
REQUIREMENTS-BASEDACCESS CONTROLANALYSIS

AND POLICY SPECIFICATION

by Qingfeng He

ADissertation Submitted to the Graduate Faculty of

North Carolina State University

In Partial Fulfillment of the

Requirements for the Degree

of Doctor of Philosophy

(Under the direction of Dr. Ana (Annie) I. Anton.)

North Carolina State University, 2005

Abstract

HE, QINGFENG. Requirements-Based Access Control Analysis and Policy Specification. (Under

the direction of Dr. Ana (Annie) I. Antón.)

Access control is a mechanism for achieving confidentiality and integrity in software systems.

Access control policies (ACPs) define how access is managed and the high-level rules of who can

access what information under certain conditions. Traditionally, access control policies have been

specified in an ad-hoc manner, leaving systems vulnerable to security breaches. ACP

specification is often isolated from requirements analysis, resulting in policies that are not in

compliance with system requirements. This dissertation introduces the Requirements-based

Access Control Analysis and Policy Specification (ReCAPS) method for deriving access control

policies from various sources, including software requirements specifications (SRS), software

designs, and high-level security/privacy policies. The ReCAPS method is essentially an analysis

method supported by a set of heuristics and a software tool: the Security and Privacy

Requirements Analysis Tool (SPRAT). The method was developed in two formative case studies

and validated in two summative case studies. All four case studies involved operational systems,

and ReCAPS evolved as a result of the lessons learned from applying the method to these case

studies. Further validation of the method was performed via an empirical study to evaluate the

usefulness and effectiveness of the approach. Results from these evaluations indicate that the

process and heuristics provided by the ReCAPS method are useful for specifying database-level

and application-level ACPs. Additionally, ReCAPS integrates policy specification into software

development, thus providing a basic framework for ensuring compliance between different levels

of policies, system requirements and software design. The method also improves the quality of

requirements specifications and system designs by clarifying ambiguities and resolving conflicts

across these artifacts.

ii

Dedicated to my mom in heaven,

your heart and soul will always be with me;

to my dad;

and to my wife Juanli.

iii

Biography

Qingfeng He was born in Hubei, China on September 12, 1976. He received the Bachelor of

Engineering degree in Electrical Engineering and Automation in 1998 and the Master of

Engineering degree in Pattern Recognition and Intelligent Systems in 2001, both from Tsinghua

University in China. He entered the doctoral program in the Department of Computer Science at

North Carolina State University’s College of Engineering in 2001, where he was a member of

The Privacy Place research group and a member of the Cyber Defense Lab. Qingfeng He was

selected as one of the three graduate students in the United States to receive the prestigious

CISCO Systems Information Assurance Scholarship in Spring 2005. He was also awarded a U.S.

Department of Homeland Security I3P post-doctoral fellowship at Purdue University, which he

declined in order to remain in North Carolina with his family. Qingfeng He received his Doctor

of Philosophy degree in Computer Science in 2005 from North Carolina State University. He was

a member of the Association of Computing Machinery (ACM) and the Institute of Electrical and

Electronic Engineers (IEEE). Qingfeng He and his wife, Juanli Guo, were married in 2001. They

were expecting their first child in November 2005.

iv

Acknowledgements

This dissertation would not have been possible without the help and support of many people

over many years. I must begin by thanking my Ph.D. advisory committee members: in particular,

my advisor Dr. Annie Antón. She not only taught me how to be a good researcher, but also taught

me how to be a better person. I feel very fortunate and appreciative to have her as my advisor. Dr.

Ting Yu has served as a very active committee member and has given me invaluable personal and

research guidance. Sincere thanks are also extended to my two other committee members, Dr.

Julie Earp and Dr. Laurie Williams, as well as Dr. Purush Iyer, Dr. Peng Ning and Dr. Peter

Wurman for their support during my tenure at North Carolina State University (NCSU).

The work presented in this thesis would not have been possible without the support of the

National Science Foundation (NSF) via three grants: Information Technology Research (ITR)

grants #0113792 and #0325269, and Digital Government (DG) grant #0131886.

Many thanks to Graduate Program Director (GDP), Dr. David Thuente and former GDP, Dr.

Edward Davis, both have guided me through my graduate studies at NCSU.

Two professors in the NCSU College of Management deserve a special acknowledgement.

Dr. Michael Rappa is a truly inspirational individual who has profoundly influenced me, and Dr.

David Baumer has been very supportive of my research and my career.

I’ve been fortunate to benefit from interactions with professors at other institutions who have

provided me with research feedback and career guidance: Dr. Colin Potts, Dr. Eugene H.

Spafford, Dr. Steve Fickas, and Prof. Jonathan Moffett. A special thanks to Dr. Colin Potts for his

active role in my research projects over the course of the past four years and for his guidance

during my empirical research work.

I wish to thank Calvin Powers of IBM Tivoli for his timely feedback on my papers and his

support during my job search.

v

Special thanks are given to Dr. Thomas Honeycutt and David Wright for allowing me to

conduct an empirical study in their course, and to the Fall 2004 and Spring 2005 NCSU graduate

students who participated.

The Transnational Digital Government (TDG) project team, especially Dr. Jose Fortes, Dr.

Stanley Su, Manjiri Patil, Charles McSweeny and Pedro Taveras, contributed to the TDG case

study as active collaborators.

Former and current members of The Privacy Place research group have been exceptional

colleagues: William Stufflebeam, Davide Bolchini, Neha Jain, Jack Frink, Matthew Vail, Carrie

Gheen, Hai Yuan, Keith Irwin, Bharathy Sethumadhavan, Paul Otto, Laurie Jones, and Travis

Beaux. Paul and Laurie helped me further validate the ReCAPS method and evaluate the SPRAT

as participants in the Event Registration System (ERS) case study. I also wish to thank my office

mates: Mark Sherriff, Lucas Layman, Sarah Smith, and my former office mate and companion

along the same path: Nachiappan Nagappan.

Sincere thanks are given to the NCSU Computer Science Department staff. In particular, Fay

Ward was a helpful thesis proofreader, and the following individuals provided administrative and

technical support: Margery Page, Vilma Berg, Ginny Adams, Carlos Benavente, Jason Corley,

Ron Hartis, Carol Holloman, Missy Seate, and Charlene Lassiter.

My parents, who raised me to be the person I am today, deserve the most acknowledgement.

Finally, I thank my beloved wife, Juanli, for understanding, supporting, and loving me.

vi

Table of Contents

List of Figures... x

List of Tables ..xii

List of Abbreviations ..xiv

Glossary...xvii

Chapter 1 Introduction .. 1

1.1 Research Context .. 2

1.2 Data Security and Privacy: A Healthcare Scenario ... 3

1.3 Access Control Analysis and Policy Specification.. 5

1.4 Motivation of This Work and Problem Statement... 7

1.5 Overview of This Work.. 10

1.6 Research Methodology and Classification... 11

1.7 Overview of Remaining Chapters .. 16

Chapter 2 Background and Related Work.. 17

2.1 Requirements Engineering (RE) .. 17

2.1.1 Classification of Requirements Engineering Research Efforts............................... 18

2.1.2 Goal-Based Requirements Analysis ... 20

2.1.3 Scenario-Based Requirements Analysis... 24

2.1.4 From Requirements Analysis to Software Design ... 25

2.2 Security Requirements Engineering... 26

2.2.1 Security and Privacy Requirements Analysis .. 27

2.2.2 Access Control Analysis in Requirements Engineering .. 28

2.3 Access Control in Security ... 31

2.3.1 Access Control .. 32

2.3.2 Access Control Policies.. 33

2.3.3 Elements of Access Control Policies.. 33

2.3.4 Current Research Efforts on Access Control Policy Specifications 35

2.3.5 Role Engineering .. 36

2.4 Security and Privacy Policy Analysis and Specification... 37

2.4.1 Policy Specification Languages ... 37

vii

2.4.2 Security Policy Analysis ... 41

2.4.3 Privacy Policy Analysis.. 44

2.5 Summary ... 46

Chapter 3 Formative Case Studies ... 48

3.1 Security and Privacy Requirements Analysis Tool (SPRAT)... 49

3.1.1 Methodology and Case Study Artifacts.. 50

3.1.2 Lessons Learned ... 52

3.1.3 Results ... 61

3.2 Transnational Digital Government (TDG)... 62

3.2.1 Methodology and Case Study Artifacts.. 63

3.2.2 Lessons Learned ... 64

3.2.3 Results ... 69

3.3 Summary ... 70

Chapter 4 Requirements-based Access Control Analysis and Policy Specification............... 72

