
Hidden Markov Models for Human/Computer Interface Modeling

Terran Lane

School of Electrical and Computer Engineering and

CERIAS

Purdue University, West Lafayette, IN 47907-1287

email: terran@ecn.purdue.edu

Abstract

Automated modeling of human behaviors is
useful in the computer security domain of
anomaly detection. In the user modeling facet
of the anomaly detection domain, the task is
to develop a model or pro�le of the normal
working state of a computer system user and
to detect anomalous conditions as deviations
from expected behavior patterns. In this paper,
we examine the use of hidden Markov models
(HMMs) as user pro�les for the anomaly detec-
tion task. We formulate a user identity clas-
si�cation system based on the posterior likeli-
hood of the model parameters and present an
approximation that allows this quantity to be
quickly estimated to a high degree of accuracy
for subsequences of the total sequence of ob-
served data. We give an empirical analysis of
the HMM anomaly detection sensor. We exam-
ine performance across a range of model sizes
(i.e. number of hidden states). We demonstrate
that, for most of our user population, a single-
state model is inferior to the multi-state mod-
els, and that, within multi-state models, those
with more states tend to model the pro�led user
more e�ectively but imposters less e�ectively
than do smaller models. These observations are
consistent with the interpretation that larger
models are necessary to capture high degrees
of user behavioral complexity. We describe ex-
tensions of these techniques to other tasks and
domains.

1 Introduction

Automated modeling of human behaviors is useful in the
computer security domain of anomaly detection [Ander-
son, 1980; Denning, 1987]. In the user modeling facet of
the anomaly detection domain, the task is to develop a
model or pro�le of the normal working state of a com-
puter system user and to detect anomalous conditions
as deviations from expected behavior patterns. A subset
of hostile activities can then be detected through their

anomalous behaviors. For example, recursively search-
ing system directory hierarchies by hand or browsing
through another user's �les are unusual behaviors for
many users and the presence of such activities may be
indicative of an intruder who has penetrated the account.
Alternatively, the manner in which similar tasks are car-
ried out may be a critical indicator. For example, the
sudden presence of complex tools such as awk, perl, or
dd in the data of a user accustomed to making repetitive
�le modi�cations by hand may be a tip-o� that a more
system-literate user is employing the account. The ood
of data generated by a user through sources such as com-
mand line and GUI events requires automated modeling
and detection to uncover such events. We take a \per-
sonal assistant" view of this domain, in which the task
of the anomaly detection sensor is to augment the secu-
rity of a private individual's computer system or account
by monitoring usage activity for \suspicious" incidents
that do not conform to known behavior patterns of the
account owner (denoted the valid or pro�led user). Un-
der this view, behavioral data are assumed to be private
and available only to the valid user's assistant. Thus,
training data are single class | representing only the
behaviors of the pro�led user.
We present an anomaly detection sensor that employs

hidden Markov models (HMMs) as user models. Al-
though the focus of this paper is on the application of
HMMs as user models for a security domain, their po-
tential as user models is more general. In Section 5, we
discuss other possible applications of the types of models
developed here.

2 Hidden Markov Models as User

Behavioral Models

In this section we describe a framework for employing
HMMs as user behavioral models for anomaly detection.
We discuss di�erent formulations of HMMs as sequence-
data labelers, and describe the classi�cation strategy we
have adopted.

2.1 Notation

We employ a variant of Rabiner's HMM notation, [Ra-
biner, 1989], in which qt and Ot are variables denoting

the HMM state and observed output at time t, respec-
tively, �q and �O denote the complete sequence of states
and outputs for the whole period of observation, �i is
the prior probability of state i, aij is the probability of
transitioning from state i to state j, and bi(o) is the prob-
ability of generating output symbol vo when the HMM is
in state i. The matrix forms of the probabilities are �, A,
and B, respectively, and the set of all HMM parameters,
f�;A;Bg is �. The number of hidden states in the model
is K and the size of the alphabet of observable symbols
is j�j. While the particular state that the model is in
at time t is denoted qt, the states themselves are labeled
S1; S2 : : : SK . Similarly, the output symbols are labeled
v1; v2 : : : vj�j and the particular symbol observed at time
t is Ot.

2.2 Domain De�nition

The anomaly detection task can be regarded as a bi-
nary classi�cation problem of self/non-self identi�ca-
tion, [Forrest et al., 1996; Lane and Brodley, 1997;
1998]. The problem is to label the incidences of anoma-
lous behavior (for this work, behaviors originating with
a party other than the pro�led user) within a temporal
stream of observations. Because the anomalous behav-
iors can, in principle, occur at any point in time, each
observation must be assigned a label.
Because we cannot guarantee coverage of the space

of anomalous activities, and for privacy reasons, we as-
sume availability of data only from the pro�led user. Our
data are UNIX shell history traces and are described in
detail in Section 3.2. Individual alphabet symbols are
whitespace-separated \words" (or tokens) and the total
HMM alphabet is the set of unique symbols occurring in
all available user data.

