
Security Relevancy Analysis on the Registry of
Windows NT 4.0

Wenliang Du
CERIAS�

Computer Sciences Department
Purdue University

West Lafayette, IN 47907
duw@cs.purdue.edu

Praerit Garg
Microsoft Corporation
Redmond, WA 98052

praeritg@microsoft.com

Aditya P. Mathur
Computer Sciences Department

Purdue University,
West Lafayette, IN 47907

apm@cs.purdue.edu

Abstract

Many security breaches are caused by inappropriate in-
puts crafted by people with malicious intents. To enhance
the system security, we need either to ensure that inappro-
priate inputs are filtered out by the program, or to ensure
that only trusted people can access those inputs. In the sec-
ond approach, we sure do not want to put such constraint
on every input, instead, we only want to restrict the access
to the security relevant inputs. The goal of this paper is
to investigate how to identify which inputs are relevant to
system security. We formulate the problem as an security
relevancy problem, and deploy static analysis technique to
identify security relevant inputs. Our approach is based
on dependency analysis technique; it identifies if the be-
havior of any security critical action depends on certain
input. If such a dependency relationship exists, we say that
the input is security relevant, otherwise, we say the input
is security non-relevant. This technique is applied to a se-
curity analysis project initiated by Microsoft Windows NT
security group. The project is intended to identify security
relevant registry keys in the Windows NT operating sys-
tem. The results from this approach is proved useful to en-
hancing Windows NT security. Our experiences and results
from this project are presented in the paper.

1 Introduction

To build a secure system, it is important to understand sys-
tem behaviors, especially those behaviors that respond to
inputs; to understand those behaviors, knowing whether
an input issecurity relevantis important. Thesecurity
relevancyof an input is defined based on the definition
of a security critical action. A security critical action is

�Center for Education and Research in Information Assurance and Se-
curity (CERIAS)

an action, which, if conducted in a uncontrolled manner,
can compromise system security. For example, in UNIX,
system() is a security critical action since it invokes a
command, which could be any command if the argument
passed ontosystem() is not appropriately controlled.
Generally speaking, an input issecurity relevantif the data
from this input will affect the behavior of at least one secu-
rity critical action. A formal definition is given in section 2.

There are many different kinds of inputs to a program.
The most obvious ones are the input from users. Less obvi-
ous ones are inputs from files, from network, from environ-
ment variables, from other processes, or from the Windows
NT Registry. Some of these are critical to system security,
some are not. By saying “critical to system security”, we
mean that if the input data is validated incorrectly or the
validation is missing, the system security could be com-
promised by the manipulation of the input in certain way.

Let us take Windows NT Registry as an example. Win-
dows NT Registry is essentially an organized storage for
operating system and application data. This data is glob-
ally shared by different applications and different compo-
nents of the operating system. Please see section 3.1 for the
definition ofRegistryandregistry keyterminology. When a
program gets data from the Registry, the data now becomes
an input, and some of this input are benign while some are
not. For example, in one scenario the program gets an input
from a registry key and treats this input as a file name, then
displays to the user this input in a message window. Even
if somebody can arbitrarily manipulate the data, no harm
will be done to system security itself (though the message
can be changed in such a way that the user is tricked to
do something harmful). In another scenario, the data re-
trieved from the registry key is still treated as a file name,
but the program proceeds to execute the file represented
by this name, This input now becomes a dangerous input,
which means leaving the source of the input (the registry

1

key in this case) unprotected or using the input without an
appropriate validation might now lead to a security breach.

Consequently, knowing which inputs are critical to sys-
tem security is essential to enhancing system security. In
the previous Windows NT Registry example, knowing that
a registry key is critical to system security will enable us to
put a protection on that key to prevent unauthorized modi-
fication. However, there is no easy way to know that. Fur-
thermore, one protection configuration might become in-
valid in the new version of the operating system because
changes to the code could make a security non-critical reg-
istry key become security critical, and vice versa. It is not
always obvious to identify which part of the configuration
is not valid any more since people who made the deci-
sion that certain keys are security critical might have left
the company without leaving the corresponding documen-
tation on why that protection decision was made. From
discussions with NT developers, we have learned that they
are constantly looking for the reasons why they have put
some registry keys into protection mode. Their customers,
after all, want to know whether they themselves should re-
ally put certain keys under protection or not. Sometimes,
they may decide to put less restriction on certain keys, but
they want to know how much risk that would bring to the
system. Moreover, every time developers made a major
revision on the operation system program, people want to
know whether those reasons still stand.