4.1 Overview of ReCAPS... 73

4.1.1 An ICOM Model of ReCAPS .. 73

4.1.2 Assumptions .. 75

4.1.3 Design Principles.. 75

4.1.4 Activities.. 76

4.2 Analysis Process and Heuristics... 78

4.2.1 Preparation ... 79

4.2.2 Access Control Rule Identification & Specification.. 80

4.2.2.1 Identifying Objects ... 84

4.2.2.2 Identifying Subjects and Actions ... 86

4.2.2.3 Identifying Conditions.. 92

4.2.2.4 Identifying Obligations... 102

4.2.2.5 Summary ... 104

4.2.3 Access Control Rules Refinement... 104

4.2.3.1 Identifying and Removing Redundancies.. 105

4.2.3.2 Identifying and Resolving Conflicts .. 107

4.2.4 Grouping AC Rules into ACPs... 109

4.2.5 Summary.. 112

4.3 Tool Support ... 113

4.3.1 Overview ... 113

viii

4.3.2 ACP Specification Module ... 116

4.3.3 Design and Implementation.. 123

4.4 Summary ... 124

Chapter 5 Validation .. 125

5.1 Surry Arts Council (SAC) Web Enhancement .. 127

5.1.1 Methodology and Case Study Artifacts.. 128

5.1.2 Lessons Learned ... 129

5.1.3 Summary and Discussion ... 134

5.2 NCSU College of Management Event Registration System... 136

5.2.1 Methodology and Case Study Artifacts.. 137

5.2.2 Lessons Learned ... 139

5.2.3 Summary and Discussion ... 147

5.3 An Empirical Evaluation of ReCAPS.. 149

5.3.1 Experimental Method ... 150

5.3.2 Results ... 157

5.3.2.1 Quality of Access Control Policies .. 160

5.3.2.2 Improvements to Source Documents ... 165

5.3.2.3 Time Effort.. 166

5.3.3 Summary and Discussion ... 168

5.4 Summary ... 171

Chapter 6 Conclusions .. 173

6.1 Chapter Synopsis .. 174

6.2 Summary of Contributions ... 175

6.3 Current Limitations and Plans for Future Work .. 178

6.4 Conclusions... 181

Appendix A Summary of ReCAPS Analysis Activities.. 182

Appendix B Summary of ReCAPS Heuristics .. 183

Appendix C Evolution of the ReCAPS Method .. 188

C.1 ReCAPS Method Summary Version 1 (Pre-SPRAT)... 188

C.2 ReCAPS Method Summary Version 2 (Pre-TDG)... 189

C.3 ReCAPS Method Summary Version 3 (Pre-SAC) ... 194

C.4 ReCAPS Method Summary Version 4 (Pre-ERS).. 202

ix

Appendix D Experimental Instrumentation for Empirical Study.. 203

D.1 NCSU Informed Consent Form for Research... 203

D.2 ReCAPS Group Assignment Description and Worksheets .. 205

D.3 Control Group Assignment Description and Worksheets .. 216

Bibliography ... 224

x

List of Figures

Figure 1.1 Access Control in a Real-World Healthcare Scenario... 4

Figure 1.2 Policy Hierarchy and Software Development Process .. 8

Figure 1.3 The ReCAPS Approach for Specifying Access Control Policies 11

Figure 2.1 A Six-Dimentional View of RE Research Efforts ... 18

Figure 3.1a Scenario Analysis in the TDG Case Study... 66

Figure 3.1b Scenario Analysis in the TDG Case Study... 67

Figure 4.1 ReCAPS ICOM Model ... 74

Figure 4.2 ReCAPS Analysis Activities .. 77

Figure 4.3 A Misuse Case for Project Manager... 98

Figure 4.4 Purpose Hierarchy for Marketing... 100

Figure 4.5 Elements Maintained in the SPRAT... 114

Figure 4.6 SPRAT Screen Shot for ACR Identification.. 117

Figure 4.7 SPRAT Screen Shot for Creating a New Subject .. 118

Figure 4.8 SPRAT Screen Shot for Viewing Source Detail.. 118

Figure 4.9 SPRAT Screen Shot for Refining ACRs.. 119

Figure 4.10 SPRAT Screen Shot for Viewing ACRs .. 120

Figure 4.11 SPRAT Screen Shot for Editing ACRs .. 121

Figure 4.12 SPRAT Screen Shot for Editing an Action .. 121

Figure 5.1 Evaluation of a Subject's Rule Set.. 159

Figure 5.2 Number of Rules Identified by Each Subject that Were Also Identified by the

Experts.. 161

Figure 5.3 Number of False Positive Rules Identified by Each Subject....................................... 161

Figure 5.4 Number of Rules with Ambiguous Actions/Objects Identified by Each Subject....... 162

Figure 5.5 Number of Rules with Every Element Correctly Specified by Each Subject............. 163

Figure 5.6 Formula to Calculate the Percentage of Rules in Each Category................................ 163

Figure 5.7 Percentage of Rules with Conditions Incomplete or Incorrectly Specified 164

Figure 5.8 The ReCAPS Group Provided Better Traceability Support than the Control Group

.. 165

xi

Figure 5.9 Time Spent on the Experiment by Each Subject.. 166

Figure 5.10 Correlation Analysis Shows There is No Correlation between the Effort and the

Results in all Subjects .. 167

Figure 5.11 Correlation Analysis Shows There is No Correlation between the Time Effort and

the Results in both ReCAPS and Control Group .. 167

Figure 6.1 Traceability Support in ReCAPS.. 177

Figure C.1 The Process of Access Control Analysis... 195

xii

List of Tables

Table 1.1 Shaw's Characterizations of Software Engineering Research Settings [Sha01] 14

Table 1.2 Shaw's Characterizations of Software Engineering Research Approaches and

Products [Sha01] .. 14

Table 1.3 Shaw's Characterizations of Software Engineering Research Validation Techniques

[Sha01] ... 15

Table 2.1 Purposes Defined in P3P1.1 [P3P05] .. 39

Table 2.2 Primary Purposes Defined in P3P1.1 [P3P05] .. 40

Table 2.3 Recipients Defined in P3P1.1 [P3P05].. 41

Table 3.1 An Example Access Control Matrix in the SPRAT Case Study 51

Table 3.2 An Example Traditional Access Control Matrix... 52

Table 3.3 Scenario Analysis for SPRAT Requirement FR-PM-3... 58

Table 3.4 Summary of the SPRAT Case Study Results .. 62

Table 3.5 Summary of the TDG Case Study Results .. 70

Table 3.6 Inconsistencies Identified in the TDG Case Study.. 71

Table 4.1 Mapping between ACP Elements and Requirements Specification Elements............... 80

Table 4.2 Scenario Analysis for SPRAT Requirement FR-PM-3... 89

Table 4.3 Subjects and Actions Identified from SPRAT Requirement FR-PM-3.......................... 89

Table 4.4 Scenario Analysis for SPRAT Requirement FR-GSM-3.. 91

Table 4.5 Actors and Actions Identified from SPRAT Requirement FR-GSM-3.......................... 92

Table 4.6 Access Control Rules Derived from the Misuse Case .. 98

Table 4.7 Grouping Access Control Rules into a Policy to Resolve Conflicts 108

Table 4.8 ACPs for Role (System Admin) in the SPRAT Case Study... 111

Table 5.1 Scenario Analysis for SAC Requirement FR1.4 ... 132

Table 5.2 Rule #1 and Rule #2 in the SAC Case Study .. 134

Table 5.3 Summary of the SAC Case Study Results... 135

Table 5.4 Heuristic Usage Frequency in the SAC Case Study ... 136

Table 5.5 Rule #50 and Rule #70 in the ERS Case Study... 140

Table 5.6 Source Detail for Rule #50 and Rule #70.. 141

xiii

Table 5.7 Rule #60 and Rule #62 in the ERS Case Study... 144

Table 5.8 Rule #49 and Rule #75 in the ERS Case Study... 145

Table 5.9 Rule #65 and Rule #78 in the ERS Case Study... 146

Table 5.10 Source Detail for Rule #65 and Rule #78.. 146

Table 5.11 Rules #76, #77, #78 in the ERS Case Study.. 147

Table 5.12 Summary of the ERS Case Study Results ... 148

Table 5.13 Heuristics Usage Frequency in the ERS Case Study .. 149

Table 5.14 Class Distribution of the Subjects Who Participated in the Experiment...................... 152

Table 5.15 Knowledge Background of the Subjects Who Participated in the Experiment............ 153

Table 5.16 Summary of the Empirical Evaluation Results ... 160

Table B.1 ReCAPS Heuristics for Identifying AC Scope (Step 2)... 183

Table B.2 ReCAPS Heuristics for Identifying Objects (Step 2.1) .. 183

Table B.3 ReCAPS Heuristics for Identifying Subjects and Actions (Step 2.2) 184

Table B.4 ReCAPS Heuristics for Identifying Conditions (Step 2.3)... 185

Table B.5 ReCAPS Heuristics for Identifying Obligations (Step 2.4) ... 186

Table B.6 ReCAPS Heuristics for Specifying AC Rules (Step 2) .. 186

Table B.7 ReCAPS Heuristics for Identifying and Removing Redundancies (Step 3.2)............. 187

Table B.8 ReCAPS Heuristics for Identifying and Resolving Conflicts (Step 3.3) 187

Table B.9 ReCAPS Heuristics for Grouping AC Rules in ACPs (Step 3.4) 187

Table C.1 Example ACP from the SPART Case Study .. 202

xiv

List of Abbreviations

AC Access Control

ACP Access Control Policy

ACR Access Control Rule

ALP Application-Level Policy

ASL Authorization Specification Language

AWRE Australian Workshop on Requirements Engineering

BFM Boundary Flow Modeling

BIA Border Immigration Agent

CASE Computer-Aided Software Engineering

CoM College of Management

COPPA Children’s Online Privacy Protection Act

DAC Discretionary Access Control

DLP Database-Level Policy

DR Dominican Republic

EPAL Enterprise Privacy Authorization Language

E/R Entity/Relationship

ERS Event Registration System

FIP Fair Information Practice

FR Functional Requirement

FTC Federal Trade Commission

GBRAM Goal-Based Requirements Analysis Method

GLBA Gramm-Leach-Bliley Act

GQM Goal-Question-Metric

xv

HIPAA Health Insurance Portability and Accountability Act

HRU Harrison-Ruzzo-Ullman

ICOM Inputs-Controls-Outputs-Mechanisms

ICSE International Conference on Software Engineering

IFIP International Federation for Information Processing

IRB Institutional Review Board

JDBC Java DataBase Connectivity

KAOS Knowledge Acquisition in AutOmated Specification

MAC Mandatory Access Control

MEM Multilateral Evaluation Mechanism

NCSC National Computer Security Center

NCSU North Carolina State University

NFR Non-Functional Requirement

NSF National Science Foundation

OAS Organization of American States

OCL Object Constraint Language

OECD Organization for Economic Cooperation and Development

P3P The Platform for Privacy Preferences Project

PGMT Privacy Goal Management Tool

PHI Protected Health Information

POE Point-Of-Entry

RBAC Role-Based Access Control

RE Requirements Engineering

ReCAPS Requirements-based Access Control Analysis and Policy Specification

REFSQ International Workshop on Requirements Engineering: Foundation for Software

Quality

xvi

SAC Surry Arts Council

SD Strategic Dependency

SEI Software Engineering Institute

SMaRT Scenario Management and Requirements Tool

SPRAT Security and Privacy Requirements Analysis Tool

SR Strategic Rationale

SRS Software Requirements Specifications

TDG Transnational Digital Government

UML Unified Modeling Language

W3C World Wide Web Consortium

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

xvii

Glossary

Access control. Access control ensures that every access to a system and its resources is

controlled according to a set of predefined policies. It is one of the major security mechanisms

used to achieve confidentiality, integrity and privacy in software systems. An access control

system is typically described in three ways: access control policies, models, and mechanisms.