2.3 HMMs as Sequence Data Classi�ers

The task of employing hidden Markov models as tempo-
ral classi�cation systems can be framed in at least three
di�erent manners. One popular method for multiclass
problems is to identify the class labels with the hidden
states of a single model. The state sequence inferred
from observed data via the Viterbi algorithm, [Rabiner,
1989], then constitutes the classi�cation of the tempo-
ral sequence data. Such an approach has been employed
in, for example, speech recognition [Rabiner and Juang,
1993], positional tracking and prediction in user model-
ing [Orwant, 1995], and fault monitoring [Smyth, 1994a;
1994b]. Smyth describes this approach as discrimina-
tive, viewing the classi�cation problem as one of esti-
mating the probability of class labels given the data
and model parameters, p(�qj �O; �). He notes that this
approach makes the assumptions that the class labels
(states) are mutually exclusive and exhaustive. While
the �rst condition certainly holds for the anomaly detec-
tion domain | any given input token can be generated
by only a single user | the latter poses a considerable
di�culty. In the anomaly detection domain we clearly
have examples of the valid user's behavioral character-
istics, but we lack examples of the behaviors of hostile

users or intruders.1 Even given examples of hostile be-
haviors, however, the problem of demonstrating that our
training set is exhaustive may be di�cult at best.
In the fault detection work, Smyth addresses the ques-

tion of unobserved classes by adding an extra, \catch-
all", state to the model and augmenting the discrim-
inative model with a generative model. A generative
model views the HMM as a data generator and estimates
observation likelihoods, p(�Oj�) via the forward step of
the forward-backward algorithm, [Rabiner, 1989]. Class
probabilities can be derived from instantaneous observa-
tion probabilities, p(Otjqi), via Bayes's rule. The hybrid
of discriminative and generative approaches allows esti-
mation of class probabilities for an auxiliary state model-
ing unobserved data. The combination of the two classes
of models involves prior distribution assumptions about
the likelihood of the data under the unknown class.
In this work, we take a di�erent approach to the classi-

�cation problem. Similar to the generative approach, we
employ estimations of data probabilities via the forward-
backward algorithm, but rather than associating class
labels with model states, we associate class labels with
individual models. Model probabilities can be evaluated
from posterior observation probabilities via Bayes' rule:

p(�j �O) =
p(�Oj�)p(�)

p(�O)
;

where p(�O) is a normalizing factor that is identical for
all classes. The model prior probability, p(�), can be
selected by domain knowledge, but we take it here to
be a non-informative prior (i.e. a uniform probability
distribution for a �nite set of models). For an N class
problem, an observational sequence is assigned the class
label corresponding to the maximum likelihood model,

class(�O) = argmax
i21:::N

fp(�ij �O)g :

E�ectively, we are assessing the likelihood that each
model generated the sequence in question and selecting
the model with the highest likelihood. This framework
allows us to assign only a single label to an entire ob-
servational sequence, but gives us the freedom to assign
\unknown" class labels. Any sequence judged insu�-
ciently likely with respect to all known models can be
labeled \unknown". Similar, \model-class", approaches
have been widely applied in the speech recognition com-
munity, [Rabiner, 1989]. Orwant used related a frame-
work to determine a user's current behavioral state (e.g.
\idle", \writing", or \hacking"), [Orwant, 1995], but
employed manually constructed models for each class
and interconnected the class models into a \meta-HMM"

1Such data has proved to be di�cult to come by. Exam-
ples (usually simulated) of machine-level attack logs (such as
network packet logs or system call traces) are available, but
traces of real attacks at the human command level are con-
siderably rarer. A recent call for examples of such data by
the CERIAS security research center has, to date, yielded no
instances of such data.

from which classes were predicted via the Viterbi algo-
rithm.
The choice ofK is important, as it e�ects the potential

descriptiveness of the HMM. In the discriminative and
generative forms of HMM classi�cation, the domain pro-
vides us with an appropriate value of K (the number of
classes present in the data, and possibly one or more \un-
known" states). In the model-class framework, however,
the classes are not directly associated with model states
so we must seek either domain-speci�c knowledge to help
choose K (e.g. some estimate of the natural number of
distinct behavioral classes present in the data) or employ
an empirical search. We examine the latter method in
the experimental section of this paper.

2.4 Sequence Labeling for the Anomaly
Detection Domain

Under the model-class framework outlined above, we
construct a single HMM, �v , to model the observed be-
havioral patterns of the valid user. The likelihoods of
incoming data sequences are evaluated with respect to
�v and those judged insu�ciently likely via a threshold
test are labeled as anomalous. The value of this \min-
imum acceptable likelihood" is denoted tmin. A feature
of the anomaly detection domain is the threat of \replay
attacks"2. To avoid such attacks, we introduce an upper
threshold, tmax, which is used to ag data which are too
similar to historical behaviors. The thresholds, tmin and
tmax are chosen from the upper and lower r=2 quantiles
of the non-parametric distribution of observation likeli-
hoods on an independent, \parameter-selection", subset
of the training data. The parameter r corresponds to
an \acceptable" false-alarm rate3 and its selection is a
site-speci�c issue related to security policy.

2.5 Sequence Alignment

As noted above, the model-class framework assigns class
labels only to entire sequences, yet we wish to be able
to label arbitrary subsequences of the observed data
stream. We can, of course, run the forward-backward
likelihood estimation algorithm between every possible
pair of subsequence start, s, and termination, t, time
steps. This turns out to be computationally expensive,
as the complexity of the F-B algorithm is O(K2l) for a
time sequence of length l. Merely to consider all �xed-
length subsequences (t � s = l for some �xed l for all
t) within a total data sequence of length T requires
O(K2l(T � l)) time. This becomes prohibitive for the
subsequence lengths of interest in this domain (l > 50).