Knowing whether an input is critical to system security
is also important to security testing. It can help testers allo-
cate their resources wisely. The key difference between se-
cure software and other high quality software is that secure
systems have to be able to withstand active attacks by po-
tential penetrators. When developing a secure system the
developers must assure that intentional abnormal actions
can not compromise the system. In another words, secure
systems must be able to avoid problems caused by mali-
cious users with unlimited resources [9]. Knowing that
an input is not critical to system security, testers do not
need to spend time in designing attacks against that spe-
cific input; instead, they can focus on those inputs that are
critical to system security. Furthermore, knowing that an
security critical action depends on the value of an input
provides testers with more information for security test-
ing cases. If they know, for instance, that the value of an
input is treated as a file name and is subject to execution,
their test cases would thus involve using files with different
properties, permissions, owners etc. We have developed an
environment perturbation technique based on this knowl-
edge in [4].

Knowing whether an input is critical to system security
is not trivial. It is not sufficient to just look at the content
of an input. In the example used before, the input data

in both case are exactly the same (file names), but they
are used for different purposes, thus implicating different
consequences. How can we identify their purposes?

This problem can be formulated as a dependency prob-
lem [7]. An example can help illustrate this point. As is
known, in UNIX, system action is a security critical ac-
tion, the consequence of which depends on the value of
the actual argument passed to this action. If the action
takes the form ofsystem("rm /etc/passwd") , it
will erase/etc/passwd file, which will cause a severe
security problem. But, if the action takes the form ofsys-
tem ("ls") , it will not do as much harm as the former
action. From this perspective, the value of the actual argu-
ment passed into thesystem action actually decides the
security consequence. The value in the actual argument
can be affected by various sources. If an input is one of
these sources, we say that thissystem action depends on
the input and thus the input is considered security relevant.
Dependency relationship exactly models the correlations
among various variables. If variablea affects variableb’s
value, we sayb depends ona. Therefore, to find out if an
input is security relevant to system security is equivalent
to finding out the dependency relationship among the pro-
gram’s variables, especially dependency relationships be-
tween arguments sent to a security critical action and vari-
ables that represent inputs.

Dependency analysis technique has already been used
in detecting a variety of anomalies in program, in testing,
and in program slicing [7]. The work presented here ap-
pears to be the first attempt to detect security relevancy of
inputs using dependency analysis. Also presented is our
experience with the application of this technique to Win-
dows NT 4.0 source code.

In addition to static analysis, another possible way of
identifying this kind of dependency relationship is to de-
rive it from design specification. By analyzing specifica-
tion, one can understand how the program will use the in-
put data. This, to some extent, can generate more precise
information about the dependency. However, this is not al-
ways feasible. In reality, many inputs are hidden from the
design specification because it belongs to implementation
details. For example, inputs from files or from the Registry
are frequently hidden from design specification, and thus
learning the security relevancy of these hidden inputs is
impossible from specification analysis. Another drawback
via this approach is the difficulty of automation unless the
specification is written in a strictly formal language.

The remainder of this paper is organized as follows.
Section 2 describes the dependency and security-relevancy
analysis. Section 3 presents the application of the security-
relevancy analysis on windows NT 4.0 source code. Sec-
tion 4 briefly reviews related works in this research area.

2

Finally, section 5 draws conclusions and points out future
work.

2 Analysis

This section describes dependency analysis technique and
based upon which, we will discuss security relevancy anal-
ysis.

2.1 Dependency analysis

Dependency analysis has been discussed in several works
[18], [8], [7], [13], [16]. However, most of those works
focus on finding data and control dependency relationships
among statements. We, however, discuss a similar tech-
nique to identify dependency relationships among variables.

A program P has a dependence relation D among its
variables

D(P) : V ar $ V ar

where a pair(x; y) 2 D(P) means that the value of the
variablex, after execution ofP , depends on the value of
y before execution ofP . Each of such pair represents a
dependency relationship in the programP .

To specify the dependency relationship formally, we bor-
row the notation from [7]: Representing the behavior of
programP as a functionp over some set of program vari-
ables likea; b; c, etc.

p : (a; b; c; :::)! (a; b; c; :::)

we say that variablex depends on variabley when there
are two prestatess ands0 that are distinguishable only in
their y components and lead, underP , to corresponding
post-states having differentx components:

(x; y) 2 D(P) iff 9s, s0. 8v 6= y.
sjv = s0jv \ p(s)jx 6= p(s0)jx.

(Heresjv means the value of variablev in states.) In other
words,x depends ony if the computation ofx usesy.

A direct dependency relationship is a dependency re-
lationship derived from a primitive statement, which could
be assignment or procedure call. A Data Dependency Graph
(DDG) could be built based on the direct dependency rela-
tionships among variables.

