limits the compression
ratio. A hand-optimized format, while it can exploit known characteristics of the data, destroys the layer
distinction, can complicate tools that consume the data, and usually achieves compression far from optimal.
Consider the CISL length encoding. It is reasonable to suppose that the most common lengths encoded fall
in the 0 to 255 range, expressible in one octet. CISL uses a second octet for the encoding length, expanding
the most frequent lengths by 100 percent.

A systematic approach to the problem begins with a general purpose algorithm, based on sound compres-
sion theory, that can be tailored to the characteristics of the input data without requiring the data format
be tailored to it.

3.1 Information rate and capacity

C. E. Shannon[12] considered the problem of determining the information-carrying capacity of an arbitrary
communication channel and the information content of a message stream. His measure of channel capacity
depends on the alphabet of symbols that can be transmitted over the channel, the relative probability of each
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symbol, and the time (more generally, cost) to transmit each symbol. Entropy, his measure of information
content in the symbols of a message, is also a function of the number and relative frequencies of the symbols.
For a channel with alphabet and costs given, there is an assignment of probabilities to the symbols that will
minimize the average cost of transmitting a message. For the case where all symbols have the same cost, the
minimum is achieved when all are equiprobable. If messages are to be sent whose symbol probabilities have
any other distribution, transmission cost can be reduced by �rst recoding the messages into a sequence of
symbols with probability distributions near the optimal. The bene�t to be expected from recoding depends
on the relative entropy of the original message stream, de�ned in the uniform-cost case as the ratio of the
original message stream entropy to the entropy of a language over the same alphabet but with the symbols
equiprobable.

The recoding process, which Shannon called a discrete transducer, is speci�ed by its input and output
alphabets and probability distributions. If the output characteristics of one transducer match the input
characteristics of another, the two can be composed and the result is also a transducer. If the composition
of two transducers reproduces the original message stream, one is the inverse of the other and both are said
to be nonsingular. Shannon outlined the design of a nonsingular discrete transducer for any message stream,
given a model for the statistical properties of the input, and the statistical properties desired for the output.

The compression problem, as usually formulated, is none other than the optimal utilization of a storage
channel whose two symbols, 0 and 1, have equal cost. It also can be solved by a discrete transducer if a
good model of the statistical properties of the input can be constructed. Here is the foundation of the earlier
intuitive argument that the known regularities of audit data can be exploited to achieve good compression.
At most points in an audit log the possible next symbols are far from equiprobable, so the relative entropy of
the log message stream is low and the expected bene�t of recoding is high. The probability models needed for
recoding can exploit many known characteristics of the audited system. Unlike a general text compression
problem, it is not necessary to inductively determine the best structure and order of a Markov model given
only the data. Rather, models can be crafted to re�ect the known logic of the system routines that produce
the audit data.

3.2 Exploitable redundancy in audit data

3.2.1 Grammatical structure

Because the audit log is generated by an automaton, it can be described by a grammar. The grammar
is at least partially documented, and a parser can be built. The grammar strictly constrains the possible
choice of next symbol at any point in the log, and that information is available to a parser. The relative
probabilities of symbols that cannot appear are known to be zero, and the parser can record the frequencies
of the symbols that have appeared for each production.

3.2.2 Persistent attributes of subjects and objects

Audit logs contain frequent references to subjects, with user identities, privileges, and other properties, and
objects such as �les, with sizes, owners, permissions, and types. Usually, attributes of a given subject or
object will have the same values they had when that subject or object was last seen; that is, those values
will have much higher probability than others.

3.2.3 Constraints on operations, operands, and results

Most records in an audit log represent system calls, their parameters, and the results returned. Knowledge of
the system logic can establish that certain combinations of operator and operand are invalid and so unlikely
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to appear; if they do appear (say, a read on a �le descriptor that has not been opened), the probability of a
speci�c error return becomes 1.0.

3.2.4 Distributions of �eld values

Many �elds in audit records have peculiarly distributed values, and the distributions can be exploited.
For example, the timestamps of audit records themselves are monotonically increasing, with a very small
frequency of exceptions resulting from clock changes. Some combinations of �le permissions are quite common
while others are unheard of. At a given site, certain IP addresses will be especially common. Sizes of �les
have interesting distributions that have been studied[7, 11]. Many such examples become apparent through
familiarity with the system API and internals.

3.3 How sophisticated should a model be?

It appears that a model can be constructed that will predict the probabilities of audit elements using
knowledge of the audited system, its con�guration, and past events. A very sophisticated model would have
data structures and operations very similar to those of the kernel being modeled, and so would be comparable
in size and complexity. Such a model might also refer to a database of objects from the �le system to record
persistent attribute values. This model could achieve excellent compression, rarely transmitting a symbol
unless an anomaly is detected. It might, however, require several megabytes of storage and expensive
computation and be unjusti�able for many applications. A model can begin with knowledge of the actual
kernel functions being modeled, and deliberate simpli�cations can be introduced to achieve a desired trade
of speed or space for compression performance; or very simple initial approximations can be re�ned to reach
the same point. Finding the appropriate models for an audit source is therefore an experimental process,
and would be aided by a framework for quickly implementing, testing, and comparing a variety of models.

4 A toolkit for evaluating models

This section describes a toolkit designed to speed the construction, evaluation, and re�nement of models
for the compression of data with known structure. The toolkit is written in the Java language[5], and uses
the parser generator JavaCC[8] for modelling an input grammar. The inheritance features of Java provide a
natural way to build sophisticated models quickly by extension and combination of simpler, existing models.
The toolkit includes a collection of simple models from which application-speci�c models can be built.

4.1 Arithmetic coding engine

Shannon's arithmetic technique for constructing a nonsingular discrete transducer has been re�ned and is
now known as arithmetic coding. A signi�cant re�nement is to bound the precision required, so the coding
computations can be implemented in fast integer arithmetic. Of the published algorithms that do so, the
one used in this toolkit is that described in [14]. Subsequent re�nements (e.g., [6]) have improved coding
speed by such techniques as approximate multiplication and division with only a slight loss in compression
ratio. Those algorithms were not used in this work because they tend to place additional constraints on
models. The chosen algorithm works with any model that can accept symbols and produce probabilities.
This work is intended to support rapid development of experimental models, so the requirements for models
were kept modest. Production use of these compression techniques will likely require the more optimized
coding engines and models adapted to them.
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In the most abstract description of arithmetic coding, the operation of encoding a symbol is to narrow
an interval that is initially [0; 1) before any symbol has been encoded. Let this interval, which represents
the entire sequence of symbols already encoded, be called the current coder interval.

For each symbol in the message, the set of symbols possible in that position are associated with subin-
tervals partitioning [0; 1), the width of each subinterval proportional to the probability of the corresponding
symbol. For example, the three symbols a, b, c, might be possible and associated with the intervals [0; 0:4),
[0:4; 0:9), and [0:9; 1), respectively. This association of symbols with subintervals is a model. To encode the
symbol b, narrow the current coder interval to the corresponding subinterval of the coder interval. If the
current coder interval is [0; 0:4), as it might be after encoding a single a from the same model, after next
encoding a b the interval will be [0:16; 0:36). When the entire message has been encoded, the shortest binary
fraction falling within the �nal coder interval represents the entire sequence of symbols.