2A replay attack is one in which an attacker monitors
a system and records information such as user commands.
These commands can then later be \replayed" back to the
system literally (or with the inclusion of a very few hostile
actions). Because the vast majority of the data was, in fact,
originally generated by the valid user, it will appear perfectly
normal to the detection sensors unless some check is made for
occurrences which are too similar to past behavior.

3Rate of incorrectly identifying the valid user as anoma-
lous.

Instead we employ the approximation algorithm ob-
tained by considering the endpoint state transitions
(those at time steps s and t) to be statistically uncou-
pled from their adjacent states (those at time steps s�1
and t� 1). That is,

p(Os; Os+1 : : : Ot) �
p(O1 : : : OT)

p(O1 : : : Os�1)p(Ot+1 : : : OT)

for 1 < s < t < T . Because of the exponential decay of
state inuence in the Markov formulation, this approx-
imation is reasonably good for large l. For example, a
comparison of the approximated sequence log-likelihood
to the exact value for one of our tested users at l = 100
(the value used in our empirical investigations, Sections 3
and 4) revealed that the approximated value had a mean
deviation of only 0:8% and a median deviation of only
0:46% from the true value (indicating that the deviations
are skewed towards 0). Thus, this approximation allows
us to consider all �xed-length subsequences from a global
temporal sequence of length T in time O(K2T+(T � l)),
with a marginal loss in precision.

2.6 Alternate Approaches to Sequence
Learning for User Modeling

Many traditional approaches to learning from tempo-
ral sequence data are not applicable to user modeling,
where the base data consists of discrete, unordered (i.e.
nominal-valued) elements such as command strings. For
time series of numeric values, techniques such as spec-
tral analysis [Oppenheim and Schafer, 1989], principle
component analysis [Fukunaga, 1990], linear regression
[Casella and Berger, 1990], linear predictive coding [Ra-
biner and Juang, 1993], nearest neighbor matching, and
neural networks [Chenoweth and Obradovic, 1996] have
proven fruitful. Such techniques typically employ a Eu-
clidean distance or a related distance measure de�ned
for real-valued vectors.
There are a number of learning algorithms that are

amenable to learning on spaces with nominal-valued at-
tributes, but they typically employ a feature-vector rep-
resentation that may not be well suited to temporal data.
For example, decision trees [Quinlan, 1993] are e�ective
at discovering decision boundaries on discrete spaces.
The bias used to search for such structures generally
employs a greedy search that examines each feature in-
dependent of all others. Such a bias ignores the natural
order relations present in temporal data (such as causal-
ity or correlation chains).
One method of circumventing this di�culty is to con-

vert the data to an atemporal representation in which
the causal structures are represented explicitly. Norton,
(1994), and Salzberg, (1995), each independently used
such a technique for the domain of learning to recog-
nize coding regions in DNA fragments. DNA coding,
while not temporal, does exhibit interrelations between
positions that are di�cult for conventional learning sys-
tems to acquire directly. The features extracted from
the DNA sequences were selected by domain experts,

and thus cannot be generalized to other sequential do-
mains. Although such an approach could be applied to
the anomaly detection domain, it would require consid-
erable e�ort on the part of a domain expert, and the de-
veloped features would apply only to that data source.
We are interested in developing techniques that can be
applied across di�erent data sources and tasks.
There also exist learning methods explicitly devel-

oped to model sequence data. Algorithms for discov-
ering temporal rule relations, for example, have been
examined by Srikant and Agrawal (1996). Methods
for learning the structure of deterministic �nite-state
automata have been widely studied [Angulin, 1987;
Rivest and Schapire, 1989]. DFA's, however, are not
well suited to modeling highly noisy domains such as
human-generated computer interface data. If the data
can be observed below the shell level, then many syn-
tactic and semantic errors will have been removed and
the data will be cleaner. Yoshida and Motoda employ
I/O relations at this level to develop �nite-state graph
models of user behaviors (1996). The simplest exten-
sion of DFA models to noisy domains are Markov chain
models, [Davison and Hirsh, 1998], which allow stochas-
tic state transitions. These models have the advantage
that, unlike HMMs, the Maximum-Likelihood estimate
for transition probabilities has a closed form. Markov
chain models typically emit symbols deterministically
(each state or arc emitting only a single symbol), re-
quiring a state for each symbol of the alphabet, or j�j2

total transition probabilities to be learned for an alpha-
bet of size j�j. When the alphabet is large (in our empir-
ical analyses, we have observed alphabets of over 2500
unique symbols), the dimensionality of the parameter
space is high and the amount of training data required
to accurately estimate low probability transitions is very
large. Finally, deterministic output Markov models with
unique states (i.e. each symbol is emitted by only one
state) can only represent a single context for any given
symbol. In the anomaly detection domain symbols can
have multiple contexts. The command vi, for example,
can be employed for editing both source code and con-
ference papers.

3 Empirical Analysis

Here we present the structure of our experimental eval-
uation of HMMs as user models for the anomaly detec-
tion domain. We examine performance measures for this
task, discussing an alternative to the classic performance
accuracy. We describe the sources and formatting of the
data employed in our evaluations, and �nally the struc-
ture of the experimental procedure.