A DDG is actually a directed graph, the node of which
represents a variable, and the edge of which represents a
direct dependency relationship. If there exists a direct de-
pendency between variablesA andB, sayB directly de-
pends onA, then in the DDG the relationship is shown as a
directed edge from A’s node to B’s node. Since the depen-
dency relationship is transitive, with DDG the dependency
relationship between two variables can be rephrased as the

following: a variablex depends on another variabley if
and only if there exists a path fromy’s node tox’s node
in the Data Dependency Graph. Therefore, for the purpose
of capturing dependency relationships among variables, all
one needs to do is to build a DDG. We will useDD(P)
to represent direct dependency relationships derived from
programP .

During the analysis, we will assume that each variable,
whether a local variable, global variable or formal param-
eter, has a different identifier. This can easily be achieved
by renaming.

Simple dependence analysis

If two or more variables denote the same memory address,
we say that the variables arealiasesof one another. The
presence of pointers makes data-flow analysis more com-
plex because they cause uncertainty regarding what is de-
fined and used [18]. In this part of the analysis, we tem-
porarily suppose that no alias exists in the program; thus,
each variable represent a distinguished memory location.

The primitive statement that generates direct dependency
relationships is an assignment statement:

DD(x = y) = (x; y)

A composite statement generates direct dependency re-
lationships in the following way:

DD(if W thenS elseT) = DD(W) [DD(S) [DD(T)
DD(whileW doS) = DD(W) [DD(S)

DD(S;T) = DD(S) [DD(T)

Now let us analyze dependency relationships among vari-
ables across different procedures. As we know, this kind
of relationship is caused by inter-procedure call. So, let us
use a general form of procedure invocationS: w = f(x1;
x2; :::xm). To simplify the discussion, suppose the identi-
fier for the return value off is r, and the formal arguments
of f is v1; v2; :::vm.

Since we have supposed that there is no alias type, the
data of actual arguments are passed onto formal arguments
via pass-by-value, i.e. during the invocation, it actually has
a set of assignment statements:vi = xi, wherei = 1:::m.
Therefore, the resultant dependency relationship is:

DD(S) = f(vi; xi), wherei = 1:::mg [f(w; r)g

With alias

If two variables denote the same memory address, namely,
they are aliases of one another, the analysis becomes more
complicated because the presence of pointers causes uncer-
tainty regarding what is defined and used. An assignment

3

of *x = *y could cause the dependency ofu andv if x
andy are the aliases ofu andv respectively.

The safest assumption is that a pointerp can point to any
variable in the program. Thus, a single assignment like*p
= *q causes a dependency relationship between any two
variables. Although a knowledge of variable scope can cut
down the number of dependency pairs, the assumption is
still too strong for dependency analysis to derive an accu-
rate relationship.

Several methods of alias analysis and point-to analy-
sis have been proposed [12, 6, 19, 2, 20]. By using these
methods, one can compute apoints-toset for each vari-
able. Thepoints-toanalysis is beyond the scope of this pa-
per, and we assume that apoints-toset for each variables
could be obtained via this analysis. The main concern of
this paper is how to use thepoints-tosets to build a Data
Dependency Graph, and based on which, how to conduct
security-relevancy analysis. In the following analysis, we
use�(a) to represents thepoints-toset of variablea.

With apoints-toset for each variables available, one can
compute dependency relationships from the following as-
signments:

DD(�p = �q) = f(x; y)jx 2 �(p); y 2 �(q)g
DD(�p = v) = f(x; v)jx 2 �(p)g
DD(u = �q) = f(u; y)jy 2 �(q)g

2.2 Incomplete program

An assumption underneath the above analysis is that the
source code for a program is complete. However, in prac-
tice this assumption is not always true. Library routines,
for instance, usually come with no source codes. To solve
this problem, a dependency digest for each of those library
subroutines is manually computed. A dependency digest of
a subroutine represents the dependency relationship among
its formal parameters and return value.

For example,char * strcpy(char *s1, char
*s2) subroutine will copy the contents pointed bys2 to
the location pointed bys1, and return the value ofs1. Thus
the dependency digest is:

f(�s1; �s2); (�r; �s1); (r; s1)g, wherer is the return
value.

Therefore, for the statementS: x = strcpy(a, b) ,
we have

fDD(S) = f(x; a)g [f(�(x); �(a))g [f(�(a); �(b))g

2.3 Security Relevancy Analysis

Security critical action

Some of actions conducted by a program could be benign
while some might besecurity critical, which means that if

the target of the action is not verified correctly, the action
could lead to breach, such as impairing system integrity,
confidentiality, accountability, or availability. Examples of
such actions are system calls likewrite() , unlink() .
Takewrite() as an example: if the target of the write ac-
tion is not appropriately validated, this operation could be
applied to an unwanted target, thus overwriting the target.