In practice, integer arithmetic is used for speed, and the initial interval is [0; N ] for a large integer N .
The interval does not become arbitrarily small; rather, leading bits of the output �fraction� are shifted o�
and transmitted as soon as they become uniquely determined, and the interval is scaled up. Details may be
found in [14].

In the abstract description, every set of symbols is modeled as a partition of [0; 1) and the encoding
operation requires a linear transformation to map that standard interval onto the current coder interval
before selecting the new subinterval. Because the transformation is required in any case, it is not necessary
that every model be a partition of the same standard interval, and in the practical implementation no such
requirement is enforced. Each model is free to de�ne its own standard interval [0;m] and partition it into
subintervals. To encode a symbol, the encoder needs the scale m of the interval used by the model, as well as
the endpoints [l; u] of the proper subinterval. A model that simply counts frequencies can easily interface to
this coder: if the model has seen 8 a's, 10 b's, and 2 c's, it needs only the cumulative frequencies to encode
b as l = 8; u = 18;m = 20, equivalent to the example given on the real interval [0; 1) above.

4.2 Encoder and Decoder in Java

The class Encoder encapsulates arithmetic encoding. Its constructor requires an OutputStream onto which
the encoded bit stream will be written. The fundamental methods are:

encode(l,u,m) Encode the symbol corresponding to subinterval [l; u] of model interval [0;m]. This
method is generally called by a model, not directly by an application. Method signatures
exist for three long arguments and for three int arguments. They behave equivalently;
the precision of the Encoder may determine which is more e�cient.

doneEncoding() Called after all symbols have been encoded, this method outputs enough additional bits
to specify a number that falls in the �nal coder interval. A call to doneEncoding does
not ensure that a decoder will be able to determine the message ends here. That must
be obvious from the grammar of the transmitted message, or from an end-of-message
symbol encoded before doneEncoding is called.

�ush() Called after doneEncoding, this method outputs enough extra bits to �ll out a byte,
then calls the flush method of the underlying OutputStream.

Some supporting methods are also available:
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maxFrequency() The precision of the encoder places an upper bound on the sizem of the standard interval
used by any model. Every model to be used with the coder should call maxFrequency in
its initialization to �nd out what that bound is.

bitsSoFar(reset) This method returns the number of bits of output attributable to the symbols encoded
so far, then resets the count to zero if reset is true. The count is returned as a
double and includes any fractional bits, not yet output, held in the coder's internal state.
Surrounding the encode of a symbol with calls to bitsSoFar will return an accurate idea
of that symbol's contribution to the output, even if the contribution was a fraction of
a bit. bitsSoFar calls java.lang.Math.log, a potentially expensive function, but the
bookkeeping done in encode to support it uses only integer arithmetic; with this design,
most of the overhead of accounting is avoided in programs that do not use bitsSoFar or
use it infrequently.

suppress([�ag]) Returns the current suppress �ag, then sets it to flag. If the optional flag is not present,
simply returns the current value. When the suppress �ag is true, encode will produce no
output. It will, as always, throw an UnrepresentableException if the speci�ed interval
is of zero width, but will otherwise return without e�ect. This ability to �trial-encode� a
symbol is used by piecewise models, described below.

The Encoder class is abstract; it is implemented by the classes Encoder32 and Encoder64, which di�er in
the bits of precision used internally (and in the value returned to a model by maxFrequency).

The class Decoder encapsulates the inverse operations. Its constructor requires an InputStream from
which coded bits will be read. Two methods make up the programming interface seen by a model:

peek(m) With this method, a model provides its m, describing its reference interval [0;m], and
the return value is an integer in that interval. The model must determine which of its
subintervals contains the value returned. The corresponding symbol is what the model
should return to its caller, but only after calling:

advance(l,u,m) With this method, the model tells the Decoder the subinterval that has just been rec-
ognized. The Decoder scales up that subinterval to become the entire current coder
interval, reading more input bits if necessary, in preparation for the next peek operation.

During encoding, a model makes just one call per symbol encoded, to the Encoder's encodemethod. During
decoding, a model makes two calls per symbol to the underlying Decoder. It calls peek, determines which
subinterval contains the returned value, then calls advance to have the Decoder �peel o�� that subinterval.

The Decoder class is abstract. It is implemented by Decoder32 and Decoder64. Like the Encoder class,
it has a maxFrequency method that should be called during initialization of any model that intends to use
the Decoder.

4.3 Models

The function of a model is to encapsulate the probabilities of the possible instances of a given data type.
While encoding, the model should accept as input an instance of that data type, and produce the values
l; u;m needed by the arithmetic encoder. While decoding, it should peek and advance an interval from the
arithmetic decoder, and return the corresponding instance of the data type it models.

The �exibility of this coding technique lies in the ability to construct several models that interface to the
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same underlying arithmetic coder. For example, to encode a record of height, sex, and genome, one would
create a model for each of the three data types, connect an instance of each model to a common instance of
Encoder, then invoke

height.encode(h);

sex.encode(s);

genome.encode(g);

The genome model in the example is presumably built on a number of simpler models that it uses to encode
components of such a complex data type.

In decoding, the same models must be used in the same sequence to retrieve the original values. Note
that a good model associates all the valid instances, and only the valid instances, with subintervals that
partition its reference interval. Any value returned by the coder will fall in one of those subintervals and
therefore be decoded as a valid instance of the modeled data type. In fact, as the widths of the subintervals
re�ect the frequencies of instances, a sequence of arbitrary values from the decoder will be decoded as a
statistically plausible sequence of valid instances. If the decoding program rearranges the models by mistake:

s = sex.decode();

g = genome.decode();

h = height.decode();

it will decode likely sexes and heights, and things that have at least the outward structure of genomes. If
it decodes an entire database of individuals this way, it will create a population of bogus individuals whose
heights and sexes are distributed just as the model developer expected, but have nothing to do with the
values originally encoded.1 A like result would be observed in �decoding� a random bit stream.

Compression by arithmetic coding e�ectively reduces redundancy in a data stream, and redundancy is
what allows valid data to be distinguished from nonsense. A programmer must ensure that the sequence of
models used in encoding is uniquely determined by the input and can be recreated during decoding using
only what has already been decoded at each step. More precisely, whatever grammar describes the original
data to be encoded, the encoding program must transform it if necessary to encode symbols according to
an LL(1) grammar with the added constraint that, at each choice point, all possibilities for the lookahead
symbol are encoded using the same model. A simple way to satisfy the constraint is to encode, at each choice
point, a small integer explicitly identifying the choice to be taken. The cost of this technique is considered
in Section 4.7.