3.1 Performance Criteria

We employ two methods for evaluating the performance
of anomaly detection systems. In addition to the tradi-
tional accuracy measurements, we argue that the mean
time to generation of an alarm is a useful quantity to
consider.

The goal in the anomaly detection task is to identify
potentially malicious occurrences while falsely agging
innocuous actions as rarely as possible. We shall denote
the rate of incorrectly agging normal behaviors as the
false alarm rate and the rate of failing to identify abnor-
mal or malicious behaviors as the false acceptance rate.
Under the null hypothesis that all behavior is normal,
these correspond to Type I and Type II errors, respec-
tively. The converse accuracy rates are referred to as
the true accept (ability to correctly accept the pro�led
user as normal) rate and the true detect (ability to cor-
rectly detect an anomalous user) rate. For the detector
to be practical, it is important that the false alarm rate
be low. Users and security o�cers will quickly learn to
ignore the \security system that cried wolf," if it ags
innocuous behavior too often.
Detection accuracy does not, however, reveal the com-

plete story. A second issue of importance is time to
alarm (TTA), which is a measure of how quickly an
anomalous or hostile situation can be detected. In the
case of false alarms, the time to alarm represents the ex-
pected time until a false alarm occurs. Thus, we wish
the time to alarm to be short for hostile users so that
they can be dealt with quickly and before doing much
harm, but long for the valid user so that normal work
is interrupted by false alarms as seldom as possible. To
this end, we measure the mean run-length of \normal"
classi�cations. Time is measured in token counts rather
than wall clock time because the number of tokens emit-
ted is more closely correlated with the activity of the
user than is physical duration of the shell session.

3.2 Data

Because non-simulated human-level attack data has
proven di�cult to obtain, we have pro�led our tech-
niques on the user-di�erentiation problem. In this for-
mulation, data are gathered from valid system users
under normal working conditions and a user pro�le is
constructed for each. The performance of the anomaly
detection sensor is evaluated with respect to its ability
to correctly recognize the pro�led user and discriminate
the other users as anomalous. This framework simulates
only a subset of the possible misuse scenarios | that of a
naive intruder gaining access to an unauthorized account
| but it allows us to evaluate the approach.
We gathered command traces from eight UNIX users

via the tcsh history mechanism over the course of more
than two years. The command traces were parsed with
a recognizer for the tcsh command language to convert
them into a format suitable for scanning with the HMM
classi�cation sensor and to do feature selection. Each
whitespace-delimited \word" in the input stream is con-
sidered to be a separate symbol, or token. The feature
selection step removes �lenames, replacing them with
the count of the number of �le names occurring in the
command line. Removal of �lenames reduces the alpha-
bet from over 35,000 unique tokens to slightly more than
2,500 unique tokens and dramatically improves recogni-
tion accuracy in empirical tests.

3.3 Experiment Structure

Complete Training Data: 7000 instances

Train 1

Train 2

Train 3

Param 2

Param 1

Param 3

Test 1

Test 2

Test 3

Figure 1: Division of training data into train, parameter
selection, and test data sets.

Because user behaviors change over time, the e�ective
lifetime of a static user pro�le, as is employed in the work
described here, is limited. Thus, we have constructed ex-
periments to evaluate the detector's performance over a
limited range of future activities. The separation of the
7,000 token training data into three groups (or folds)
of train, parameter selection, and test data is shown in
Figure 1. The initial 1,000 tokens of each user's data
were taken as training (pro�le construction) data, the
following 1,000 tokens were taken for parameter selec-
tion data (used to set the decision thresholds tmax and
tmin), and 3,000 following tokens were taken to test per-
formance for that pro�le. To guard against isolated data
anomalies,4 three folds of train, parameter selection, and
test data were produced for each user. Within each fold,
�ve random restarts were run to reduce the chance of
the Baum-Welch training algorithm locating a spuriously
poor local maximum ML parameter estimate. All tests
were repeated for each fold and restart, and results were
averaged across restarts.
From each test set, a pro�le HMM was constructed

with l = 100 (the window length for sequence align-
ment, Section 2.5). To examine the impact of K on
sensor performance, we constructed models with K 2
f1; 2; 15; 30; 50g. The resulting pro�le was tested against
the corresponding test set for each user (a total of 82 test
pairings). A \self" test pairing | testing the pro�led
user's data against his or her own pro�le | allows us
to examine false alarm rates while a \non-self" pairing
allows us to examine false accept rates.
The acceptable false alarm rate, r, determines how

the classi�cation thresholds, tmax and tmin, are set and
has a substantial impact on the tradeo� between false
alarm and false accept errors. Because the notion of
\acceptable" false alarm rate is a site-dependent pa-
rameter, we wish to characterize the performance of
the system across a spectrum of rates. We took r 2
f0:5; 1; 2; 5; 10g% which yields a performance curve for
each pro�le/test set pair. This curve, which expresses

4E.g. we have found that our users tend to experience large
behavioral changes at the beginning of academic semesters.
The batch mode detection system presented here is highly
sensitive to such changes.

the tradeo� between false alarm and false accept er-
rors with respect to r, is known as a Receiver Operat-
ing Characteristic (ROC) curve, [Provost and Fawcett,
1998]. An ROC curve allows the user to evaluate the
performance of a system under di�erent operating con-
ditions or to select the optimal operating point for a
given cost tradeo� in classi�cation errors.