In operating systems such as Windows NT, UNIX, a se-
curity critical action usually is represented by a system call
or by a procedure from library that invokes system calls.
A security critical attribute is associated with each of of
this kind of procedure indicating whether its invocation has
any potential consequence on system security. We define a
variable’s security relevancy based on these security criti-
cal actions.

Definition 2.1 (Security Relevancy of Variable)A variable
x is security relevant in programP (denoted asx 2 SR(P)),
if one of the following situations is true:

1. x is passed as a parameter passed onto functionf ,
wheref is security critical.

2. (v; x) 2 D(P) andv is security relevant.

After obtaining the direct dependency relationships among
all variables of the program, one can build a Data Depen-
dency Graph (DDG). A DDG is actually a directed graph,
the node of which represents a variable, and the edge of
which represents a direct dependency relationship. If there
exists a direct dependency between variablesA andB (say
B depends onA), then in the DDG the relationship is shown
as a directed edge from A’s node to B’s node.

We will distinguish those variables which represent in-
puts from other variables by marking each of their nodes
with an I . We will also distinguish the variables which
are fed directly to security critical actions from other vari-
ables by marking each of their nodes with anS. The rest of
variables are marked with anO. Now the problem of deter-
mining whether an input is security relevant is transformed
into the following problem statement:

Definition 2.2 (Security Relevancy Problem)Given the di-
rected graphG = (V;E), whereV = I [S [O, andI ,
S,O are three sets of nodes with different properties, find-
ing all security relevant inputs is equivalent to finding all
nodesi 2 I , such that9s 2 S, and there exists at least a
path fromi to s,

Proof: Since setS contains all security relevant nodes,
and setI contains all input nodes, if there exists a path from
an I node to anS node, from the dependency definition,
we know that theS node depends on theI node. From the
definition of security relevancy of a variable, theI node is

4

a security relevant variable. The input it represents is thus
a security relevant input.

An intuitive solution to this graph problem is to first
reverse the direction of each edge, then to find the complete
reachable set for eachS node, then check whether the set
contains anyI node. If so, one can decide that theI node is
security relevant. A straightforward implementation would
have the running time ofO(jSj�n), wheren is the number
of security relevant variables. In the worse case, wherejSj
is in the order ofn, the algorithm would takeO(n2) time.

An improved algorithm would (1) reverse the direction
of each edge like the above solution; (2) choose a nodes

from S set, find the reachable set for nodes; (3) delete all
nodes that are in this reachable set from the graph, as well
as all the edges connected to these nodes; (4) choose an-
other unchosen node fromS set, and repeat step (2) until
there are no more nodes to choose. Finally, if any node
from I appears in the union of all reachable sets, we say
that the node is security relevant. Since the improved algo-
rithm only traverses each security relevant node once, the
total running time would beO(n), wheren is the number
of security relevant variables.

To further increase the performance of the algorithm,
one could compress the Data Dependency Graph to some
extent. For example, once a set of dependency relation-
ships for each procedure is obtained, all relationships among
local variables could be removed if they are not related
to any input. Thereby, only the dependency relationships
among parameters, global variables, and input-related local
variables are kept. Of course, one can not simply get rid
of those local variables, since, for example, some formal
parameter might depend on a local variable, which itself
depends on another formal parameter, This circumstance
makes the first formal parameter depend on the second one.
The indirect dependency relationships among formal pa-
rameters and global variables should be preserved while
the dependency relationship set is reduced.

3 Registry Security Analysis Project

3.1 Background of the Project

The Registry in Windows NT 4.0 is laid out in a hierarchi-
cal structure ofkeysandname-value pairs. This structure
is used as a central configuration database for the user, ap-
plication, operating system, and computer information. A
key is a node of the hierarchical Registry structure. It con-
sists of sub-keys and name-value pairs. Asub-key is the
child of a parent key. Aname-value pair is the holder
of the data within a registry key. Each key may have any
number of sub-keys and/or name-value pairs [3]. We will
use registry key/value in this paper to refer to both key and

name-value pairs.

Definition 3.1 Security relevant registry key:a registry name-
value is security relevant if a change in its value in some
way could lead to violation of system security, which in-
cludes confidentiality, integrity, accountability, and avail-
ability. A registry key is security relevant if any of its con-
taining name-value pairs are security relevant.