If an encoded stream must be transmitted over a noisy channel, error-correction coding may be advisable;
it can be regarded as a deliberate, slight expansion of the compressed data to include an appropriate degree
of redundancy.

4.4 Models in Java

Any model is a class that implements the Model interface. Such a class encapsulates all the probability
information and the machinery to use it as symbols are encountered. A model may also be adaptive, updating
its internal probability representation to re�ect the history of symbols already encountered. Because the
state of an adaptive model, on encountering any symbol, is completely determined by the preceding symbols
and its initial state, there is no di�culty in decompression using the same adaptive model and the same
initial state.

1The genomes will also satisfy whatever statistical generalizations might have been built into the model of such a complex
data type.
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A Model itself is not associated with any Encoder, Decoder, OutputStream, or InputStream. It has no
encode or decode method. Its constructor accepts only parameters relevant to the probability model itself,
such as initial probabilities, set of valid symbols, etc., depending on the model. The Model interface requires
only two methods of every Model:

encoder(e) Given an arithmetic Encoder e (already associated with an OutputStream), returns an
object implementing the Model.Encoder interface, which can be used to encode instances
of the data type supported by this Model.

decoder(d) Given an arithmetic Decoder d (already associated with an InputStream), returns an
object implementing the Model.Decoder interface, which can be used to decode instances
of the modeled data type.

It is intended that every class implementing Model.Encoder provide an encode method that accepts some-
thing to encode as its only parameter(s) and has void return type; likewise every class implementing
Model.Decoder should have a decodemethod of no arguments that returns an instance of whatever data type
the model models. The design allows Model.Encoders and Model.Decoders to be used without obtrusive
casts:

height.encode(h);

genome.encode(g);

where h may be an int and g is probably a complicated class. Because di�erent implementations of
Model.Encoder and Model.Decoder are expected to provide encode and decode methods with di�erent
signatures and return types (respectively), the interfaces do not declare the methods. The implementor of a
new model must remember to provide them, and may de�ne them with whatever parameters (for encode)
and return type (for decode) will be convenient for the data type being modeled. The design does not
eliminate casts from programs that use the models, but it moves them into initialization and eliminates
them from the call sites of encode and decode methods. With some initialization shown, the last example
might appear as in Figure 2. Initialization for decoding is similar.

While a Model object is independent of any coder or data stream, every Model.Encoder and Model.Decoder
is bound to a coder at the time of its creation. This simpli�es encode and decode methods by eliminating
a coder parameter, but there is a more fundamental reason. Before a model can call the encode or decode
methods of a particular coder, it must call the coder's maxFrequencymethod. The model may then have to
rescale its frequency data (if it is sophisticated), or throw an exception (if it is not) if the coder precision is
less than the model expected. These checks are only done once when the Model.Encoder or Model.Decoder
is created and bound to a coder.

4.5 Basic models

In practice, the HeightModel and GenomeModel imagined in Figure 2 might be written to implement the
LongModel and ObjectModel interfaces, respectively. These two interfaces describe many of the models
one might want to construct. The encoder and decoder methods of LongModel return objects of type
LongModel.Encoder and LongModel.Decoder, and these provide, respectively, an encode method with a
single long parameter, and a decode method returning a long. ObjectModel provides the same support for
encoding and decoding the type Object.

These are the only two speci�c model interfaces currently provided. By default integer promotion, the
LongModel su�ces for any integral type, and ObjectModel covers everything else but �oating point. No
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import ArithCode.*;

import java.io.OutputStream;

class Example {

Encoder coder;

Model hModel, gModel;

HeightModel.Encoder height;

GenomeModel.Encoder genome;

Example(OutputStream o) {

hModel = new HeightModel();

gModel = new GenomeModel();

coder = new Encoder64(o);

height = (HeightModel.Encoder)hModel.encoder(coder);

genome = (GenomeModel.Encoder)gModel.encoder(coder);

}

void send(int h, Genome g) throws java.io.IOException {

height.encode(h);

genome.encode(g);

}

}

Figure 2: Preparing to encode with two models
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�oating point model has been constructed yet (such �elds are rare in audit data) but to do so would not be
di�cult. Dedicated models for the narrower integral types would contribute to e�ciency but add no new
functionality.

The LongModel interface is implemented by several basic models. The simplest is EquiprobableLongModel,
whose only two parameters are the endpoints of the allowable value range. Because it assumes all values are
equiprobable within that range, it provides no compression other than limiting the number of bits output
to the logarithm of the interval width.

Next in sophistication is FixedLongModel, whose constructor accepts an array of frequencies for di�erent
values. To allow for applications with a wide range of possible values but interesting frequencies for only a
small subrange, the array need not be as big as the entire valid range and can correspond to any subrange
of it. Outside the subrange mapped to the array, frequencies are taken to be 1.

The AdaptiveLongModel is interchangeable with FixedLongModelbut adjusts its frequency counts during
operation to re�ect the data stream processed so far. All models support Java object serialization; after
training on a set of data, the resulting frequencies can be easily saved and reloaded for later use.

4.6 Composite models

Many audit records contain integer values that are used not to measure but simply to identify. Rather than
being smoothly distributed through a range, these �elds contain recurring values from a relatively small set.
For example, a UNIX2 system may support 30 000 process IDs or more, but only on the order of a hundred
may be in use at any time. For this kind of data, the DictionaryLongModel is provided. It assigns nonzero
probabilities only to those values that have actually been seen, and only a small �escape� probability for the
�rst appearance of a new value. Probabilities adapt according to the PPMD scheme of [6], in which the
�rst occurrence of a new symbol increments both the escape frequency and the frequency of the new symbol
itself, each by half the increment used when a known symbol is encoded.

DictionaryLongModel is an example of a composite model. Its constructor requires another LongModel
(of any kind) which will be used to encode the �rst appearance of any value. Another composite model is
ByteStringModel, which uses several LongModels to encode bytes from the string as well as string lengths
falling in di�erent ranges.

4.7 Piecewise models

ByteStringModel also illustrates the PiecewiseLongModel. This is a composite model whose constructor
takes a list of any number of LongModels, which may each be optimized for particular sets of values. An
exception mechanism allows PiecewiseLongModel to send a value to each underlying model in turn, with
encoding suppressed, until one is able to represent it. The value is then encoded using that model, pre�xed
by the encoding of a small integer identifying the model used.

This scheme may resemble the CISL length encoding in Figure 1, but with an important di�erence. The
frequency of use of each submodel is maintained and the identifying pre�x is arithmetic coded, as is the
model output itself. The conditional entropy of the model output given the pre�x is less than the entropy of
the original value to be encoded, and the di�erence is the entropy of the pre�x. In this case theory predicts
the piecewise implementation will produce an encoding no larger than a single model with corresponding
probabilities, and indeed in tests of the PiecewiseLongModel, no loss of compression was observed.

The freedom to create piecewise models without sacri�cing compression is important for two reasons.