Access control mechanism. Access control mechanisms define the low-level functions that

implement the controls imposed by access control policies. The mechanism must work as a

reference monitor, a trusted component intercepting each and every request to the system.

Access control model. Access control models formally represent an access control system.

They provide ways to reason about the policies they support and prove the security properties of

the access control system. Access control models provide a level of abstraction between policies

and mechanisms, enabling the design of implementation mechanisms to enforce multiple policies

in various computing environments.

Access control policy. Access control policies are security requirements that describe how

access is managed, what information can be accessed by whom, and under what conditions that

information can be accessed. These policies are enforced via a mechanism that mediates access

requests and makes grant/deny decisions. In this dissertation, access control policies are

comprised of access control rules that are specified in a structured format.

Access control rule. A typical access control rule in this dissertation is expressed as a 5-

tuple <subject, object, action, condition, obligation>, such that a subject can perform some action

on an object. Additionally, each access control rule has a mode (e.g., allow/deny/refrain/oblige).

xviii

Action. An action is a simple operation (e.g. read or write) or an abstract operation (e.g.

deposit or withdraw) performed by an agent.

Affiliation constraints. Affiliation constraints specify a subject’s corporate, organizational,

or group affiliation.

Attribute constraints. Attribute constraints specify a subject must possess some attribute

(e.g., digital certificates)) for an access request to be granted.

Authentication constraints. Authentication constraints reflect the need for a subject to be

authenticated before data access can be granted.

Condition. A condition is a provision that must be satisfied before an access request can be

granted.

Confidentiality. Confidentiality means that information is not disclosed to unauthorized

persons, processes or devices.

Consent constraints. Consent constraints require a subject to acknowledge consent for their

information to be used in some specific way or purpose before data access can be granted for that

purpose.

Contextual constraints. Contextual constraints reflect the need to consider the context of an

access request when making grant/deny decisions, such as the time of the access request or the

location from which the access request is made.

Database constraints. Database constraints specify restrictions on a database access

request, such as when there can be no duplicate entry in a table.

xix

Goal. Goals are targets for achievement and high-level objectives of a business, organization

or system. They express the rationales for the proposed system and serve as high-level

expressions of the system requirements and/or policies.

Integrity. Integrity means that unauthorized persons, processes or devices cannot modify

information.

Location constraints. Location constraints specify a particular location from which the

subject can be granted access to a resource.

Misuse case. A misuse case is a use case from the point of view of an actor with hostile

intent.

Object. An object is an entity, such as a data field, table, procedure or application to which

access is restricted.

Obligation. An obligation is a task that must be fulfilled if a request to access an object is

granted.

Privacy. Privacy implies that data is protected so that it is used only for authorized business

purposes, based on legal requirements, corporate policies and end-user choices.

Privacy constraints. Privacy constraints specify restrictions to data access requests in

which the data are particularly sensitive (e.g., medical history, financial data).

Purpose constraints. Purpose constraints specify that data can be used only for specific

purposes.

Recipient constraints. Recipient constraints specify which group of people can access the

specified data.

xx

Relationship constraints. Relationship constraints specify a specific relationship between

the subject and the object for an access request.

Requirement. A requirement defines capabilities that a system must provide in order to

satisfy stakeholders’ goals. Requirements can be classified as either functional requirements,

which describe the functional aspects of a system, or non-functional requirements, which describe

the properties, attributes, and constraints under which a system must operate.

Scenario. A scenario is comprised of a sequence of events that describe possible ways for

users to interact with a system.

Security constraints. Security constraints specify restrictions that are based on general

security principles such as least privileges and separation of duties.

Stakeholder. A stakeholder is anyone who claims an interest in a system, such as system

developers, sponsors, end-users, and customers.

State constraints. State constraints limit data access based upon the reaching of some

specific state within the system.

Subject. A subject is an entity, such as a user or program agent that may access objects.

Temporal constraints. Temporal constraints specify time or date related restrictions that

must be enforced before data access can be granted.

Usage constraints. Usage constraints specify restrictions on how a subject may access the

requested object, such as the number of times the subject can access the object.

xxi

Use case. A use case is a notation for modeling users’ interactions with an existing or

envisioned system, the description details the interaction using a sequence of events. In this

dissertation, use cases and scenarios are used synonymously.

1

Chapter 1

Introduction

Well begun is half done.

—Chinese Proverb

The research in this dissertation is aimed at improving information system security during

the early stages of the software development process, namely, requirements analysis and software

design. Data security and privacy is important in every software system, but particularly

vulnerable in critical infrastructure systems such as medical, immigration, and financial

information systems. Specifying correct policies to control users’ access to a system and its

resources is critical for protecting data security and privacy. It is important to specify access

control policies during software development so that security can be built into software products

as advocated in this dissertation. However, there has been little reported work [SMJ01] in helping

software and security engineers specify access control policies (ACPs) for information systems.

ACP specification is often performed in an ad-hoc manner by security engineers, leaving systems

vulnerable to security and privacy breaches. Additionally, ACP specification is typically isolated

from requirements analysis and software design, a practice that could result in policies that are

not in compliance with system requirements. The primary focus of this work is to formulate and

validate a method that is useful for specifying ACPs, bringing policies and requirements into

better alignment. Specifically, the Requirements-based Access Control Analysis and Policy

Specification (ReCAPS) method detailed in this dissertation integrates policy specification into

software development and provides procedural support for specifying access control policies for

information systems. The objective of this chapter is to establish the context for this research.

2

This chapter is structured as follows. Section 1.1 introduces the research context of this

work. Section 1.2 provides a healthcare scenario to illustrate the role of access control in

protecting data security and privacy. Section 1.3 briefly summarizes access control and current

policy specification research and practices in the software development process. Section 1.4

introduces the motivation for this work and summarizes the problem statement. Section 1.5

overviews the work presented in this dissertation. Section 1.6 summarizes the research

methodology and classifies this work within the context of software engineering research. Section

1.7 provides an overview of the remaining chapters.

1.1 Research Context

This work is situated in the areas of software engineering and information security.

Specifically, this work addresses security and privacy problems during the early stages of the

software development process, i.e., requirements analysis and software design.

Software engineering refers to the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software [IEE93]. Requirements

engineering (RE) is the process of discovering real-world goals for which a software system is

intended by identifying stakeholders and their needs, identifying the functions of and constraints

on the intended system, and documenting these in a form that is amenable to analysis,

communication, and subsequent implementation [NE00]. Example RE activities include

requirements elicitation, analysis, modeling, elaboration, specification, negotiation, prototyping,

prioritization, reasoning, and validation.

Requirements engineering is a challenging and important phase in software development.

Brooks claims that establishing detailed technical requirements is the hardest single part of

building a software system [Bro87]. If the work of requirements analysis is not performed

correctly, the errors will cripple the resulting software products and are very difficult to rectify

3

later. The cost of repairing requirements errors increases significantly if these errors are not

detected and corrected until a later phase in software development [Boe81]. The later a problem is

found during software development, the more expensive it is to fix the problem.

Information security concerns the protection of information against unauthorized

disclosure, transfer, modification, or destruction, whether accidental or intentional [ANS01].

Information privacy concerns the ability for individuals, groups and institutions to determine for

themselves when, how and to what extent information about them is communicated to others

[Wes67].

The work presented in this dissertation involves developing and applying RE methodologies

to analyze access-related system requirements (including functional requirements, security and

privacy requirements) and high-level security/privacy policies and to specify them as access

control policies for enforcement so that a sufficient degree of security and privacy assurance to

meet the needs of stakeholders may be achieved.

1.2 Data Security and Privacy: A Healthcare Scenario

Data security and privacy is an important part of information security. As the Internet and e-

commerce have prospered, the security and privacy of personal data has become of increasing

concern to consumers, developers, and legislators. Security and privacy violations are

increasingly disclosed via the Internet, TV, newspaper and other media, such as the ChoicePoint

[Cho04] and JetBlue [AHB04] cases. Legislative acts in the U.S. and Europe (e.g., the Health

Insurance Portability and Accountability Act (HIPAA) for healthcare [HIP96], the Gramm-

Leach-Bliley Act (GLBA) for financial institutions [GLB01], the Children’s Online Privacy

Protection Act (COPPA) [COP98], and the European Union’s Data Protection Directive

[DPD97]) require companies and organizations to protect consumers’ data security and privacy.

4

According to a 2002 research report by the Gartner Group, 70% of cases involving

unauthorized information access are committed by insiders or people given access to a company’s

network resources [Bro02]. The average cost of insider attack ($2.7M) is significantly higher than

the average cost of outside attack ($57K) [CSI02]. More recently, according to the 2004 E-Crime

Watch Survey, unauthorized access by an insider is ranked fourth (36%) in the Types of

Electronic Crimes list—after virus and other malicious code (77%), denial of service attack

(44%), and illegal generation of SPAM emails (38%) [CSO04]. All these data show that it is very

important to have better security policies to control users’ access to a system and its resources.