A project is initiated for the purpose of identifying all
security relevant registry keys in Windows NT Registry.
There are several motivations behind this project. First of
all, some registry keys should be configured as protected
resources which non-privilegeduser can not make arbitrary
modification on. Usually, the decision about which reg-
istry keys should be protected comes either from specifi-
cation, or developers’ formal or informal documentations.
As time goes on, however, the specification might become
obsolete; it is hard to keep up with the evolution of soft-
ware. Furthermore, people who made the decision regard-
ing which registry keys should be protected might have
left. So, from time to time, people might ask: “why is
this registry key protected? what is the consequence if I do
not protect it”? To answer these questions, software ven-
dors have to turn to the developers, provided that the de-
velopers who made the decision are still there; otherwise
they have to go through the specification and find out the
result themselves. Specification could be obsolete and in-
complete as well. yet nevertheless, compared with specifi-
cation, program source code would provide more accurate,
more complete and more up-to-date information. There-
fore, if we can derive the security relevancy information
from the program itself, especially if automatically, we can
keep up with the evolution of the software regarding to the
security relevant registry keys.

Secondly, various enterprise customers or developers
from other groups want to know why a registry key is pro-
tected. These customers might want to build their own soft-
ware on NT or port their software to NT. Sometimes, the
software requires that a non-privileged user have the right
to modify a certain registry key which is in the protection
mode. They should either modify the software or remove
the protection from the registry key. To make the right de-
cision they would need to do risk analysis on whether it is
appropriate to just remove the protection from the registry
key. If the risk is not high enough, they might trade a little
bit of security for the cost of modifying software. Usually
customers are not satisfied with the specifications that only
specify that a registry key should be protected without pro-
viding further details. The more details they have, the more
accurate the risk analysis is.

Thirdly, the project hopes to identify security flaws re-
lated to the Registry. There still are several world-writable

5

registry keys after the Windows NT 4.0’s fresh installation.
Several NT security books [17, 10] have pointed out that
some of the registries should be protected. We hope to
identify the known one, as well as uncover the unknown
ones if any.

3.2 Design and Implementation

Through the project we want to be able to answer the fol-
lowing questions:

1. Which registry keys/values are used in the program?

2. Where are they used?

3. Are they security relevant?

4. Why are they security relevant?

For the ease of implementation, we divide our task into
two different steps. In the first step, we try to answer the
first two questions by gleaning registry keys/values infor-
mation from the program. The data itself is quite valu-
able, since it gives a global overview of the usage of the
Registry by various components. For example, from the
data we collected from Windows NT4.0 SP3 source codes,
we found that Winlogon registry key is used 256 times
throughout 33 different modules, and Lsa registry key is
used 190 times throughout 24 different modules. This in-
formation suggests that we should be very cautious about
changing the value, configuration, or the meaning of such
registry keys. Fortunately, these two registry keys are pro-
tected in the default configuration and only Administrators
and system can modify them. A data collection tool has
been implemented for collecting the Registry usage infor-
mation. Although it is impossible to resolve all the names
of registry keys/values that are used in a program since
some names of the keys/values are dynamically generated,
we have indeed resolve80% of them.

In the second step, the dependency and security rele-
vancy analysis techniques discussed in section 2 are used
for analyzing the security relevancy of each input from the
Registry. Without the result from the first step, one can tell
only whether an input from a registry key is security rel-
evant or not without knowing in particular which registry
key is security relevant. But when the first step and the sec-
ond step results are combined, the security relevancy of a
specific registry key/value is now ascertainable.

Data organization

The final results from the above two steps are stored in a
database that contains the following fields:

� Registry key: this field records the name of a registry
key used in a program, or whose value is used.

� Registry value name: if a registry value is retrieved,
the field records the value name.

� Access permission for “Everyone” on this registry
key: Since we are concerned with whether the key is
world-readable or world-writable, only the permis-
sion for “Everyone” group (this group includes every
user in the system) is recorded.

� Link to source file: this field provides a link to the
source file that uses the registry key/value.

� Line number: this field records where in the source
file the registry key/value is used.

� Security relevancy: the decision made as to whether
the registry key/value is security relevant. The deci-
sion is based on the security relevancy analysis.

� Criterion: the reason of why the registry key/value is
categorized as security relevant. Such reasons could
be: the input is passed as a file name into a deletion
function; or the input is passed as a file name into an
execution function; or the input is used as condition
to decide if a network connection function should be
invoked, and so on.

Security relevancy analysis

Before security relevancy analysis is conducted, one ques-
tion has to be answered: what consists of security critical
action in the Windows NT operating system? The security
action in the Windows NT is defined at system calls and
library calls level, namely, system calls and library calls
are categorized into two categories (security critical actions
and security non-critical actions) based on the targets to
which the actions are applied. Security critical actions in
Windows NT are described in the following, and they are
categorized by the targets to which the actions are applied:

� Executable: this kind of action usually involves ex-
ecuting a program, loading a DLL and executing its
procedure, invoking a service and etc.