1. In modeling a new data type, a piecewise combination of existing models may be an obvious starting
point.

2UNIX is a registered trademark of X/Open Company Limited
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2. More fundamentally, the �xed precision of the arithmetic coder determines a maxFrequency constraint
for any model. For example, if Encoder64 is used, maxFrequency = 230 � 1. Any model with an
alphabet of n symbols si must produce probability estimates p(si), scaled into integer values p0(si)
that satisfy the simultaneous constraints:

p0(si) � 1; 1 � i � n
nX

i=1

p0(si) � maxFrequency

Restricting the p0(si) to smaller values restricts the model to coarser estimates of symbol probability;
the limiting case p0(si) = 1; 1 � i � n is the equiprobable model. In a single base model there is a
clear trade-o� between number of distinct symbols representable and the resolution of the probability
estimates to be used for their e�cient encoding. Even in the equiprobable case, a single base model
cannot represent the full range of values of a 32-bit �eld. Subdividing the range and using piecewise
models allows such �elds to be encoded.

A piecewise model is also appropriate for a �eld with a large range of values of a familiar probability
distribution. Storing parameters of the distribution is more e�cient than storing the frequency of each
value. Here handling the distribution piecewise may not only be necessary to satisfy the maxFrequency

constraint, but may allow the cumulative density, often a computationally expensive function, to be e�ciently
approximated by polynomials of low degree. Seen in this light, a PiecewiseLongModel composed of several
EquiprobableLongModels is the approximation of some cumulative density function using polynomials of
degree zero.

4.8 Parametrized models

In many cases the probabilities assigned to values in one �eld will vary depending on the observed value of
another �eld. These cases call for a model whose probability assignments depend on a run-time parameter.
This can be no more complicated than creating several instances of the same model and selecting one based
on some combination of known values believed to a�ect it. If the model used is an adaptive one, each instance
will adapt to the conditional probabilities of transmitted symbols given the conjunction of conditions used
to select it. This technique captures the dependency of values such as device numbers on context, such as
a disk operation or terminal write. The device numbers that are likely suspects in disk operations are not
likely to appear as controlling terminals, and vice versa. To permit decompression, any value encoded using
a parametrized model must follow the encodings of values on which its model depends.

One case of a parametrized model that has its own implementation and name is the PredictedLongModel.
The encode and decode methods take an additional parameter, a predicted value for the �eld. The model
adaptively encodes a �ag indicating whether the transmitted value matches the prediction and then, if not,
encodes the value itself using a fallback model. The constructor accepts any LongModel to serve as the
fallback, and an optional two-element integer array to initialize the relative frequencies of good and bad
predictions. The PredictedLongModel is useful when knowledge of one item, such as the i-number of a �le,
predicts with near certainty speci�c values of other items (such as the �le's owner or type), with exceptions
only when the i-number is �rst encountered, after the owner is changed, or after the �le is removed and its
i-node reused.

12



4.9 Representing the grammar

The constraints imposed on the input data stream by its grammar are easily seen and exploited when the
grammar is expressed formally. In this work, grammars have been expressed in the language of the parser
generator JavaCC. Once a JavaCC expression of a grammar is completed, it must be decorated with calls
to encode a value at every choice point. At a point with three choices, the value 0, 1, or 2 is encoded using
an integer model of three choices. The model can be adaptive and learn the relative frequencies of the three
choices, or these can be determined in advance and built into a �xed model. A di�erent model instance may
be used at each choice point. For example, the sample productions from an audit log grammar in Figure 3
might be decorated as in Figure 4.

5 A compression tool for BSM audit data

A compression tool for Solaris BSM audit data was built using the framework described here, and starting
with a BSM parsing tool, BSMParser, developed in an earlier project.[4] The parsing tool comprises a
grammar expressed in JavaCC and a class that reads the binary BSM tokens, replacing the JavaCC lexical
analyzer. The grammar describes a subset of Solaris 2.6 audit data su�cient to parse our sample audit logs,
which include logs created by older Solaris versions as well as recent Solaris 2.6 logs.

5.1 Structure of the compression tool

With the BSMParser grammar as a starting point, choice points in the grammar were decorated as described
in Section 4.9. In the current implementation, the choice-point actions are the only output-producing actions
to appear anywhere but the lowest nonterminals in the parse tree. For example, referring to the parse tree
of a chmod(2) event in Figure 5, output is produced by a grammar decoration at the Event node to record
which event production (chmod) was recognized. Output is also produced at the OptAttr node to indicate
that an attr node was present. The only other output is produced in the rectangular nodes, which correspond
to �tokens� in the BSM �le format but to nonterminals in the BSMParser grammar.

As each such node is recognized by the parser, its information-carrying sub�elds are all encoded using
suitable models, making use of only the information available at that node, which is then discarded; an
abstract syntax tree (AST) is not built. The design is simple, but limiting. For example, it is easy to model
the conditional dependence of all of the subj �elds on pid, because all are available in the same node. The
models used to encode those �elds are adaptive, and re�ect the history of values encountered for those �elds
in subj nodes of earlier events. But the current implementation does not exploit the dependence of error and
retval on the comparison of subj.euid to attr.uid. Likewise, perhaps the condition subj:ruid = 0 signi�cantly
in�uences the distribution of likely paths, but path and subj are separate nodes and parsed in the wrong
order to exploit the in�uence. The general solution is to build an AST and do all the output in the chmod

node, as described in Section 7.

5.2 Modeling BSM

Twenty models have been created for di�erent data types in BSM logs. Three are new models extending
LongModel or ObjectModel and providing their own encode/decode logic. The remainder are trivial ex-
tensions of existing models, adding only constructors that pass predetermined parameters to the superclass
constructor. Of these, seven extend the AdaptiveLongModel and six extend the DictionaryLongModel.
Four are extensions of PiecewiseLongModel.
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void KillChoice() :

{}

{ LOOKAHEAD( arg() arg() ) KillNonPositivePid()

| KillSpecificProcess() }

void KillNonPositivePid() :

{}

{ arg() arg() }

void KillSpecificProcess() :

{}

{ arg() [proc()] }

Figure 3: A production for an audit log. One can kill a speci�c process (identi�ed with a positive PID), or
a class of processes (identi�ed with a zero or negative PID). In the speci�c-process case, the nonterminal
proc() describing the target process is optional.

void KillChoice() :

{}

{ LOOKAHEAD( arg() arg() ) {T(14);} KillNonPositivePid()

| {F(14);} KillSpecificProcess() }

void KillNonPositivePid() :

{}

{ arg() arg() }

void KillSpecificProcess() :

{}

{ arg() ({T(15);} proc()|{F(15);}) }

Figure 4: The KillChoice productions after decoration. There are two choice points. T(n) and F(n) are
shorthand for �use model n, an adaptive model of two symbols, to encode symbol 1 (or 0, respectively).�

Event

chmod

AUE_CHMOD
headerTail

emod time msec
arg

num val length data
path

length name
OptAttr

subj

auid euid egid ruid rgid pid sid
tid

major minor machine

ret
error retval

attr

mode uid gid
fs

major minor
node

dev
major minor

Figure 5: Parse tree of one BSM event.
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DictionaryLongModel is composite; its constructor requires another model to use whenever a new
value must be added to the dictionary. Of the six subclasses of DictionaryLongModel, �ve use sim-
ple EquiprobableLongModels for that purpose; one uses a PiecewiseLongModel. PiecewiseLongModel

is itself composite; it uses another model for each piece. Most of the PiecewiseLongModels used have
EquiprobableLongModels for all pieces. One uses an AdaptiveLongModel for its �rst piece, and another
uses a DictionaryLongModel built on an EquiprobableLongModel.