4 Experimental Results

In this section we present the results of our empirical
evaluations of HMMs as user models. Our �rst exper-
iment explores the performance of 50 state (K = 50)
models. We compare the performance values of these
models to those with other values of K in Section 4.2.

4.1 Base System Performance

Figure 2 displays an example of accuracy, (a), and time-
to-alarm (TTA), (b) results for one test fold of a single
pro�le (that of USER0). Each column in these plots dis-
plays the performance results for a single test set when
tested against the pro�le. For accuracy results, when
the test set originates with the pro�led user (i.e. USER0
tested against Pro�le 0), the results indicate the abil-
ity to correctly identify the valid user (true accept rate).
This condition is denoted with an \o" symbol on the plot.
When the test set originates with a di�erent user (e.g.
USER3 tested against Pro�le 0), the results indicate the
ability to correctly ag an anomalous condition (true de-
tect rate). This condition is denoted with a \+" symbol
on the plot. For both classes of tests in Figure 2, accu-
racy is increasing in the positive direction on the Y axis.
The spectrum of results in each column is generated by
testing at di�erent values of r, the acceptable false ac-
cept rate, as described in Sections 2.4 and 3.3. Because
r encodes the size of the acceptance region, it yields a
tradeo� in detect versus accept accuracies. The smallest
value of r tested (r = 0:5%) yields the widest acceptance
region and corresponds to the highest (most accurate)
point on the true accept column (USER0). But because
the acceptance region is wide, more anomalous points
fall into it and are accepted falsely. Thus, this value of
r corresponds to the lowest accuracy in each of the true
detect columns (USER[1{7]).
Time-to-alarm results are displayed analogously but

are not limited to a 0{1 range. Note that the vertical
(time) axis is logarithmic, and that the times-to-alarm
for the pro�led user are nearly an order of magnitude
larger than those for the opponents. This is the desired
result because we wish times to be long for the pro�led
user so that false alarms are generated rarely, but short
for the opponent users so that a hostile imposter can be
detected quickly.
USER0 was chosen for display here to highlight a num-

ber of features of the HMM user pro�ling sensor. First
is that accuracy is highly sensitive to the particular op-
ponent. For example, testing with respect to USER5
yields far di�erent detection accuracies than does testing
on USER7. Second, although the acceptable false alarm

USER0 USER1 USER2 USER3 USER4 USER5 USER6 USER7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Tested User

Profile 0

USER0 USER1 USER2 USER3 USER4 USER5 USER6 USER7
10

−3

10
−2

10
−1

10
0

10
1

10
2

T
im

e
to

 A
la

rm

Tested User

Profile 0

(a) (b)

Figure 2: Accuracies, (a), and mean times-to-alarm, (b), for an HMM model (K = 50) of USER0's behaviors.

rate parameter, r, was tested across the range 0.5%{10%,
all of the observed false alarm rates are greater than this
(8.3%{18.3%). This is a result of the training and pa-
rameterization data failing to fully reect the behavioral
distribution present in the testing data. Because the user
has changed behaviors or tasks over the interval between
the generation of training and testing data, the pro�le
does not include all of the behaviors present in the test
data. This phenomenon is actually exacerbated by the
batch-mode experimental setup used here. We have in-
vestigated online techniques for this domain which em-
ploy an instance based learning technique (IBL), [Lane
and Brodley, 1998], and have found that they do perform
better than the corresponding batch-mode IBL sensors.
In future work, we will be investigating techniques for
online versions of the HMM user modeling sensor.
The complete set of results for all pro�les and folds for

the HMM user model with K = 50 is shown in Figure 3.
These plots are intended not as a reference for individual
accuracy or time-to-alarm (TTA) values, but to convey
a sense of the general performance of the anomaly detec-
tion sensor under di�erent operating conditions and to
highlight some behavioral characteristics of the detection
system. In these plots, each column displays the results
for a single user's pro�le (the same data as are displayed
for USER0 in Figure 2). Now, however, all three folds
are given for each pro�le.
The primary point of interest in these plots is that

true acceptance abilities (ability to correctly identify the
pro�led user as him or herself) is generally good as evi-
denced by high accuracies and long times to generation
of false alarms (i.e. the \o" symbols are clustered toward
the top of each Y axis). In addition, the true detection
abilities (ability to correctly identify that an imposter
is not the pro�led user) are generally fair to good as
evidenced by reasonable accuracies and short times to
generation of true alarms. Note that mediocre true de-
tection abilities may be acceptable because each intruder
need be caught only once.
The obvious and notable exception to the general per-

formance trends is USER4. While the sensor displays
strong true accept abilities with respect to this user, it
provides only poor true detection abilities. This is an
example of the decision thresholds (tmax and tmin, as de-
scribed in Section 2.4) being set to arti�cially extreme
values, resulting in a spuriously large acceptance region.
Thus, the system has e�ectively decided that \every-
thing is USER4", and no real di�erentiation is being
done | it is simply accepting most behaviors as normal.
Examination of USER4's training data reveals that this
user appears to devote entire shell sessions to single tasks
(such as the compile-debug cycle) which appear as rather
repetitious and monotonous patterns. Because this user
is working in the X-Windows environment, tasks can be
assigned to single shell sessions, and those shell sessions
may be long-lived (some were over 2,000 commands).
Thus, the training data may display only one or two ses-
sions and a very small number of behaviors, while the
parameter selection data displays a di�erent (but also
small) set of behaviors. Because there may be little over-
lap between training and parameter selection data, the
observed similarity-to-pro�le frequency distribution may
be distorted and the selected decision thresholds would
then be poorly chosen.