� Permission or Privilege: this kind of action usually
involves setting or modifying a permission or a priv-
ilege on a target.

� File or Directory: this action involves accessing a
file or a directory including reading, writing, and
deleting.

� Registry: similar to accessing files, this kind of ac-
tion only involves actions of accessing registry keys
or values.

6

� Network: this kind of action involves accessing net-
work, such as connecting, sending or receiving on
network.

� Environment Variable: since a lot of other unexpected
actions, whether security relevant or not, depend on
environment variables, so a change to a security vari-
able is considered security relevant.

� Process and Service: changing a process or a ser-
vice is security critical, since an action might cause
a denial-of-service problem if the target is inappro-
priate.

� Security Policy: Security policy, such as whether to
allow somebody to login, is critical to system secu-
rity, so any change to the security policy is consid-
ered security critical. However, in the Windows NT
operating system, there is no standard API (Appli-
cation Programming Interface) for this functionality.
Sometimes, a policy is specified in a registry key,
sometimes, it is specified in a file. It is very diffi-
cult to distinguish a normal file or a registry key ac-
cessing operation from the operations of accessing
security policy. Our approach depends on manual
annotation (either by programmers themselves or by
code inspectors) to identify such an action.

Example

An example is used here to illustrate how the analysis tech-
nique presented in section 2 is applied to analyze security
relevancy of registry keys/values. The program used in this
example is the following:

f(){
RegQueryKey(hkey, ... input)
g(input);

}

g(char *str){
char name[30];
strcpy (name, "\\Winnt\\");
strcat(name, str);
h(name);

}

h(char *n){
CreateProcess(n)

}

Figure 1 shows the dependency relationships among vari-
ables. BecauseCreateProcess is a security critical ac-
tion, node�n in the figure is marked as anS node, and be-
causeRegQueryKey is an input procedure, node�input

I

"\Winnt\"*input

*str

*name

*nS

Figure 1: Data Dependency Graph

is marked as anI node. From the figure, a path from
�input node to�n node exists, therefore, according to se-
curity relevancy analysis, input fromRegQueryKey() is
considered security relevant.

3.3 Results

We have applied the data collection tool on the whole Win-
dows NT4.0 (SP3) source tree. There are 16,009 places
where the Registry is accessed. The names of registry
key/values used in80% of those places have been resolved.
The reason that the names of registry keys/values used in
the other20% have not been resolved is mainly because
some registry key/value names are dynamically generated
during the program execution; therefore, static analysis is
impossible to resolve them.

Among all those 16,009 entries,48% are just an “open”
or “close” operation, which does not involve the real data
exchange between the program and the Registry.14% are
“set” operations, which are considered as output as op-
posed to input.25% are “query” operations which actually
input data from the Registry to the program. The rest13%
consist of other registry operations which are of no interest
to this project. Although “open”, “close” and “set” opera-
tions sometimes have security impact on the system, they
are beyond the scope of this work because we are only con-
cerned about the security relevancy of the “input”. For the
“set” operation, if the output from this operation is never
used as an input, the involved registry key is not security
relevant; if the registry is used as an input somewhere, it
will be under the category of “input”, and will be analyzed
in our approach. Therefore, in this project, only the reg-
istry keys involved in a “query” operation will be the target
of our security relevancy analysis.

7

Based on the Registry usage information we have col-
lected, experimental analysis using the technique discussed
in section 2 was conducted on about 50 registry keys, 21
of which were found security relevant for various reasons.
Among those security relevant registry keys, 11 are world-
writable, which means if the program does not perform
appropriate checks on the those inputs, an unprivileged
user could be able to cause security breaches by modify-
ing those registry keys. The rest of this section presents
part of the results obtained from the analyses.

One of the interesting keys is‘‘HKLM nSoftware nMicrosoft nWindows

NTnCVnType 1 Installer nType 1 Fonts’’
1. From the name of the reg-

istry key, it seems that this key contains information about
fonts, which are unlikely to cause a serious security breach
even if somebody can tamper with it. This is probably why
the key is not protected. However, the analysis reveals that
a delete action on files specified by this value. There-
fore, if somebody makes the registry key point to an im-
portant file, this action will seriously affect the system.

HKLMnSoftware nMicrosoft nWindows NTnCVnProfileList n(sid) (sid is not a
registry key name; it is a user’s security ID and is user de-
pendent) registry key contains aProfileImagePath
value, which is considered a directory name and will be
appended with a string to form a file name. In a module
executed in privileged context, this generated file name is
passed onto adelete action, i.e. the file represented by
this name will be deleted. If somebody can modify this
value, such as making it point to other people’s profile di-
rectory, the execution of this module will actually delete a
undesired file, thus breaking system integrity.