The rationale behind the models chosen for various data types can be developed through a few examples.
Consider a preorder, left-to-right traversal of Figure 5:

5.2.1 Event

There are 263 possible events. To identify the chmod production, an AdaptiveLongModel of the integers 0
to 262 is used to encode 34, the position of chmod among the event alternatives in the grammar.

5.2.2 EventModi�erModel

The emod �eld of the header is a 16-bit �eld representing an OR of boolean �ags. Only 11 �ags are
de�ned in <bsm/audit.h>, and seven of those concern mandatory access control, which is absent in the
base commercial versions of Solaris. Therefore, one may assume the number of possible values is no more
than 211 and probably only 16, with some bit patterns very common, others rare. The number of expected
values is small enough to choose a DictionaryLongModel without fear of memory exhaustion. The fallback
is an equiprobable model capable of representing any 16-bit value, so if Solaris uses undocumented �ags
the �eld will still be successfully encoded, though memory may become an issue if too many distinct �ag
combinations are encountered.

5.2.3 MonotoneTimeModel

The time in the event header is a 32-bit counter of seconds since Greenwich led the Western world out
of the 1960's. Its entropy is much less than 32 bits given that event records are chronological. The
MonotoneTimeModel adaptively encodes the delta since the previous event if that is less than half an hour;
otherwise, it falls back to encoding the absolute time using the generic TimeModel. The generic model is
coarsely broken piecewise into pre-1995, 1995�2005, and post-2005.

5.2.4 MsecModel

The header �eld labeled msec is documented as a �milliseconds� �eld, but in the event header its value comes
from a Solaris high-resolution timer whose documentation refers to nanoseconds. Observed values of the
�eld can be close to, but never greater than, 109� 1, and are multiples of 500, supporting the interpretation
that the �eld is a nanosecond counter with 500 ns resolution. An unexpected regularity is observed when the
�eld is printed in decimal: digits 4, 5, and 6 (numbering the units digit 0) have the values 000, 001, 998, or
999 with unusually high frequency. A look at the kernel source would probably explain the phenomenon, but
the explanation is not necessary for MsecModel to exploit the regularity. The model encodes with adaptive
models, in sequence:

� The remainder msec mod 500, where the value zero is strongly expected.

� The value n where msec � 500n (mod 10000). There are 20 possibilities.

� The value bmsec=104c mod 1000, with high frequencies assigned to 0, 1, 998, and 999.
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� bmsec=107c.

It is not uncommon for a series of consecutive event records to have exactly the same value in this �eld, so
MsecModel �rst encodes a �ag to indicate whether the value has changed, and omits the four values above
if it has not.

5.2.5 ArgValueModel

Of the four �elds that make up an arg, only val contains variable data needing to be saved. The remaining
�elds identify the argument: num gives its position in the system call, data (despite the name) is a �xed
string such as �new �le mode� describing the argument, and length is the length of the descriptive string.
The descriptive �elds are determined by the grammar and position within the production for each event
type.3 Only the val �eld is encoded, usually with the ArgValueModel. This piecewise model makes few
assumptions about the data, because system call arguments can have such a variety of types. For the range
[0; 4095] it uses a dictionary model, on the assumption that such small numbers might be recurring command
codes, �le descriptors, or the like. The remainder of the 32-bit value space is covered blindly by equiprobable
models, but because several such pieces are needed, it is still possible that some compression will be obtained
by adaptation of piece frequencies.

A separate instance of ArgValueModel is created for each combination of num and data values, as
these indicate arguments with distinct legal value spaces and the distinct model instances are expected to
adapt accordingly. An obvious improvement will be to use the num and data values to select not just a
particular instance of ArgValueModel but to select a more appropriate class of model. Only one such rule
is included in the current implementation: if data contains the string �cmd� then a dictionary model with
32 bit equiprobable fallback is selected. Many system calls take an argument labeled �cmd� and the set of
command codes is expected to be small enough to keep in a dictionary.

5.2.6 Pre�xByteStringModel

The path name and its length are encoded together using the PrefixByteStringModel. The model �rst
encodes the length of the entire string, then loops to encode segments of the string. For each segment,
the model searches its data structure for a remembered string that either is a pre�x or shares a pre�x.
If such a string is found, its index is encoded along with the length of the shared pre�x, and the process
repeats unless the entire path has been encoded. If, at any point, no match is found, the entire remainder
of the input string is sent byte by byte. The data structure is updated by splitting segments or adding new
segments as needed. Figure 6 shows a small portion of the model's data structure after encoding a sample of
audit data. The model attaches no special signi�cance to the slash character as a delimiter in path names,
and will break segments anywhere to factor out a common pre�x. This is not unreasonable even for path
names, as individual path components often have a common-pre�x structure. As it turns out, so do many
of the text result strings found in BSM event records, so they are also encoded with their own instance of a
PrefixByteStringModel. Figure 7 shows that model's data structure after encoding sample data.

5.2.7 Parametrizing models

The models used for the remaining �elds in Figure 5 are straightforward, but many of them are parametrized
as described in Section 4.8. Usually this is not done by subclassing a model but simply by storing several

3There are some BSM events for which Solaris includes args conditionally, and where two or more args are consecutive
and some are optional, ambiguity results. The solution is for the parser to explicitly consider the values of num and data

when matching arg constructs, so the cases are treated as distinct parse trees and the usual encoding at choice points allows
unambiguous decoding.
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Figure 6: A portion of Pre�xByteStringModel's data structure after encoding many path names. The
leftmost number at each node is the number of times that node followed its parent. The rightmost number
at each node is its escape frequency, the number of times a new child had to be added. The middle number
is the node's frequency scale m, the sum of the escape frequency and the leftmost values of all the node's
children. The numbers in the �gure do not add up because many nodes were pruned to �t the illustration
on the page.
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Figure 7: A portion of the data structure after blithely applying Pre�xByteStringModel to the text strings
in BSM samples.
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instances of it in a dictionary, keyed by a short string indicating the context, which may include values of
other �elds believed to in�uence the model.

For example, two instances of PIDModel are stored, keyed by the strings �pid� and �sid.� All session IDs
are process IDs, but because the second model instance is used only for SIDs, it grows a smaller dictionary
and shorter encodings.