To obtain a better understanding of the role of access control in protecting data security and

privacy, we examine the following real-world scenario in the healthcare domain (see Figure 1.1).

Consider a patient who goes to a hospital to see a doctor. For the purpose of this scenario, we

assume this is a female patient. The general patient visit process is as follows. She checks in at

the front desk. The receptionist at the front desk requires her insurance card or some other ID to

check her in. Then she goes through nurses and interns to finally meet the doctor. All these

people have direct access to her medical information. After the meeting and diagnosis, the doctor

PHI

Pharmacist

Pharmaceutical

company

Staff

Physician

Insurance

company

Patient

Intern

Nurse

Employer

Family

Figure 1.1 Access Control in a Real-World Healthcare Scenario

5

gives her a prescription, and she goes to the pharmacy to pick up the medicine. During this

process, from front desk check-in to medicine pick-up at the pharmacy, there are many people

who need to access the patient’s personal information, which is often called PHI (protected health

information). Additionally, outside the hospital we have other actors, such as the patient’s family

members or her insurance company who may need to access her personal information.

A major security challenge in this scenario is, given such a complex system, how can we

specify correct and complete policies for each actor who needs to access PHI? For example,

consider the following two cases:

Case 1: The hospital is a university hospital. The patient’s doctor happens to be a faculty

member in the university’s medical school. Because the patient’s case is very special, the doctor

decides to use this case in a class he is teaching. What part of this information can he share? If

this sharing is allowed under certain conditions, what are the conditions? Are there any

obligations for the doctor after the information access?

Case 2: The patient’s case is very complicated, and his doctor decides to exchange some

ideas with an expert in this field, a doctor at another hospital. What kind of information can the

doctor share with the expert?

The above cases concern the security and privacy of medical data. The purpose of answering

the above questions is to specify correct and complete access control policies for each user in the

system, which is critical for protecting data security and privacy. The work presented in this

dissertation provides systematic methodological support for specifying access control policies.

1.3 Access Control Analysis and Policy Specification

The function of access control (AC) is to ensure that every access to a system and its

resources is controlled according to a set of predefined policies [SV01]. Access control is one of

6

the major security mechanisms used to achieve confidentiality, integrity and privacy in software

systems [FKC03]. We use these terms as follows:

! Confidentiality means that information is not disclosed to unauthorized persons,

processes or devices.

! Integrity means that unauthorized persons, processes or devices cannot modify

information.

! Privacy implies that data is protected so that it is used only for authorized business

purposes, based on legal requirements, corporate policies and end-user choices.

An access control system is typically described in three ways: access control policies,

models, and mechanisms [SV01]. Access control policies are security requirements that describe

how access is managed, what information can be accessed by whom, and under what conditions

that information can be accessed [FKC03]. These policies are enforced via a mechanism that

mediates access requests and makes grant/deny decisions. Access control models provide a formal

representation of an access control system. They provide ways to reason about the policies they

support and prove the security properties of the access control system. Access control models

provide a level of abstraction between policies and mechanisms, enabling the design of

implementation mechanisms to enforce multiple policies in various computing environments. The

access control mechanism defines the low-level functions that implement the controls imposed by

the policies. The mechanism must work as a reference monitor [SV01], a trusted component

intercepting each and every request to the system.

Access control analysis entails analyzing system requirements, organizational security and

privacy policies, and organizational structures to specify access control policies. Defining access

control policies is both a conceptually and practically complex process because software systems

can have many users performing various tasks and many resources that need to be protected

[Sch00, SMJ01]. Organizational complexity presents another challenge—it is difficult to identify

and agree upon a common set of roles and associated permissions within an organization that may

7

have hundreds of roles to be considered. In practice, ACP specification is often conducted

without prescriptive guidance [CIN03, SL02], leaving systems vulnerable to security and privacy

breaches. There is a need for systematic procedural support for specifying access control policies.

The specification of access control policies for information systems is the focus of this

dissertation. Access control policies are derived from and must comply with security

requirements. Thus, the ACP specification process is basically a requirements engineering

process. Moffett et al. define security requirements as constraints on functional requirements that

are needed to achieve security goals [MHN04]. Ideally, security requirements are analyzed and

specified before system design rather than as an afterthought [AE01]. These security

requirements should drive ACP specification activities, but policy specification efforts often

occur after systems are designed and deployed [CIN03]. Because policy specification efforts are

often isolated from requirements analysis, the resulting ACPs and requirements may not be

compliant with one another—a situation that the method described in this dissertation seeks to

avoid.

Researchers recognize the need to bridge the gap between requirements engineering (RE)

and complex ACP specification [CIN03, Fon01, HA03]. Existing RE approaches (e.g., KAOS

[DLF93], i* [Yu93] and the analytical role modeling framework [CIN03]) provide limited

support, as we discuss in Chapter 2. The goal of this dissertation is to develop a method for ACP

specification that provides proscriptive guidance and better aligns policies and system

requirements.

1.4 Motivation of This Work and Problem Statement

This work is motivated by the observation that policies and requirements are often

misaligned [AE01, AEP01, AEC03], resulting in security and privacy violations. The policies

referred to here could be high-level policies or access control policies. Requirements and high-

8

level policies are very similar. They both express desire or worth rather than fact. Their

statements are in optative mood, specifying what must or ought to be done. These are the

differences between high-level policies and requirements: (1) Policies are more open-ended than

requirements in that policies often describe general and high-level goals; whereas requirements

are specific, unambiguous and verifiable. (2) The scope of policies is broader than requirements

in that requirements cover one system, whereas policies often govern several systems [AEP01].

To better understand the motivation for this work, we examine policy hierarchy and software

development, as shown in Figure 1.2. On the left side of this figure, there are different kinds of

policies that are specified in different languages. The policy levels shown in Figure 1.2 are

different from the policy hierarchies defined by Moffett and Sloman [MS93]. Moffett and Sloman

define several relationships that may exist between different levels of policies, such as partitioned

targets, goal refinement, delegation of responsibility. We classify policies according to the form

of expression. Policies at the top level are stated in natural language; examples include website

privacy policies, corporate security policies, and security and privacy laws. These policies are

specified by lawmakers or administrative personnel within an organization, such as security and

privacy officers. Policies at the middle level are specified in declarative or semi-structured

languages, such as Ponder [Dam02] and XACML [OAS05]. These policies instantiate the high-

Software Development

Phases

Different Policy Levels

Security and Privacy Policies in Natural Language

Policies in Declarative or Semi-Structured

Languages

Policies in formal logic

Requirements Analysis

System Design (including

DB design)

Implementation

Figure 1.2 Policy Hierarchy and Software Development Process

9

level policies into rules that describe who has permission to access which object in a specific

system. These policies are often specified by system security administrators who manage users

and their privileges. The mid-level policies are the focus of this dissertation. Policies at the

bottom level are specified in formal logic such as Authorization Specification Language (ASL)

[JSS97] and Alloy [Jac02]. This kind of policy is often specified for analysis and verification

purpose by security specialists who investigate a system’s security properties using formal

methods.

On the right side, three software development phases are shown: requirements analysis,

system design, and implementation. Requirements analysis focuses on eliciting stakeholders’

objectives and specifying them as system requirements. Based on the requirements specification,

software designers develop an architectural design for the system, decompose the system into

functional modules, define the interfaces between modules, design data flows, generate pseudo

codes and test cases for the modules, and design the databases. Based on the requirements and

design specifications, software developers implement the system.

Traditionally, policy specification is isolated from requirements analysis and software

design, often resulting in either high-level policies that are not in compliance with system

requirements, or mid-level access policies that are not in compliance with system requirements.

In conclusion, the problem statement of this work may be summarized as this. Because ACP

specification is typically isolated from requirements analysis, the resulting policies often do not

comply with system requirements. This perpetuates the development of systems that neither

comply with the software requirements nor adequately protect the information with which they

are entrusted. Software and security engineers need methodological support for specifying ACPs

and ensuring compliance with software requirements as well as high-level policies.

10

1.5 Overview of This Work

The approach presented in this dissertation, Requirements-based Access Control Analysis

and Policy Specification (ReCAPS), integrates policy specification into the software development

process, as shown in Figure 1.3.

Moffett treats high-level policies as requirements and low-level policies as an

implementation of them [MHN04, Mof99]. We concur with this view. High-level security and

privacy policies should be specified as system requirements (either functional or non-functional

requirements). Mid-level policies are instances of high-level policies within a specific system’s

context. To specify these policies, we must examine system requirements to identify users and

their interactions with the system and examine system designs (e.g., database design) to identify

the data to be protected.

ACP specification is an iterative process. Although we derive policies from requirements

and design, we also improve requirements and design during ACP analysis, by clarifying

ambiguities in the requirements and resolving inconsistencies between the requirements and the

software design (shown as bidirectional arrows from mid-level policies to requirements analysis

and system design in Figure 1.3).

As previously mentioned, this dissertation focuses on the specification of mid-level policies

(shown as three bolded boxes in Figure 1.3). There are two major advantages in focusing on mid-

level policies. First, they are machine-enforceable, whereas natural languages policies are not.

Second, it is relatively easy for software and security engineers (referred to as “analyst(s)”

throughout this dissertation) to specify policies that meet organizational security goals using

declarative mid-level languages.

11

The major contribution of this approach is the software development scheme introduced in

this dissertation that ensures compliance across different levels of policies, system requirements,

and software designs by integrating policy specification with requirements analysis and software

design. The compliance is achieved in two ways. First, we derive access control policies from

system requirements and high-level security and privacy policies. Because security requirements

come from these sources, this development scheme helps ensure that a software system is actually

enforcing high-level security/privacy laws and policies. Second, we establish traceability links

between high-level policies, system requirements, and access control policies. This traceability

support helps ensure that any changes in the high-level policies can be easily traced to the

corresponding software development artifacts (e.g., requirements specifications, DB designs,

ACPs).