A converse behavior occurs with Pro�le 1 on fold 2
(the set of circles at the lowest end of Pro�le 1 in Figure
3). This pro�le displays relatively low true accept rates
in comparison to other pro�les and folds, but very high
true detect rates (often 100%). This is an example of the
user model deciding that \nothing is USER1" because
the acceptance region has been set too narrowly. As
with USER4, this arises because di�erent behaviors are
displayed in the training and testing data. In this case,
the parameter selection data reects the training data
well, but the test data is di�erent from both of them.
As a result, the acceptance range is narrowly focused to
high-similarity behaviors, but the behaviors encountered
in the testing data have lower similarity.

Profile 0 Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Profile 0 Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Profile 6 Profile 7
10

−1

10
0

10
1

10
2

10
3

T
im

e
to

 A
la

rm

(a) (b)

Figure 3: Results for all user pro�les and folds. Each column now displays a single pro�le tested against all test sets
(i.e. each column is the equivalent of Figure 2).

4.2 Number of Hidden States

An open question in the use of HMMs for modeling is
the choice of K, the number of hidden states. When the
states have a clear domain interpretation, as for exam-
ple in fault monitoring, the value of K may be naturally
dictated by the domain. When K is not so conveniently
available, however, we can employ an empirical analysis
to discover an appropriate value. To examine the im-
pact of K on sensor performance, we constructed mod-
els with K 2 f1; 2; 15; 30g and tested them under the
same conditions used for K = 50. The case K = 1 is
a degenerate form of an HMM equivalent to frequency
estimation of the alphabet symbols with all time steps
of the sequence data considered to be statistically inde-
pendent. E�ectively, the data is considered to have been
generated by a multinomial process with j�j elements
drawn according to the distribution B (the output sym-
bol generation distribution). Because the K = 1 case
has di�erent qualitative behaviors than the other cases,
we discuss it separately.
Results for the K = 1 case are displayed in Figure 4.

These �gures are comparative, plotting the results for
the K = 1 mode on the vertical versus results for the
K = 50 mode on the horizontal. The diagonal line is
the iso-performance surface, and points falling above it
indicate higher performance by the K = 1 sensor, while
points falling to the right of it indicate higher perfor-
mance by the K = 50 sensor.
The general result of Figure 4 is that the 50 state

HMM has much stronger true detection accuracies and
TTAs. And though the true accept points are scattered
more uniformly across the iso-performance surface (61 of
the 120 true accept accuracy measurements fall on the
K = 50 side of the line), the K = 50 system appears to
have a slight margin, at an average of 1% higher true ac-
cept accuracy5 than that reported by the K = 1 system.

5To measure the relative accuracy performance between
two systems, we employ a mean of accuracy value di�erences.
Thus, the di�erence in true detect rates between method 1

At �rst appearance, these results, while slight, seem to
indicate at least that the K = 50 sensor is performing no
worse than is the K = 1 sensor in terms of true accept
accuracy and better in terms of true detection. The situ-
ation becomes somewhat more confused, however, when
mean time-to-alarm is considered. In this dimension, the
K = 50 model has superior time to false alarm, at an av-
erage of 15.6 tokens longer than K = 1, but inferior time
to true alarm at 36.9 tokens longer. It turns out that this
is skewed by USER4 (note that the logarithmic range of
the TTA data allows a single user to signi�cantly skew a
simple additive mean). While the K = 1 model also suf-
fers from the \everything is USER4" syndrome, it does
so to a much lesser degree than does the K = 50 model
and, thus, appears to be far more e�ective at separat-
ing other users from USER4. When USER4 is removed
from the sample, the di�erences between K = 50 and
K = 1 in the TTA domain favor K = 50, for which the
mean TTA is 14.6 tokens longer for false alarms and 14.4
tokens shorter for true alarms.
Results comparing the sensor system at K = 2, and

30 to K = 50 are given in Figure 5 (we omit K = 15, as
it falls on the spectrum between K = 2 and K = 30 but
is not otherwise unusual). Again, values for K = 50 are
plotted on the horizontal while values for other settings
of K appear on their respective vertical axes.
Figure 5 reects a trend which is most dramatic in the

K = 2 plots and which becomes less pronounced as K
increases. The general result is that the K = 50 sensor
has superior or equivalent true accept accuracies, but in-
ferior true detect accuracies (albeit by a narrow margin,
on average). The qualitative result in the TTA domain
is similar, but the aggregate results are skewed by a few
of the tested users | in this case USER0, USER1, and

and method 2 is:

1

N

X

t2opponent test sets

(accuracymethod1 (t)� accuracymethod2 (t))

where N is the number of opponent test sets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparative Accuracies

K=50

K
=

1

10
−1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

Comparative Mean Times to Alarm

K=50

K
=

1

(a) (b)

Figure 4: Comparisons of HMM user models with K = 1 (vertical axis) to K = 50 (horizontal axis). Accuracies
appear in (a) and TTAs in (b). The \o" symbols denote true accept rates and mean times to false alarms and the
\+" symbols denote true detect rates and mean times to true alarms.