Similarly, MajorModel is instantiated for every context in which device numbers can occur: �fsmaj� where
a �lesystem device is expected, �dvmaj:n� for an arbitrary device, �ttmaj� for a device listed as the controlling
terminal for a process. The sets of major numbers learned by �fsmaj� and �ttmaj� can be expected to be
disjoint. The n in the string �dvmaj:n� is replaced with the type bit�eld of the mode, so in fact block and
character device major numbers have distinct, dedicated instances of MajorModel.

The current implementation keys MinorModels by the entire context that applied to the MajorModel

plus the major number itself. Keying MinorModel on major number alone yielded worse compression on our
sample data.

Most of the �elds associated with subj are encoded using an explicitly parametrized model, the PredictedLongModel.
The predictions are stored in a dictionary indexed by process ID.

5.3 Results

The BSM data to be compressed came from a sample of ten audit logs varying in size from 25 523 to 1 274 868
octets. Three of the logs were created on local equipment and four were obtained from another university;
these seven logs were created in 1995. The other three, including the largest of the ten, are recent logs
produced by Solaris 2.6 at a Sun Microsystems facility.

5.3.1 Compression ratio

The logs were concatenated to produce a single input data stream of 2 310 114 octets. To establish a baseline
for comparison, this data stream was compressed by gzip. A parameter, 1�9, can be given to gzip to
adjust the trade-o� of compression ratio against computational e�ort and memory usage. For a given input,
increasing the parameter increases gzip's resource consumption and, for most inputs, reduces the size of the
compressed output. The present work involves trading even greater resource consumption for still better
compression, so the parameter value 9 was used with gzip for the baseline. For the sample input, 9 was
indeed the parameter value for which gzip produced the smallest output.

The sample input was also compressed with the new tool, twice. For the �rst pass, all models were ini-
tialized with default states: dictionary models with empty dictionaries, adaptive models equiprobable except
where reasonable initial probabilities, drawing on domain knowledge, were included in the constructor calls.
For the second pass, models were initialized by restoring their saved states from the end of the �rst pass.
The second-pass result suggests the bene�t of initializing the models' dictionaries and probability estimates
to re�ect typical properties of the expected input. That the improvement is modest suggests that minor
inaccuracies in the adaptive models' initial states have little adverse e�ect on compression over an input of
reasonable size. That property is important, because any compression advantage from precomputing prob-
abilities for an audit log would be o�set by the need to store the computed models for each log compressed.
Instead, a facility may compute probabilities once from a representative sample of local logs, and use those
stored initial states for all subsequent compression. The compression results are shown in Table 1.

5.3.2 E�ciency

The emphasis of this work has been on developing models with good compression performance without
regard to resource consumption. The models, and the arithmetic coding engine itself, have been developed
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Output Fraction
Method octets of input

gzip -9 141 669 6.13%
uninitialized 130 778 5.66%

initialized 122 411 5.30%

Table 1: Compressed output sizes for input stream of 2 310 114 octets

Event span Input octets msec to compress
(secs) Run 1 Run 2 Run 3
250 250 50 376 3 070 3 121 2 989

1 097 599 137 144 7 931 8 226 7 662
310 647 30 032 1 689 1 733 1 614
28 310 119 897 6 815 6 967 6 585

120 141 332 7 841 8 287 7 894
158 389 26 018 1 506 1 532 1 464

720 25 523 1 366 1 427 1 427
697 633 316 027 17 114 17 843 17 219
86 477 188 897 10 712 10 761 10 408

1 553 220 1 274 868 66 565 66 853 66 205

msec = :05197 octets + 488:8

r = :9998

Table 2: Timings for 10 input logs, 3 runs on unloaded SPARC ULTRA 1. Regression suggests about a half
second �xed overhead per �le and compression rate of about 19 kB of input per second. Event span is the
actual interval spanned by the audited events.

in the Java language, making extensive use of standard Java classes such as Hashtable, and without attention
to optimization. As discussed in Section 4.1, the coding engine itself does not implement the more recent
optimizations to the algorithm. The dictionary models do not yet implement expiration of infrequently used
dictionary entries, so memory exhaustion is a possibility, though it has not been observed in these tests.
Expiration was omitted only to simplify implementation; in fact, judicious pruning of infrequent dictionary
entries should yield improved compression as well as bounded memory use. Finally, this implementation
is instrumented to track the number of output bits attributable to each model, requiring evaluation of a
transcendental function for every symbol encoded.

The computational cost of the tested compression tool is therefore a very conservative indication of the
performance to be expected if these techniques are implemented for production use. Timing results on the
sample data are shown in Table 2.

The highest rate of input data production is seen in the �fth �le in Table 2, where 141 332 octets of
audit data were produced in 120 seconds of high system activity. To keep pace in real time with input data
arriving at that rate, the compression tool requires just under 7% of the CPU on a SPARC ULTRA 1. By
contrast, gzip, with a generic algorithm, native-code implementation, and extensive optimization for speed,
is faster by a factor of 34.
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5.3.3 Compression results for individual models

Table 3 in Appendix A contains statistics collected for every model used in compressing the sample data.
Each time a model instance is used to encode a �eld, its `bits in' accumulator is incremented by the size in
bits of the �eld encoded, and its `bits out' accumulator is increased by the number of bits, possibly fractional,
added to the output as reported by the arithmetic coder's bitsSoFar method. For example, the InumModel
was able to encode 8480 i-numbers (271360 = 8480 � 32) with 47% compression.

The instances with names beginning `SYN' are a special case. They are used to encode choices at the
choice points in the grammar. Many syntactic features imposed on the input by the BSM speci�cation are
distilled by the parser into these encoded choices, but there is no attempt to track the actual number of
input bits accounted for by a given choice. Instead, the model's `bits in' accumulator is increased by the
base-2 logarithm of the number of branches at that choice point; that is, the number of bits that would be
used if the choice were encoded as e�ciently as possible without accounting for unequal frequencies of the
branches. Therefore, the `bits in' column of Table 3 sums to less than the actual size of the input.

The entries in Table 3 are in descending order by `bits out'; at the top of the list are models where
re�nement e�ort might �rst be invested, either because those models are especially bad, or because the data
types they model are especially common in the the audit logs.

Further improvements in compression can be suggested by examining Table 3. For example, several
ArgValueModels appear near the top of the list and are seen to have achieved negligible compression. Sec-
tion 5.2.5 suggested why, and outlined an improvement: use knowledge of speci�c system calls to determine
the data types of their arguments, and use models speci�c to those data types rather than a single catch-all
ArgValueModel.

The 47% compression achieved by InumModel is respectable, but i-numbers are so common in the input
that improvement of this model would be valuable. The present InumModel is nothing more than a piecewise
model that covers the entire 31-bit i-number range in four pieces. A better idea would be to remember the
largest i-number for each �le system, and use the �le system identi�cation to bound the possibilities for i-
number. Probabilities of i-numbers are certainly not independent of the identity and privilege of the subject
making the system call, or of the system call being made; a better model would exploit such dependencies.
To properly implement such a model, an abstract syntax tree of the entire audited event would be convenient.