1.6 Research Methodology and Classification

The research methodology employed in this dissertation is a conventional software

engineering research methodology: the process of conceptualization, empirical exploration, and

validation. Before this study, there was no available procedural guidance for specifying access

Software Development

Phases

Different Policy Levels

Security and Privacy Policies in Natural Language

Access Control Policies in Declarative or Semi-

Structured Languages

Access Control Policies in Formal Logic

Requirements

Analysis

System Design

(including DB design)

Implementation

Figure 1.3 The ReCAPS Approach for Specifying Access Control Policies

12

control policies. The ReCAPS method was developed while analysts were performing qualitative

studies of actual development efforts on operational systems. Formative case studies were used to

develop the analysis process and heuristics, and summative case studies were used to validate

these ideas. The key distinction between formative and summative is that formative case studies

involve the development and evolution of the methods simultaneously coupled with validation,

whereas summative case studies involve the validation of previously developed methods. It is

important to note that the ReCAPS process and heuristics were constantly refined as a result of

the lessons learned from these case studies. To summarize the research methodology of this work,

we propose a method and try it out on real projects, then refine the method and validate it on real

projects. In this research, case studies play a critical role because they are used as the origin and

validation of the methodology.

We use Shaw’s classification of software engineering research paradigms in terms of

research settings, products/approaches and validation techniques [Sha01] to characterize the work

in this dissertation. The research settings of this work, according to Shaw’s characterizations

(Table 1.1), are feasibility, characterization, and methods/means. Some of the corresponding

questions are:

! Feasibility: is it possible to ensure compliance between access control policies, system

requirements, and high-level security/privacy policies?

! Characterization: what are the quality criteria for a set of access control policies?

! Method/Means: how can we specify access control policies for information systems?

! Method/Means: how is compliance between access control policies, system requirements

and high-level security/privacy policies ensured?

The research products of this work, according to Shaw’s characterizations (Table 1.2), are

descriptive models, techniques, and systems. The research products and approaches of this work

are:

13

! Descriptive models: to organize and report interesting observations from case studies;

! Descriptive models: to structure a problem area (i.e., how to specify ACPs for

information systems to ensure compliance), by establishing the relationships between

policy specification and software development;

! Descriptive models: to do a careful analysis of the ACP specification in several

information systems;

! Techniques: to invent new ways to specify correct access control policies for

information systems;

! Systems: to embody the research results in a software tool that supports the ReCAPS

method; and

! Systems: to use case studies as a source of insight and for validation of results.

The validation techniques used in this research, according to Shaw’s characterizations (Table

1.3), are:

! Persuasion, on the grounds of heuristics and examples presented in this dissertation;

! Implementation, of a software tool that supports the ReCAPS method;

! Evaluation, with respect to the effectiveness and usefulness of the approach in a

controlled environment, coupled with statistical analysis; and

! Experience, expressed as lessons learned from case studies.

14

Table 1.1 Shaw’s Characterizations of Software Engineering Research Settings

[Sha01]

Research Settings Sample Questions

Feasibility Is there an X, and what is it?

Is it possible to accomplish X at all?

Characterization What are the important characteristics of X?

What is X like?

What exactly do we mean by X?

What are the varieties of X, and how are they related?

Method/Means How can we accomplish X?

What is a better way to accomplish X?

How can we automate doing X?

Generalization Is X always true of Y?

Given Y, what will X be?

Selection How do I decide between X and Y?

Table 1.2 Shaw’s Characterizations of Software Engineering Research Approaches

and Products [Sha01]

Research Product Research Approach or Method

Qualitative or descriptive
model

Organize and report interesting observations

Create and defend generalizations from real examples

Structure a problem area

Formulate the right questions

Do a careful analysis of a system or its development

Technique Invent new ways to do some task

Develop a technique to choose among alternatives

System Embody the result in a system

Use the system development as both source of insight and carrier
of results

Empirical predictive model Develop predictive models from observed data

Analytic model Develop structural (quantitative or symbolic) models that permit
formal analysis

15

Table 1.3 Shaw’s Characterizations of Software Engineering Research Validation

Techniques [Sha01]

Validation Technique Character of Validation

Persuasion

 Technique

 Design

 Example

I have thought hard about this, and I believe that…

 …if you do it the following way, then…

 …a system constructed like this would

 …walking through this example shows how my idea works

Implementation

 System

 Technique

Here is a prototype of a system that…

 …exists in code or other concrete form

 …is represented as a set of procedures

Evaluation

 Descriptive model

 Qualitative model

 Empirical quantitative model

Given these criteria, here is how an object rates…

 …in a comparison of many objects

 …by making subjective judgments against a checklist

 …by counting or measuring something

Analysis

 Analytic formal model

 Empirical predictive model

Given the facts, these consequences…

 …are rigorous, usually symbolic, in the form of derivation

 and proof

 …are predicted by the model in a controlled situation

 (usually with a statistical analysis)

Experience

 Quantitative or descriptive

 model

 Decision criteria

 Empirical predictive model

I evaluate these results based on my experience and
observations about the use of the result in actual practice and
report my conclusions in the form of

 …prose narrative

 …comparison of systems in actual use

 …data on use in practice, usually with statistical analysis

16

1.7 Overview of Remaining Chapters

The rest of this dissertation is organized as follows.

Chapter 2 provides a survey of the related work in security and software engineering, to

position the work presented in this dissertation.

Chapter 3 presents two formative case studies that served as the conceptual origin for the

Requirements-based Access Control Analysis and Policy Specification (ReCAPS) method. The

discussion in this chapter justifies the heuristics presented in Chapter 4.

Chapter 4 details the ReCAPS method, focusing on the activities software and security

engineers (analysts) perform when employing the method. Guidelines and heuristics are also

presented to guide software and security engineers through the access control analysis. Examples

from two formative case studies are provided to elucidate the heuristics. A software tool—the

Security and Privacy Requirements Analysis Tool (SPRAT)—that supports ReCAPS is presented

in this chapter.

Chapter 5 discusses the validation efforts for the method presented in this dissertation: (1)

two summative case studies involving the specification of access control policies for a web-based

e-commerce system and an event registration system for the College of Management at North

Carolina State University, and (2) an empirical evaluation in which the method was applied to a

small system by individuals who were previously not familiar with the ReCAPS method.

Chapter 6 summarizes the contributions of the dissertation and future work that is needed to

further refine the method.

17

Chapter 2

Background and Related Work

One who knows the enemy and knows himself will not be in danger in a hundred battles.

—Sun Tzu

The work in this dissertation is interdisciplinary between software engineering (specifically

requirements engineering and software design) and information security. Researchers in the

security community and software engineering community have investigated access control and

policy specification from different angles. To position the work in this dissertation, some of the

most relevant previous work in both areas is briefly surveyed.

This chapter is structured as follows. Section 2.1 provides a brief summary of requirements

engineering (RE), goal-based, and scenario-based requirements analysis techniques. Section 2.2

surveys security requirements engineering and access control analysis in RE. Section 2.3 provides

some background information on access control and access control policies. Section 2.4 surveys

the current efforts in security and privacy policy analysis and specification. Section 2.5 concludes

this chapter.

2.1 Requirements Engineering (RE)

The process presented in this dissertation is an RE activity that attempts to bridge the gap

between requirements and design. Requirements engineering has developed into a relatively

mature branch in software engineering over the last 10-15 years. This is evidenced by a large

annual international RE conference since 1993, an RE journal founded in 1996, several regional

18

small workshops (e.g., REFSQ since 1994, AWRE since 1996), and an IFIP Working Group

founded in 1993 (IFIP WG 2.9: Software Requirements Engineering). An exhaustive survey of

this area is outside the scope of this dissertation. Readers can refer to [NE00, Zav97] for a

comprehensive summary of the RE literature. This section briefly explains what requirements

engineering is and then surveys previous work on goal-based and scenario-based requirements

analysis techniques, which are employed in this dissertation. Finally, this section summarizes

previous work on bridging the gap between requirements analysis and software design.

2.1.1 Classification of Requirements Engineering Research Efforts

Requirements analysis and specification is the first phase of the software development

process. Requirements engineering (RE) is the process of discovering real-world goals for which

a software system is intended by identifying stakeholders and their needs, identifying the

functions of and constraints on the intended system, and documenting these in a form that is

amenable to analysis, communication, and subsequent implementation [NE00].

Zave classifies RE research efforts according to problems and contributions to solutions

[Zav97]. To position the work in this dissertation, this section provides another way to classify

RE research efforts from six dimensions, as shown in Figure 2.1.

RE

1. RE Processes and activities

2. RE methods

3. RE objects and attributes4. Specific kinds of

requirements or requirements

for a specific domain

5. The interaction of RE

with other stages of the

software development

process

6. Others

Figure 2.1 A Six-Dimensional View of RE Research Efforts

19

Research efforts in the first dimension focus on the RE process and specific activities.

Example RE activities include requirements elicitation, analysis, modeling, elaboration,

operationalization, specification, negotiation, prototyping, prioritization, reasoning, and

validation. These activities can be roughly classified as either early-, middle-, or late-phase RE

activities according to the general sequence in which they occur during the requirements analysis

process. Early-phase RE activities focus on understanding the problem domain and eliciting

stakeholders’ goals. Late-phase RE activities focus on creating good software architecture and

design from requirements specifications. Other activities are scattered in the middle of this

process, such as modeling, specification, prioritization. As previously mentioned, the work in this

dissertation is a late-phase RE activity, which derives ACPs from requirements specifications and

aims to bridge the gap between requirements and design.

Research efforts in the second dimension focus on a specific RE method; for example, goal-

based techniques, scenario-based techniques, goal-scenario coupling, use cases, conceptual

modeling, formal specification languages, and formal methods. The work presented in this

dissertation employs goal-based, scenario-based and use case-based methods during the analysis

process.