The same registry key and same value are used to set
the user’s several environment variables. Considering that
many applications may depend on those environment vari-
ables, a corruption of their values will lead to an undesired
or, even worse, unsecured consequence.

HKLMnSoftware nMicrosoft nWindows NTnCVnWinlogon registry key contains
a PolicyHandler value. This value is treated as the
name of a dynamic link library (dll) and a procedure
name as well. Thedll name is used to load the corre-
sponding dynamic link library into the memory, and the
procedure name is used to find the corresponding proce-
dure from the loaded library to be invoked by the program.
Thus, this value actually points to a piece of code, and
compromising of this value will lead to the execution of
an arbitrary code by the Winlogon module, which runs as
a privileged process. Fortunately, this registry key is pro-
tected in the default configuration.

HKLMnSoftware nMicrosoft nNetDDEnParameters nGeneral registry key con-
tains aDebugPath registry value. This value contains

1For the sake of convenience, the following description usesHKLMto
representHKEYLOCALMACHINE, andCVto representCurrentVer-
sion .

the name of a log file. Our analysis result discloses that,
in one of modules, the program conducts awrite oper-
ation to the file specified by this registry value. A closer
look at the program reveals that the programmer has not
checked whether the registry value is trusted or not before
going ahead to write to the specified file. Consequently,
an implicit assumption is made by the programmer on the
registry value. If the registry value is not protected, a mali-
cious user can cause any file to be overwritten if that mod-
ule is executed by a privileged user.

Knowing what registry keys/values are security relevant
along with the permissions set on each of the registry key,
it takes just a simple query on the database to find out
all registry keys/values that are both security relevant and
writable to “Everyone” group. Based on the result we have
collected, we have identified 11 such registry keys/values,
4 of which are not documented in any literature that we
are aware of. These results have been acknowledged by
Microsoft Corporation.

As of the writing of this paper, only 50 registry keys
have been analyzed at the initial stage of the analysis. We
believe that with an analysis of all of the registry keys the
number of unprotected security-relevant registry keys will
be far more than 11. The results of this project are con-
sidered very useful by Windows NT security group, and
thus are incorporated into the secure configuration of the
Windows NT.

4 Related work

Several books [17, 10] have been published about NT se-
curity, most of which mention that some registry keys that
should be protected are not protected in the default con-
figuration Most of the suggestions come from analyses on
windows NT operating system, from specification and doc-
umentation, or purely from experience. Ours analysis pro-
vides another perspective, which takes into consideration
the final version of the source code. We therefore avoid the
potential problems caused by inaccurate or obsolete docu-
mentation.

Static analysis technique has long been used as a tech-
nique to enhance program security. Although these studies
are very similar in the way to deploy the technique, they
deploy the technique to achieve different goals.

Bishop and Dilger studied one class of the time-of-check-
to-time-of-use (TOCTTOU) flaws [1]. A TOCTTOU flaw
occurs when an application checks for a particular char-
acteristic of an object and then takes some action that as-
sumes the characteristic still holds when in fact it does not.
This approach focuses on a source-code based technique
for identifying patterns of code which could have this pro-
gramming condition flaw.

8

Fink and Levitt employ application-slicing technique to
test privileged applications [5]. This static analysis tech-
nique is used for the program slicing according to the crite-
ria derived from the specification. Orbek and Palsberg [14]
have introduced trust analysis for high-order languages.
Trust analysis encourages the programmer to make explicit
the trustworthiness of data, and in return it can guarantee
that no mistakes with respect to trust will be made at run-
time. The similar static analysis technique is used in this
paper to analyze the trustworthiness of data.

The difference between our work and those other works
that uses static analysis technique in enhancing system se-
curity are the following: First of all, most of those tech-
niques focus on detecting security violation, whereas our
work focuses on pointing out the dependency relationship
between inputs and the program’s critical actions. While
this dependency does not necessarily indicate a security
vulnerability in the program, it reveals that as long as the
input is not protected, or the input is not correctly checked,
a security vulnerability is possible. This information may
not lead to the discovery of a security vulnerability, but it
indeed helps the testers look in the right place for the pur-
pose of security testing; it also helps the developers make
the right decision about whether or not to put extra efforts
into validating an input. Secondly, some techniques re-
quire the modification of source code, such as annotating
a source code. With the annotation of the code, analysis
technique could collect more information from the code,
thus leading to a more powerful analysis. However, given
such a large system as the Windows NT, it is infeasible to
modify the source codes before analysis.