As a �nal example, the present MsecModel encodes the fractional-seconds �eld without considering the
whole-seconds value encoded independently by MonotoneTimeModel. It assigns a special probability to a
fraction equal to the last encoded fraction value. In a better model, that probability would depend on
whether the whole-seconds value has changed. Ideally, the whole and fractional parts should be encoded by
a single model that properly exploits monotonicity of the entire 64-bit timestamp.

6 Conclusions

The compression achieved by a good generic compression tool such as gzip can be surpassed, for richly
structured, formally speci�ed input such as an audit log, by building a specialized compression tool with
models that re�ect the process producing the input. Drawing on domain knowledge, the developer can select

the models to be used and the data dependencies that will be exploited, but may leave actual probabilities to
be adaptively determined in operation. This approach contrasts with techniques developed for general text
compression, where the optimal order and structure of the models, as well as the transition probabilities,
must be induced from the data. Models deliberately constructed can maintain notions of context much more
sophisticated and general than `the last n symbols,' as richly-structured data may require.

The Java framework described here enabled the rapid development of a compression tool specialized to
BSM audit data. Domain knowledge of the Solaris operating system producing the audit data suggested
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twenty models, whose implementation required only a matter of days using the modeling framework. Over
two more days, four rounds of minor re�nements to models, guided by per-model statistics as discussed
in Section 5.3.3, improved compression performance from 100% worse than gzip to 13% better. Table 3
suggests that further signi�cant improvements are possible. Several of the models are still quite coarse and,
for the moment, the parser builds no abstract syntax tree, constraining all models to the local notion of
context discussed in Section 5.1.

The improved compression comes at a cost. The BSM tool described here is slower than gzip by a factor of
34. Although much of that factor re�ects the di�erence between a non-optimized Java prototype and a �nely-
tuned native code production tool, it is likely that even an optimized arithmetic coder with sophisticated
models will incur some performance penalty compared to the generic tool. But for some applications, the
penalty may be a�ordable. Even the prototype would require only 7% of an ULTRASPARC CPU to keep
pace in real time with the highest rate of audit data production represented in the sample input.

The arithmetic decoding operation is computationally comparable to encoding. In auditing applications
it may be common to compress a log once but to wish to analyze it many times, and faster than real time.
Accordingly, for practical application of the techniques presented here, it may be most important to focus
optimization e�ort on the decompression side. One such optimization is to allow indexing into a compressed
log and decompressing arbitrary portions, as discussed in Section 7.

7 Future work

7.1 Preprocessor to automate grammar decoration

The BSM compression tool was built by starting with a BSM grammar in the language of a parser generator,
and adding by hand the action routines to invoke the proper models as input elements are parsed. This
tedious, mechanical process took longer than designing appropriate models, which is the intellectually sig-
ni�cant part of the task. The BSM grammar has roughly three times as many productions as the grammar
for the programming language C++. The magnitude of that task has so far discouraged experimentation
with better models that would exploit context from neighboring nodes of the parse tree. Also, techniques
such as naming model instances by short strings, to be looked up at run time, were chosen for simplicity
and conciseness in hand coding, at some cost in run-time e�ciency.

To be of practical use in prototyping specialized compression tools for other data formats, the toolkit
should include a preprocessor that, given a grammar annotated with modeling logic, produces two grammar
�les containing the needed declarations and action routines to perform compression and decompression,
respectively. Optimizations could be performed that have so far been avoided because of the volume of hand
coding they would require.

7.2 AST generation and better models

Section 5.1 described the shortcomings of models that can refer only to information in a single node of
the parse tree. With the development of the preprocessor suggested above, a more sophisticated tool that
produces abstract syntax trees of individual events will allow practical investigation of more sophisticated
models.

7.3 Comparison of adaptation strategies

Most models in the current BSM tool start with initial probabilities and continuously adapt as message
elements are processed. The technique achieves good compression even if the initial values are quite unrep-
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resentative of the data. A disadvantage is that decompression must start at the beginning to recover any
desired part of the log. Fixed models remove that disadvantage, but at a cost in compression ratio. The cost
is reduced if the �xed initial values are computed from a good representative sample of input. Compromise
adaptation strategies are also possible, and the costs should be explored.

7.4 Random-access decompression

Various methods of resynchronizing the arithmetic decoder and �xed, or suitably-constrained adaptive,
models should be explored to allow decompression to begin at points other than the beginning of a compressed
stream.
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A Compression results for individual models

Table 3: Compression results for individual models

Class Instance Bits in Bits out
InumModel inum 271360.0 143960.02
PIDModel pid 877728.0 132231.4
MsecModel emsc 628896.0 103392.88

Pre�xByteStringModel path 288864.0 98206.37
ArgValueModel arg3:arg 76320.0 69593.555
ArgValueModel arg2:strioctl:vnode 65664.0 59527.1

AdaptiveLongModel SYN23 157965.44 58365.94
IPAddrModel ipaddr 1317600.0 41504.777

ArgValueModel arg1:addr 37504.0 34015.37
ArgValueModel arg2:len 38016.0 32202.611

ModeModel mode 271360.0 29651.875
Dict32Model retval 628768.0 23755.05

GidModel �lg 271360.0 21396.205
UidModel �lu 271360.0 17023.623

RetErrorModel reterror 157192.0 10464.3955
Dict32Model arg2:cmd 82368.0 10250.32
MajorModel dvmaj:2 49112.0 7310.7783

EventModi�erModel emod 314448.0 7122.6533
MonotoneTimeModel etim 628896.0 6683.603

ArgValueModel arg1:fd 79584.0 6593.0205
ArgValueModel arg4:pri 9760.0 6484.583

MajorModel fsmaj 118720.0 6175.517
MinorModel fsmin:32 131526.0 3981.1846

PredictedLongModel sbsi 628768.0 3144.979
MinorModel dvmin:2:24 34920.0 2818.4463

AdaptiveLongModel SYN3 6116.0 2744.531
Pre�xByteStringModel envp 8256.0 2596.2917

ArgValueModel arg0:child PID 5024.0 2581.406
PredictedLongModel sbeg 628768.0 2532.0466
AdaptiveLongModel SYN5 2753.0 2501.0579
PredictedLongModel sbrg 628768.0 2469.3176
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Table 3: Continued from previous page

Class Instance Bits in Bits out
PredictedLongModel sbru 628768.0 2352.4873
PredictedLongModel sbeu 628768.0 2344.316
PredictedLongModel sbau 628768.0 2274.3606

MinorModel dvmin:2:41 7848.0 1837.0441
MinorModel fsmin:172 16290.0 1717.4128

PredictedLongModel sbmaj 275086.0 1716.9891
AdaptiveLongModel SYN4 4891.19 1621.0095
AdaptiveLongModel SYN11 2349.0 1399.175
PredictedLongModel sbmin:24 337518.0 1343.6332