Research efforts in the third dimension focus on a specific RE object or attribute. For

example, RE objects include functional behavior, intention and viewpoints of stakeholders, and

organizations. RE attributes include requirements changes, conflicts and inconsistencies,

traceability, evolution, volatility, reusability, social, cultural and cognitive factors of RE. The

work in this dissertation involves traceability.

Research efforts in the fourth dimension focus on a specific kind of requirements, such as

non-functional requirements, security and privacy requirements, or requirements for a specific

domain (e.g., safety-critical systems, web design, healthcare). The work in this dissertation

involves security and privacy requirements.

20

Research efforts in the fifth dimension focus on the interaction between RE and other stages

of the software development process, such as RE in agile development, requirements and

architecture, requirements and software design, requirements and testing, requirements and risk

analysis. The work in this dissertation bridges the gap between requirements and design.

All other RE research efforts fall in the sixth dimension, such as RE and business process

engineering, RE and strategic planning, tool support for RE, RE in practice, RE education, and

distributed RE. The work in this dissertation includes a software tool that supports our ACP

analysis methodology and techniques.

2.1.2 Goal-Based Requirements Analysis

Goals are targets for achievements [Ant97]. They are high-level objectives of a business, an

organization or a system. In requirements engineering, goals are used as higher-level expressions

of a system’s requirements. They provide rationales and motives of the proposed system. Goal-

driven RE employs goals to elicit, specify, analyze, and validate requirements. Kavakli identifies

seven major goal-oriented methods in RE [Kav02]. A complete overview of goal-driven RE

techniques is beyond the scope of this dissertation; readers can refer to [Lam01, Kav02] for a

more comprehensive summary. In this section, we summarize four goal-based requirements

analysis approaches (GBRAM, KAOS, i*, and NFR) because they are most relevant to security

and privacy requirements analysis (see Section 2.2).

The Goal-Based Requirements Analysis Method (GBRAM) is an approach for identifying

and refining goals into operational requirements [Ant97]. This approach is supported by a rich set

of heuristics, guidelines, and recurring question types that help analysts perform the analysis. The

approach is essentially a document analysis technique. Example source documents may include

enterprise policies, and interview transcripts with stakeholders. Antón and Earp apply this

approach to analyze privacy policy documents to derive privacy goal statements. Their findings

21

are summarized in Section 2.4.3. GBRAM also suggests using scenario analysis to elaborate

goals and describe exceptional cases when a goal may fail or be blocked. Thus, analysts can

design alternative solutions to solve these problems accordingly.

The Knowledge Acquisition and Automated Specification (KAOS) framework is a goal-

based requirements acquisition and elaboration method [DLF93, LDM95, DL96, LDL98, LL00,

LL02a, LL02b]. KAOS provides a formal and expressive conceptual modeling language, rich

requirements elaboration strategies, and tool support to help requirements engineers specify

requirements derived from high-level goals.

Three levels are defined in the KAOS framework: the meta level, the domain level and the

instance level [LDM95]. The meta level defines four types of concepts:

! meta-concepts that are supported by the specification language (e.g., goal, entity,

object, agent, action);

! meta-relationships that link meta-concepts (e.g., a goal is reduced to subgoals, a goal is

operationalized into constraints, an agent is assigned constraints);

! meta-attributes that characterize meta-concepts and meta-relationships (e.g., the load of

agent, the reliability of assignment); and

! meta-constraints that constrain meta-concepts and meta-relationships (e.g., a weak

constraint must have a restoration action associated with it).

The domain level defines domain-specific instances of meta-concepts and meta-relationships

(e.g., meeting is an instance of a meta-concept entity, scheduler is an instance of a meta-concept

agent). The instance level defines specific instances of domain-level concepts (e.g., the ICSE-27

program committee meeting on February 22, 2005 is an instance of meeting defined at the

domain level).

The main principal underlying the KAOS framework is that the more knowledge at the meta

level, the more knowledge-based guidance can be provided to acquire requirements fragments at

22

the domain level. Thus, KAOS defines a rich set of meta-concepts and meta-relationships. Some

of the most important meta-concepts/relationships are [LDM95, Fon01]:

! Object: a thing of interest in the composite system whose instances may evolve from

state to state.

! Action: an input-output relation over objects. Action applications define state

transitions.

! Agent: another type of object which acts as processor for some actions.

! Goal: is a non-operational objective that the composite system must meet.

! Constraint: an operational objective that can be formulated in terms of states

controllable by some agent.

! Scenario: expresses a typical combination of actions expected to take place in the

composite system.

The KAOS framework was employed to analyze security requirements and perform access

control analysis, which are discussed in Section 2.2.1 and Section 2.2.2.

The i* framework is an early-phase RE method used to model and reason about

organizational contexts and rationales [Yu93, Yu97, CNY00]. It is comprised of two components:

the Strategic Dependency (SD) model and the Strategic Rationale (SR) model. The SD model

focuses on describing the external relationships (dependency) among organizational actors,

hiding intentional constructs within each actor. The SR model focuses on actors’ internal interests

and concerns and how they might be addressed by various configurations of systems and

environments.

The central concept of the i* framework is distributed intentionality, which means actors are

considered to have intentional properties such as goals, abilities, beliefs, and commitments.

Actors depend on each other to achieve some goals, perform certain tasks, and furnish some

resources. This dependency relationship has two effects. On one hand, by depending on others, an

actor may achieve goals that are difficult or impossible to achieve on his own. On the other hand,

23

an actor becomes vulnerable if the depended-on do not deliver. Four types of dependencies are

discussed in i*: goal dependency, softgoal dependency, task dependency and resource

dependency. Actors are also considered strategic in the sense that they are concerned about

opportunities and vulnerabilities and seek alternatives to better serve their interest.

The i* framework was employed to analyze security requirements and perform access

control analysis, which are discussed in Section 2.2.1 and Section 2.2.2.

The Non-Functional Requirement (NFR) framework is a goal-based requirements analysis

method that systematically addresses non-functional requirements in the early stages of system

development [MCN92, Chu93, CNY00]. The i* framework discussed previously shares many

concepts with the NFR framework, such as softgoals and goal dependencies.

The nature of non-functional requirements can be summarized as subjective, relative and

interacting [CNY00]. NFRs can be subjective in the sense that they can be viewed, interpreted

and evaluated differently by different people. NFRs are relative since the interpretation and

importance of NFRs may vary depending on the particular system being considered. NFRs are

often interacting in the sense that attempts to achieve one NFR can hurt or help the achievement

of other NFRs.

Due to the above natures of NFRs, the framework represents non-functional requirements as

softgoals, which are usually satisficed, which means they are satisfied within acceptable limits

instead of absolutely being accomplished.

The process of using the NFR framework to systematically deal with non-functional

requirements starts by acquiring domain knowledge, i.e., the particular domain and the system

being developed, system functional requirements and non-functional requirements. After

identifying particular NFRs for the domain, the framework provides heuristics to decompose

NFRs into more specific softgoals. Then the framework provides heuristics to operationalize

softgoals, i.e., providing possible design alternatives or concrete mechanisms for satisficing NFRs

in the target system. The next step is to record design rationales (which are also called augments

24

that are supported by claims), select operationalizations and evaluate the impact of decisions. The

NFR framework also provides methods to deal with ambiguities, tradeoffs and priorities, and

interdependencies among NFRs and operationalizations. They are very important in making

design decisions and selecting among alternatives.

Because security requirements are often considered as non-functional requirements, the NFR

framework can also be used to analyze security requirements, which is discussed in Section 2.2.1.

2.1.3 Scenario-Based Requirements Analysis

A scenario is comprised of a sequence of events that describe possible ways for users to

interact with a system [JBC98]. In requirements engineering, scenarios are widely used to

describe the software behavior of a system [WPJ98]. Scenarios are useful for eliciting possible

occurrences and the corresponding assumptions (pre-conditions), obstacles, and post-conditions

[Als02].

In software engineering, there is a similar notion: use case. A use case includes a use case

diagram, which visualizes the interactions of users with a system, and a use case description,

which details the interaction using a sequence of events [KG03]. Use cases are widely used in the

software development industry because they are included in the Unified Modeling Language

(UML) [RJB99, UML05], which is supported by various CASE tools, such as IBM® Rational

Rose®1 and Microsoft® Visio®2. According to Kulak and Guiney [KG03], the definition of

scenarios and use cases is misaligned. There exist at least three definitions of scenarios: a

scenario is either an alternative path, or an instance of a use case, or a synonym for use case. In

this dissertation, we treat scenarios and use cases synonymously.

1 Rational Rose® is a registered trademark of International Business Machines (IBM)® Corporation

in the United States and/or other countries.
2 Visio® is a registered trademark of Microsoft® Corporation in the United States and/or other

countries.

25

This section focuses on goal-scenario combination approaches. Goals and scenarios have

complementary characteristics [Lam01]. Goals are usually abstract and declarative. They are

high-level objectives of the business, organization or system. Scenarios are concrete, narrative,

and procedural. They describe real situations, using examples and illustrations. Hence combining

the benefits of goals and scenarios is an effective way to elicit and validate requirements. Goals

are operationalized through scenarios and refined into requirements [AMP94]. Similarly,

scenarios can be used to help discover goals [AP98].

The GBRAM uses goal hierarchies to organize requirements as scenarios, goal obstacles,

and constraints [Ant96]. Other analysis approaches also organize scenarios hierarchically

according to goals and goal obstacles [Coc97]. Rolland et al. propose a bidirectional goal-

scenario coupling approach between goal discovery and scenario authoring [RSA98]. Kaindl

proposes a systematic design process based on a model combining scenarios with goals and

functions [Kai00]. In the combined model, “purpose” serves as a link between functions and

goals: a system’s aggregated functions have some purposes, and these purposes match the

(sub)goals of the users. Purpose has also been integrated with scenarios to model tasks in one of

Kaindl’s early works [Kai95].