USER5. The structure of this trend is open to multiple
interpretations. The \improved true accept coupled with
degraded true detect performance" can be viewed as an
indication that K = 50 is subject to the \everybody
is the pro�led user" di�culty with respect to smaller
values of K. We can, however, take the converse in-
terpretation that the models with smaller values of K
are evidencing a \nobody is the pro�led user" problem.
Thus, the spectrum of values of K represents a spectrum
of tradeo�s between user-oriented (at large values of K)
and imposter-oriented (at small values of K). This ob-
servation is compatible with the interpretation that the
models with larger K's are encoding a broader range
of user behaviors than are the smaller models, although
more investigation is required to verify this hypothesis.
In general, the optimal number of hidden states for max-
imum discriminability is user dependent and seems to
be related to the syntactic complexity displayed in the
user's data. For example, USER4's data, which is ex-
tremely repetitive and employs only simple shell com-
mands, is best modeled by a single state model while
USER7's data, which displays some complex shell ac-
tions such as multi-stage pipelines, is best modeled by a
15 state HMM.

5 Extensions and Implications

The techniques presented here are not limited solely
to the domain of anomaly detection nor to explicitly
security-oriented tasks. A number of other possible uses
could be realized with straightforward modi�cations to
this framework.

User Identi�cation The most obvious extension to
this work is the capacity to identify one particu-
lar user from a set of known users solely through
behavioral characteristics. This use, however, is
also mostly of security interest, as methods such as
password or physical tokens can identify users more

quickly and accurately when they can be trusted.
The online monitoring approach to identi�cation
serves mainly as a veri�cation of and backup to pri-
mary identi�cation techniques.

Group Identi�cation A more visibly useful extension
is to identify users as members of groups rather than
as individuals. By constructing models of a group's
exemplar behaviors, an individual can be automati-
cally assigned to a group and inherit environmental
customizations appropriate to that group's needs.

Behavioral Identi�cation At a �ner grain, a user's
behaviors may be segmented by class (e.g. writing,
play, coding, web sur�ng). Such an approach has
been examined with manually constructed HMMs
by Orwant, [Orwant, 1995]. By analyzing the sub-
structure of the interconnections in an automati-
cally generated HMM, behavioral classes might be
automatically identi�ed and associated with appro-
priate responses for a user interface.

Behavioral Prediction HMMs can be run not only as
observational models but also as generative models.
In such a framework, they could be used to predict
a user's next actions and provide time-saving short-
cuts (such as opening menus or initiating expensive
computations early).

The observation that USER4, for example, displays
qualitatively di�erent behaviors than do other users (be-
cause USER4 is modeled more e�ectively by the single
state model while the other users are modeled more ef-
fectively by the multi-state models) indicates that the
HMM framework is capable of discerning some types of
behavioral groupings. The results on choice of K are
also consistent with the interpretation that users fall
along a spectrum of behavioral complexities which can
be identi�ed by models of di�ering complexity. Under
the privacy-oriented framework employed here, it is dif-
�cult to employ some of this knowledge because cross-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparative Accuracies

K=50

K
=

2

10
−1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

Comparative Mean Times to Alarm

K=50

K
=

2

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparative Accuracies

K=50

K
=

30

10
−1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

Comparative Mean Times to Alarm

K=50

K
=

30

(c) (d)

Figure 5: Comparisons of K = 2, (a) and (b) and K = 30, (e) and (f), (on their respective vertical axes) to K = 50
(horizontal axis).

validation testing is impossible, but in a less constrained
setting these types of distinctions could be extracted
fairly easily and used to assist the user.

6 Conclusions and Future Work

We have demonstrated the use of hidden Markov models
for user pro�ling in the domain of anomaly detection.
The key results of the empirical investigation are:

� HMMs can be used to identify users by their com-
mand line behavioral patterns.

� These models su�er from two general classes of er-
rors: overly permissive (\everybody is the pro�led
user") and overly restrictive (\nobody is the pro�led
user").

� The number of hidden states in the HMM repre-
sents a spectrum of tradeo�s between these two er-
ror classes. Larger models were found to be more
e�ective at identifying the valid user, while smaller
models were generally better at discerning impos-
tors.

� The optimal number of hidden states is user-
dependent and appears to reect a measure of the

syntactic complexity present in the command line
data.

We found that single-state HMM models (e�ectively
token frequency estimation models) display qualitatively
di�erent behaviors than do multi-state models. For most
of the pro�led users, the multi-state models were more
e�ective than the single-state model. The exception was
USER4, whose data consisted of long sessions each of
which encoded a small number of tasks.
An open problem for this user pro�ling technique is the

ability to select appropriate model parameters (such as
K) from data or prior knowledge. In supervised learning
domains, cross-validation search may be used to select
appropriate parameter settings, but we must seek un-
supervised techniques for this domain. The observation
that optimal choice of K seems to be related to behav-
ioral complexities presents a potential approach to this
problem. It is possible that measures of data complex-
ity, such as entropy, could be used to select appropriate
model parameters.
Finally, the sensor employed here functions o�-line.