Pre�xByteStringModel text 3680.0 1013.4064
MsecModel fmsc 608.0 589.9844

ArgValueModel arg1:no path: fp 640.0 586.94696
GidModel preg 248960.0 546.3537

TimeModel ftim 608.0 539.68097
MajorModel dvmaj:8 61236.0 511.36987
UidModel prru 248960.0 509.0477
GidModel prrg 248960.0 502.33282

Pre�xByteStringModel argv 1664.0 477.69897
ArgValueModel arg1:base 512.0 470.28885

MinorModel dvmin:2:42 2592.0 412.88052
AdaptiveLongModel SYN6 2753.0 383.91995

MinorModel dvmin:8:0 77778.0 322.89725
UidModel preu 248960.0 289.43964

AdaptiveLongModel SYN10 3780.132 285.2558
Pre�xByteStringModel fname 760.0 176.60098

ArgValueModel arg1:setgroups 1312.0 164.22899
ArgValueModel arg3:stropen: �ag 3264.0 158.0356

MinorModel fsmin:0 2448.0 132.528
AdaptiveLongModel SYN1 19663.0 124.34182

ArgValueModel arg2:level 128.0 121.022934
ArgValueModel arg1:no path: fd 1440.0 119.174614

AdaptiveLongModel SYN18 121.0 117.11293
MinorModel dvmin:2:13 8316.0 116.3309

AdaptiveLongModel SYN2 31158.336 114.32084
ArgCountModel argc 608.0 98.647224

AdaptiveLongModel SYN25 121.0 98.26268
ArgValueModel arg3:optname 128.0 96.24031
ArgValueModel arg4:optval 128.0 96.0

AdaptiveLongModel SYN28 209.0 92.35464
ArgValueModel arg1:setaudit:machine 96.0 91.2224
ArgValueModel arg1:setaudit:as_failure 96.0 90.90689
ArgValueModel arg1:setaudit:port 96.0 90.69849
ArgValueModel arg1:setaudit:as_success 96.0 90.67807
ArgValueModel arg1:door ID 248832.0 86.21813
ArgCountModel envc 608.0 82.48838
ArgValueModel arg3:new �le gid 384.0 78.642365

MinorModel dvmin:8:1 540.0 74.95452
AdaptiveLongModel SYN8 152.0 74.28911

Dict16Model iport 336.0 70.54343
ArgValueModel arg2:strclose: �ag 3584.0 69.2579

AdaptiveLongModel SYN16 816.0 65.370804
ArgValueModel arg2:mode 64.0 61.691017
ArgValueModel arg3:dev 64.0 61.58496

AdaptiveLongModel SYN17 1885.0 58.924294
AdaptiveLongModel SYN26 1879.0 58.896675

MinorModel dvmin:2:11 684.0 58.85909
PIDModel sid 248960.0 56.886986
UidModel audu 248960.0 56.886986

AdaptiveLongModel SYN7 162.0 54.653034
AdaptiveLongModel SYN38 513.0 53.905052

MajorModel ttmaj 108920.0 51.563618
AdaptiveLongModel SYN30 209.0 49.48077
AdaptiveLongModel SYN32 170.0 47.04406

ArgValueModel arg1:setaudit:asid 96.0 40.829723
ArgValueModel arg2:new �le mode 288.0 40.740578

AdaptiveLongModel SYN20 41.0 34.887886
AdaptiveLongModel SYN9 189.0 33.826977
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Class Instance Bits in Bits out
ArgValueModel arg1:uid 512.0 31.27074

PredictedLongModel sbmin:0 16164.0 30.654287
Dict32Model arg1:cmd 672.0 27.40481

AdaptiveLongModel SYN13 33.0 23.0623
AdaptiveLongModel SYN27 29.0 21.816046

ArgValueModel arg2:signal 224.0 19.59344
ArgValueModel arg1:gid 352.0 17.747711

AdaptiveLongModel SYN19 29.0 17.2761
ArgValueModel arg2:new �le uid 384.0 13.940504

AdaptiveLongModel SYN36 17.0 11.909039
AdaptiveLongModel SYN37 506.0 10.980149

ArgValueModel arg5:�ags 576.0 7.8463163
ArgValueModel arg4:arg 512.0 7.731343
ArgValueModel arg6:mask 512.0 7.731343
ArgValueModel arg5:attr 512.0 7.731343

AdaptiveLongModel SYN15 7.0 7.3297963
AdaptiveLongModel SYN31 33.0 7.000994

MinorModel ttmin:24 72.0 6.4229054
ArgValueModel arg5:optlen 128.0 5.7999754
ArgValueModel arg1:setaudit:auid 96.0 5.32337
ArgValueModel arg2:type 64.0 4.681824
ArgValueModel arg1:domain 64.0 4.681824
ArgValueModel arg3:protocol 64.0 4.681824
ArgValueModel arg1:signal 32.0 3.9068906

AdaptiveLongModel SYN40 3.0 3.129283
AdaptiveLongModel SYN39 2.0 2.321928

MinorModel dvmin:8:16122 18.0 1.5849625
MinorModel dvmin:2:90 36.0 1.2223924
MinorModel fsmin:173 54.0 1.1375035
MinorModel dvmin:8:3366 90.0 1.0780026
MinorModel dvmin:8:16383 108.0 1.0641303
MinorModel dvmin:2:15 180.0 1.0374746
MinorModel fsmin:166 198.0 1.0339473
MinorModel dvmin:8:16126 198.0 1.0339473
MajorModel dvmaj:1 196.0 1.0264722
MinorModel dvmin:1:0 252.0 1.0264722
Dict32Model arg3:cmd 512.0 1.0230836
Dict16Model socktype 336.0 1.0174875
MinorModel dvmin:2:21 540.0 1.0121748
MajorModel dvmaj:10 448.0 1.0114048
MinorModel dvmin:10:0 576.0 1.0114048
MinorModel dvmin:2:0 684.0 1.0095862
MinorModel dvmin:2:22 1044.0 1.006259
MajorModel dvmaj:13 1652.0 1.0030665
MinorModel fsmin:171 2124.0 1.0030665
MinorModel dvmin:13:169 2124.0 1.0030664
MinorModel dvmin:2:105 6300.0 1.0010316
MajorModel dvmaj:4 6076.0 1.0008315
MinorModel dvmin:4:0 7812.0 1.0008315
MinorModel ttmin:0 139968.0 1.0000492

AdaptiveLongModel SYN22 24.0 0.9708536
AdaptiveLongModel SYN29 19.0 0.96347404
AdaptiveLongModel SYN21 11.0 0.9385994
AdaptiveLongModel SYN0 10.0 0.9328858
AdaptiveLongModel SYN24 7.0 0.9068905
AdaptiveLongModel SYN14 7.0 0.9068905
AdaptiveLongModel SYN35 3.0 0.8073549
AdaptiveLongModel SYN12 3.0 0.8073549
AdaptiveLongModel SYN34 1.0 0.5849625
AdaptiveLongModel SYN33 1.0 0.5849625
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