2.1.4 From Requirements Analysis to Software Design

During the traditional waterfall software development model [Pre05], requirements analysis

and software design are two separate phases. Even though researchers have argued we should

relate software requirements with design [Pet78], in practice, requirements, design and code are

often misaligned [CHO99]. Although object-oriented analysis and design methods [Boo94] bring

requirements and design closer, the gap between requirements analysis and software design still

exists.

26

Specifically, in the requirements engineering community, researchers have never looked at

database design. For one reason, when requirements analysis is performed, database design is not

there yet. In other words, database design cannot be started until requirements analysis is

completed. For another reason, requirements researchers and engineers think the specification of

requirements should not be biased by design or implementation. This results in a common

understanding that requirements engineers should not look at database design and it is software

designers’ responsibility to ensure that the design is in compliance with the requirements

specifications.

In this dissertation, we propose a different argument from the above view within the context

of access control policy specification. ACP specification is a late-phase RE activity. To specify

access control policies, software engineers are required to examine not only requirements, but

also database designs. Requirements are needed because they provide information about actors

and describe their interaction with the system, and the constraints for information accesses.

Database designs are needed because they provide information about what objects must be

protected via access control. Additionally, to bring requirements and design into better alignment,

requirements engineers should examine database design.

In this section, we summarized the general RE literature. The next section will narrow the

scope and focus on security and privacy requirements.

2.2 Security Requirements Engineering

Security and privacy requirements are often considered as non-functional requirements

[CNY00]. Moffett et al. define security requirements to be constraints on functional requirements

that are needed to achieve security goals [MHN04]. They propose a set of core security

requirements artefacts that form a three-level (goals-requirements-architecture) hierarchical

diagram, in which requirements are elicited from and operationalize goals and system

27

architecture implements requirements. . This section first summarizes relevant work on security

and privacy requirements analysis, then focuses on one type of security requirements: access

control requirements.

2.2.1 Security and Privacy Requirements Analysis

Lamsweerde employs KAOS [DLF93] to elaborate security requirements by constructing

intentional anti-models [Lam04]. This approach generates malicious obstacles set up by attackers

to threaten security goals, and then provides alternative resolutions to counteract these obstacles.

The idea is similar to other approaches that capture security requirements through misuse cases

[Ale03, SO00, HMA04]. Misuse cases are use cases from the point of view of an actor with

hostile intent. Security requirements are specified to protect assets in a system from malicious

attacks. Thinking from an attacker’s standpoint helps elicit security requirements and provide

countermeasure resolutions. In this dissertation, misuse cases are also employed to specify

implicit conditions for access control policies.

The i* framework was initially developed to provide support in modeling, analyzing and

redesigning organizations and business processes [CNY00], but it has recently been used to

model trust [YL01] as well as security and privacy requirements [LYM02, LYM03, YC02,

YC03], such as attack analysis, dependency vulnerability analysis, countermeasure analysis, and

viewpoint analysis of actors on privacy. Additionally, the i* framework is used to reconcile

security and privacy requirements with other non-functional requirements by reasoning possible

alternatives.

Security requirements are non-functional requirements that can be analyzed using the NFR

framework [CNY00]. Basically, security requirements address confidentiality, integrity and

availability. These requirements are operationalized into alternative security mechanisms (e.g.,

password authentication, encryption) and functional requirements to achieve the specific

28

softgoals (e.g., confidentiality, accountability). Alternatives are evaluated according to design

rationales and goal dependencies with functional requirements. The objective of NFR is to

provide a systematic method to analyze security requirements and make a variety of alternative

security methods and their tradeoffs available to system stakeholders. By evaluating the design

decisions, the framework may help provide a system design that can best achieve security

requirements (and other non-functional requirements).

He and Antón proposed modeling privacy requirements in role engineering [HA03]. This

approach is comprised of a context-based data model and a structured role engineering process.

Privacy requirements are modeled as contexts, conditions and obligations in access control

policies for enforcement.

2.2.2 Access Control Analysis in Requirements Engineering

Access control requirements as a special type of security requirements have received

insufficient attention until recently. RE researchers are investigating methods and tools for

analyzing and specifying access-related security requirements. Fontaine [Fon01] employs KAOS,

a goal-based requirements acquisition and elaboration method [DLF93], to refine security

requirements into specific authorization rules and ACPs expressed in Ponder––a language for

specifying management and security policies for distributed systems [Dam02]. Fontaine’s work is

an important step towards requirements-level access control analysis for security policy

specification. However, the method for mapping KAOS specifications to Ponder policies is not

comprehensive in that not all types of Ponder policies can be generated from KAOS

specifications. Fontaine has thus far only shown how to specify authorization and obligation

policies [Fon01], not refrain and delegation policies. Access control policies not only come from

requirements, but also from security and privacy policies. Fontaine’s approach cannot specify

ACPs from security and privacy policies, whereas our approach (ReCAPS) can. Additionally,

29

Fontaine’s approach does not focus on ensuring compliance between ACPs, requirements and

design, whereas our approach considers compliance among these artifacts one of the most

important design principles, as discussed in Chapter 3.

Liu et al. apply the i* framework [Yu93], a goal-based requirements analysis method, to

support access control analysis by modeling the dependencies among actors, tasks and a system’s

resources [LYM03]. However this approach is limited in that it assumes the roles and privileges

have been previously derived. It provides no guidance as to how roles and privileges are

identified, from where they originate, or how privileges are assigned to these roles. Moreover, it

is difficult to model context and constraint information in the i* framework. These topics remain

major challenges in access control analysis during RE.

Generally speaking, the i* framework is an early-phase RE approach, and its ability lies in

modeling dependencies among actors and rationales within actors. Access control analysis is a

late-phase RE activity that involves many activities such as organizational structure analysis,

organizational security/privacy policy analysis, and detailed business process analysis (e.g.

scenario analysis). ACP specification is intertwined with software design (e.g., DB design),

which is not the strength of i*.

Crook et al. propose an analytical role modeling framework to model access control policies

[CIN03]. The framework is specifically designed for role-based access control (RBAC) [SCF96]

systems and derives roles from organizational structures. Although other researchers have

employed RE methods, such as scenarios [NS02] and use cases [FH97], to define needed

permissions for roles, this framework was the first to explicitly clarify the importance of

providing requirements-level support for modeling access control policies.

Three types of roles may be defined according to organizational structures: roles based on

seniority, roles based on function, and roles based on market. In any organization, supervision is a

key coordination mechanism. Roles based on seniority reflect the hierarchical lines of

supervision. Roles based on function model the capability of an individual or tasks that logically

30

belong together. Roles based on market models the context of assets being accessed (i.e., on

which targets a user may carry out the tasks).

Based on the above organizational structures, the framework defines three types of roles:

seniority, functional and contextual roles. The framework is comprised of two-level

representations. The meta level defines the role types, asset categories, context types and

operations. The instance level defines users, role instances, asset instances, context instances and

operation request.

This approach offers two contributions. First, the framework clarifies the need to model

ACPs during requirements analysis. Second, the rationale for deriving roles based on

organizational structures is very useful. Job positions in an organization can be mapped to roles in

RBAC. Organizational and seniority hierarchies can be mapped to RBAC role hierarchies. This

is common in identity management products in which individuals in a particular department

and/or division are classified into a specific role, and that role grants them the access rights to

specific (e.g., bank) accounts. Deriving roles from organizational structures facilitates the user

assignment and authorization management processes in access control. However, this approach is

specific for defining roles in RBAC systems, whereas our approach is a general ACP

specification approach.

Moffett et al. discuss the relationship between access control policies and requirements

engineering [MHN04]. They broadly classify ACPs into three categories: global ACPs that are

built into the a system, discretionary ACPs that are basically security requirements, and

mandatory ACPs that are essentially mechanisms and should not concern requirements

engineering. Our approach is consistent with this view. We specify access control policies from

requirements and high-level security and privacy policies and improve these source documents as

a result of the analysis.

Brose et al. propose to integrate access control design into the software development process

by extending UML to specify access control policies for distributed object systems [BKL02]. We

31

concur with them that access control policy specification should be an integral part of the

software development process. However, this approach does not emphasize the compliance

between different levels of policies, requirements and system design; whereas in our approach,

ensuring compliance is a prominent design principle.

After surveying access control analysis and policy specification from the software

engineering—specifically the RE perspective—the next two sections discuss access control from

the security perspective.

2.3 Access Control in Security

It is important to understand what security is before we discuss access control. A computer

or a system is secure if you can depend on it and its software to behave as you expect. Note the

differences between security and trust. According to Pfleeger [PP02], the word “secure” is

binary: something either is or is not secure. However, there can be degrees of trust. A person may

totally trust that a system can protect his/her personal data from being disclosed or damaged;

whereas he/she may only trust that another system can prevent personal information from being

damaged, even though the system may disclose personal information to other parties. Secure is a

property of the provider. It is a goal. Trusted is a property of receiver. It is a characteristic. A

secure system is asserted as such based on product characteristics; whereas a trusted system is

judged as such based on evidence and analysis by the receiver. A secure system is an absolute. It

is not qualified as how, where, when, or by whom the system is used. A trusted system is relative;

that is, it is viewed in context of use.

There are three common security goals: confidentiality, integrity and availability [PP02].

Confidentiality means that information is not disclosed to unauthorized persons, processes or

devices. Integrity means that unauthorized persons, processes or devices cannot modify

information. Availability means that an authorized person, process or device should not be

32

prevented from accessing the information to which he, she, or it has legitimate access. In addition

to the above three security goals, privacy is often considered as a separate goal that overlaps with

confidentiality but has additional meaning (see Section 2.4.3). Privacy means that data is

protected so that it is used only for authorized business purposes, based on legal requirements,

corporate policies and end-user choices.