Penetration testing [11, 15] is another way of discover-
ing whether an input is security relevant or not by demon-
strating that certain inputs could cause security breaches.
In the case where the source code is not available this is
an effective approach because all that needs to be done is
to come up with a different input and feed it to the system
to see whether the system security will be compromised?
The disadvantage of this approach is that one has to see a
security breaches to believe that an input is security rele-
vant. If an execution path is never covered, it is difficult to
determine whether the input related to that path is security
relevant. In addition, devising a test case itself could be
difficult.

5 Summary

We have argued and demonstrated that knowing the secu-
rity relevancy of inputs is important to enhancing program
security. In addition, we have presented a technique that
reveals the security relevancy of an input. This technique
is based on the insight that finding whether an input is se-

curity relevant is equivalent to finding the dependency rela-
tionship between the input and any security critical action.

We have also conducted experimental analyses on the
Windows NT 4.0 source code. The results not only reveal
the security relevancy information of registry keys/values,
but also point out several vulnerabilities in the configura-
tion of the Registry. These results demonstrate that secu-
rity relevancy analysis is a useful technique in enhancing
program security by pointing out the existing and potential
vulnerability in the programs.

6 Acknowledgement

The authors are indebted to Peter Brundrett, Margaret John-
son, Kirk Soluk and other people in the Windows NT Secu-
rity group for their insightful advice throughout the whole
project. We are also grateful to Microsoft Corporation for
providing us with the chance to conduct experimental anal-
yses on the Windows NT 4.0 source code. We also thank
the anonymous reviewers for their useful comments.

References
[1] M. Bishop and M. Dilger. Checking for race conditions in

file acesses.The USENIX Association Computing Systems,
9(2):131–151, Spring 1996.

[2] J. Choi, M. Burke, P. Carini. Efficient flow-sensitive inter-
procedural computation of pointer-induced aliases and side
effects. InACM-20th PoPL, 1993.

[3] W. Chen and W. Berry. Windows NT Registry Guide.
Addison-Wesley Developers Press, 1997.

[4] W. Du and A. Mathur. Vulnerability testing of software sys-
tem using fault injection. Technical report, Purdue Univer-
sity, 1998.

[5] G. Fink and K. Levitt. Property-based testing of privileged
programs. InProceedings of the 10th Annual Computer Se-
curity Applications Conference; Orlando, FL, USA; 1994
Dec 5-9, 1994.

[6] R. Ghiya and L. J. Hendren. Putting pointer analysis to
work. In POPL, San Diego, CA USA, 1998.

[7] D. Jackson. Aspect: Detecting bugs with abstract depen-
dences. ACM Transactions on Software Engineering and
Methodology, 4(2):109–145, April 1995.

[8] D. Jackson and E. J. Rollins. A new model of program
dependences for reverse engineering. InSIGSOFT, New
Orleans, LA, USA, 1994.

[9] R. Kemmerer. Security, computer. InEncyclopedia of Soft-
ware Engineering. 1994.

[10] N. Lambert and M. Patel.PCWEEK Windows NT Security:
System Administrator’s Guide. Ziff-Davis Press, 1997.

9

[11] R. R. Linde. Operating system penetration. InAFIPS Na-
tional Computer Conference, pages pp. 361–368, 1975.

[12] A. Diwan, K. S. McKinley and J. B. Moss. Type-based alias
analysis. InSIGPLAN, Montreal, Canada, 1998.

[13] J. Ferrante, K. J. Ottenstein and J. D. Warren. The program
dependence graph and its use in optimization.ACM Trans-
actions on Programming Languages and Systems, 9(3), July
1987.

[14] J. Palsberg, and P. Orbek. Trust in the�-calculus. InProc.
2nd International Symposium on Static Analysis, pages
314–329, September 1995.

[15] C. Pfleeger, S. Pfleeger and M. Theofanos. A methodology
for penetration testing.Computers and Security, 8(7):613–
620, 1989.

[16] S. Horwitz, T. Reps and D. Binkley. Interprocedural slicing
using dependence graphs.ACM Transactions on Program-
ming Languages and Systems, 12(1):26–60, January 1990.

[17] C. Rutstein. Guide to Windows NT Security: A Practical
Guide to Securing Windows NT Servers & Workstations.
McGraw-Hill, 1997.

[18] A. Aho, R. Sethi and J. D. Ulman.Compilers Principles,
Techniques, and Tools. Addison-Wesley Publishing Com-
pany, 1986.

[19] M. Shapiro and S. Horwitz. Fast and accurate flow-
insensitive points-to analysis. InPOPL, Paris, France, 1997.

[20] B. Steensgaard. Points-to analysis in almost linear time. In
POPL, St. Petersburg FLA, 1996.

10