In other work, [Lane and Brodley, 1998], we have found
that on-line extensions to an instance based user mod-

eling sensor displayed heightened performance. We are
currently investigating extensions of the HMM anomaly
detection sensor to on-line mode, and expect that sim-
ilar performance improvements will be realized by this
change.

Acknowledgments

Portions of this work were supported by contract
MDA904-97-C-0176 from the Maryland Procurement
O�ce, and by sponsors of the Center for Education and
Research in Information Assurance and Security, Pur-
due University. We would like to thank Carla Brodley,
Craig Codrington, and our reviewers for their helpful
comments on this work. We would also like to thank our
data donors and, especially, USER4 whose data forced
us to examine this domain more closely than we might
otherwise have done.

References
[Anderson, 1980] J. P. Anderson. Computer security
threat monitoring and surveillance. Technical Report
Technical Report, Washington, PA, 1980.

[Angulin, 1987] D. Angulin. Learning regular sets from
queries and counterexamples. Information and Com-
putation, 75:87{106, 1987.

[Casella and Berger, 1990] G. Casella and R. L. Berger.
Statistical Inference. Brooks/Cole, Paci�c Grove, CA,
1990.

[Chenoweth and Obradovic, 1996] T. Chenoweth and
Z. Obradovic. A multi-component nonlinear predic-
tion system for the S&P 500 index. Neurocomputing,
10(3):275{290, 1996.

[Davison and Hirsh, 1998] B. D. Davison and H. Hirsh.
Predicting sequences of user actions. In Proceedings
of the AAAI-98/ICML-98 Joint Workshop on AI Ap-
proaches to Time-series Analysis, pages 5{12, 1998.

[Denning, 1987] D. E. Denning. An intrusion-detection
model. IEEE Transactions on Software Engineering,
13(2):222{232, 1987.

[Forrest et al., 1996] S. Forrest, S. A. Hofmeyr, A. So-
mayaji, and T. A. Longsta�. A sense of self for Unix
processes. In Proceedings of 1996 IEEE Symposium
on Computer Security and Privacy, 1996.

[Fukunaga, 1990] K. Fukunaga. Statistical Pattern
Recognition (second edition). Academic Press, San
Diego, CA, 1990.

[Lane and Brodley, 1997] T. Lane and C. E. Brodley.
Sequence matching and learning in anomaly detec-
tion for computer security. In Proceedings of AAAI-97
Workshop on AI Approaches to Fraud Detection and
Risk Management, pages 43{49, 1997.

[Lane and Brodley, 1998] T. Lane and C. E. Brodley.
Approaches to online learning and concept drift for
user identi�cation in computer security. In Fourth In-
ternational Conference on Knowledge Discovery and
Data Mining, pages 259{263, 1998.

[Norton, 1994] S. W. Norton. Learning to recognize pro-
moter sequences in E. coli by modelling uncertainty
in the training data. In Proceedings of the Twelfth
National Conference on Arti�cial Intelligence, pages
657{663, Seattle, WA, 1994.

[Oppenheim and Schafer, 1989] A. Oppenheim and
R. Schafer. Discrete-Time Signal Processing. Signal
Processing. Prentice Hall, Englewood Cli�s, New
Jersey, 1989.

[Orwant, 1995] J. Orwant. Heterogeneous learning in
the Doppelg�anger user modeling system. User Model-
ing and User-Adapted Interaction, 4(2):107{130, 1995.

[Provost and Fawcett, 1998] F. Provost and T. Fawcett.
Robust classi�cation systems for imprecise environ-
ments. In Proceedings of the Fifteenth National Con-
ference on Arti�cial Intelligence, Madison, WI, 1998.
AAAI Press.

[Quinlan, 1993] J. R. Quinlan. C4.5: Programs for ma-
chine learning. Morgan Kaufmann, San Mateo, CA,
1993.

[Rabiner and Juang, 1993] L. Rabiner and B. H. Juang.
Fundamentals of Speech Recognition. Prentice Hall,
Englewood Cli�s, New Jersey, 1993.

[Rabiner, 1989] L. R. Rabiner. A tutorial on Hidden
Markov Models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2), Febru-
ary 1989.

[Rivest and Schapire, 1989] R. L. Rivest and R. E.
Schapire. Inference of �nite automata using hom-
ing sequences. In Proceedings of the Twenty First
Annual ACM Symposium on Theoretical Computing,
pages 411{420, 1989.

[Salzberg, 1995] S. Salzberg. Locating protein coding
regions in human DNA using a decision tree algo-
rithm. Journal of Computational Biology, 2(3):473{
485, 1995.

[Smyth, 1994a] P. Smyth. Hidden Markov monitoring
for fault detection in dynamic systems. Pattern Recog-
nition, 27(1):149{164, 1994.

[Smyth, 1994b] P. Smyth. Markov monitoring with
unknown states. IEEE Journal on Selected Areas
in Communications, special issue on intelligent sig-
nal processing for communications, 12(9):1600{1612,
1994.

[Srikant and Agrawal, 1996] R. Srikant and R. Agrawal.
Mining sequential patterns: Generalizations and per-
formance improvements,. In Proc. of the Fifth
Int'l Conference on Extending Database Technology
(EDBT), Avignon, France, 1996.

[Yoshida and Motoda, 1996] K. Yoshida and H. Mo-
toda. Automated user modeling for intelligent inter-
face. International Journal of Human-Computer In-
teraction, 8(3):237{258, 1996.