2.3.1 Access Control

The function of access control (AC) is to ensure that every access to a system and its

resources is controlled according to a set of predefined policies [SV01]. It is one of the major

security mechanisms used to achieve confidentiality, integrity and privacy in software systems

[FKC03]. An access control system is typically described in three ways: access control policies,

access control models and access control mechanisms [SV01]. Access control policies are

security requirements that describe how access is managed, what information can be accessed by

whom, and under what conditions that information can be accessed [FKC03]. These policies are

enforced via a mechanism that mediates access requests and makes grant/deny decisions. Access

control models provide a formal representation of an access control system. They provide ways to

reason about the policies they support and prove the security properties of the access control

system. Access control models provide a level of abstraction between policies and mechanisms,

enabling the design of implementation mechanisms to enforce multiple policies in various

computing environments. The access control mechanism defines the low-level functions that

implement the controls imposed by the policies. It must work as a reference monitor [SV01], a

trusted component intercepting each and every request to the system.

33

2.3.2 Access Control Policies

Access control policies can be broadly grouped into three main policy categories:

Discretionary Access Control (DAC), Mandatory Access Control (MAC), and Role-Based Access

Control (RBAC). DAC policies enforce access control based on the identity of the requestor and

the explicit rules specifying who can or cannot perform specific actions on specific objects. Early

discretionary access control models, such as the access control matrix model [Lam74, GF94] and

the HRU model [HRU76], provide a basic framework for describing DAC policies. It is the users’

discretion to pass their privileges on to other users. Thus, DAC policies are vulnerable to Trojan

Horse attacks [SV01].

MAC policies enforce access control based on the security classifications of subjects and

objects. For example, the lattice-based multilevel security policy [Den76], policies represented by

the Bell-LaPadula model [BL73, BL76] and the Biba model [Bib77] are MAC policies. MAC

policies protect indirect information leakages (e.g., Trojan Horse attacks), but are still vulnerable

to covert channel attacks [SV01, PP02].

RBAC policies employ roles to simplify authorization management for enforcing enterprise-

specific security policies [FKC03, SCF96]. The RBAC model is an alternative to traditional DAC

and MAC models and has received increased attention in commercial applications, such as the

Oracle 9i DBMS [CS98]. RBAC is now an American National Standard3.

2.3.3 Elements of Access Control Policies

An access control policy is comprised of a set of access control rules. A rule can have

various modes (e.g., allow/deny/oblige/refrain). The work in this dissertation focuses on allow

and deny rules. Allow rules authorize a subject to access a particular object. Deny rules explicitly

3 American National Standard: ANSI INCITS 359-2004.

34

prohibit a subject from accessing a particular object. When a subject requests to perform an action

on an object, the corresponding rules are evaluated by the enforcement engine for that request. A

typical access control rule is expressed as a 5-tuple <subject , object , action, condition,

obligation>, such that a subject can perform some action on an object [DD82]. A subject is an

entity, such as a user or program agent that may access objects. An object is an entity, such as a

data field, table, procedure or application to which access is restricted. An action is a simple

operation (e.g. read or write) or an abstract operation (e.g. deposit or withdraw).

An ACP may express additional conditions that must be satisfied before an access request

can be granted. For example, in healthcare applications, the location from which the access

request originates might affect the grant/deny decision [Bez98]. If an access request is from the

emergency room, then the request may be granted. In this case, we can specify the location of the

request is emergency room as a condition for the AC rule. Additionally, in the context of privacy

protection, we may specify additional conditions to restrict access to personal data. For example,

purpose is a standard entity in most privacy policies, as recognized in P3P (The Platform for

Privacy Preferences Project) [P3P05]. When a subject (e.g., a nurse) requests to perform an action

on an object (in the context of privacy, the object is often personal data such as medical records),

the purpose of the operation should be bound to the purposes consented to by the data subjects.

This is the purpose binding principle [Fis01], which can be enforced by specifying conditions for

ACPs. Karjoth et al. treat purpose the same as subjects, objects, and actions. for a privacy

authorization rule because purpose tends to be the primary focus of privacy protection [KS02].

This dissertation does not treat purpose as an independent element because purpose is mainly

useful for protecting data privacy.

Obligations [BJW02] are actions that must be fulfilled if a request to access an object is

granted. For example, consider require affiliates to destroy customer data after service is

completed. In this case, “destroy customer data” is an obligation that must be satisfied by

affiliates. Obligation-based security policies can be enforced if they can be completely resolved

35

within an atomic execution [RZF01]. If the obligation is not an immediate action (e.g., it is a task

that will be executed in the future), monitoring and auditing its execution might be sufficient for

enforcement [BJW02].

In requirements specification, we are concerned with the actions for which each actor

(subject) is responsible, the conditions under which each action can occur (constraints and pre-

conditions) and the post-conditions (obligations) that must be satisfied. Each of the five access

control elements can be mapped to a requirements specification element. This mapping suggests

it is possible to derive ACPs from requirements to ensure that ACPs comply with the

requirements.

2.3.4 Current Research Efforts on Access Control Policy Specifications

Instead of considering ACP specification from a holistic, real-systems perspective as

advocated in this dissertation, current ACP specification research has a much narrower focus,

such as policy specification languages, uniform or flexible ways to specify ACPs [JSS01],

specifying ACPs for XML documents [FM04], and specifying a specific aspect of access control

(e.g., delegation, temporal constraints). There are few reported methods and experiences relating

ACP specification in real software systems.

Researchers have been trying to develop more comprehensive and expressive languages, or

languages for specific purposes (e.g., for specifying privacy policies) for specifying access

control policies. A more detailed survey of policy specification languages is given in Section

2.4.1.

36

2.3.5 Role Engineering

In the RBAC literature4, researchers are investigating role engineering, the process of

defining roles, permissions, role hierarchies, constraints and assigning the permissions to the roles

[Coy96]. Role engineering is the first step to implementing an RBAC system and essentially a

requirements engineering process. Before a software system can realize all the benefits of RBAC,

the role engineering activities must occur, yielding a complete specification.

There exist several role engineering approaches, the first of which applies scenarios.

Neumann and Strembeck propose a scenario-driven approach for engineering functional roles in

RBAC [NS02]. In this approach, each task is depicted using a collection of scenarios, and each

scenario is decomposed into a set of steps. Because each step is associated with a particular

access operation, each scenario is linked to a set of permissions. The work is limited in that it is

only effective to derive functional roles, not seniority or contextual roles [CIN03].

Fernandez and Hawkins suggest determining the needed rights for roles from use cases

[FH97]. Epstein proposes a layered model for engineering role-permission assignment by

introducing three intermediaries between roles and permissions: jobs, workpatterns, and tasks

[Eps02, ES01]. Epstein’s approach provides an effective way to assign permissions to roles and

aggregate permissions into roles. Roeckle et al. propose a process-oriented approach for role

finding to implement role-based security administration [RSW00]. Their approach provides a

method to find roles but does not address how to find permissions and how to assign permissions

to roles. Unfortunately, neither of these approaches [Eps02, ES01, FH97, RSW00] considers

constraints and role hierarchies.

Epstein and Sandhu’s UML-based approach documents components of an RBAC model in

UML syntax [ES99]. This approach can assist the role engineering process, but it does not

4 See ACM RBAC and SACMAT workshop series, http://www.sacmat.org/.

37

provide a method for deriving roles. Kern et al. propose an iterative-incremental life-cycle model

of a role in the context of enterprise security management [KKS02]. The role life-cycle concept is

very important for security administration; however, this approach fails to support the derivation

of roles and permissions. Schimpf argues that role engineering is a critical success factor for

enterprise security administration [Sch00]. He proposes organizing a role engineering project and

following a clearly defined life-cycle model for roles.

Role engineering is specific to RBAC, whereas the ACP specification approach in this

dissertation is a more general approach. Additionally, none of the surveyed approaches specifies

privacy constraints in access control policies. In contrast, the ACP specification approach in this

dissertation also analyzes privacy requirements and specifies them as conditions in the resulting

ACPs.

2.4 Security and Privacy Policy Analysis and Specification

In the operating systems and security communities, researchers have investigated security

policy analysis and specification. Recently, as privacy has become of increasing concern to

consumers, software developers and legislators, interest in privacy policy analysis has grown.

This section first summarizes several policy specification languages, and then briefly surveys

previous work on security and privacy policy analysis and specification.

2.4.1 Policy Specification Languages

Although policy specification languages are not the focus of this work, the policies do need

to be expressed using some language. We have examined three types of languages: access control

policy specification languages, privacy policy specification languages, and formal specification

languages. Access control policy specification languages include Ponder [Dam02], XACML

38

[OAS05], Authorization Specification Language (ASL) [JSS97, JSS01], and a variety of role

modeling languages [AS99, BBF00, HBM98]. Privacy policy specification languages include

P3P [P3P05] and EPAL [AHK03]. Formal specification languages include Alloy [Jac02], Formal

Tropos [FKP03], KAOS [DLF93], Larch [GH93], Object Constraint Language (OCL) [WK99] of

UML [RJB99, UML05], and Z [Spi92]. Our analysis concludes that Ponder is the most suitable

language for specifying access control policies, whereas Alloy is the most suitable formal

notation for automatically verifying security properties as we now discuss.

Ponder is a declarative, object-oriented language for specifying management and security

policies for distributed systems [Dam02]. Four types of policies are defined in Ponder:

authorization policies, obligation policies, refrain policies and delegation policies. Ponder also

provides mechanisms for specifying groups, roles, relationships and management structures. The

Ponder language is sufficiently expressive to specify most access control policies. Additionally,

its declarative feature is easy to use and allows Ponder policies to be easily translated into

implementation. In this dissertation, we express the policies derived from various sources in a

form similar to Ponder except that policies in this dissertation are traceable to the sources from

which the policies are derived.

Alloy is a lightweight structural object modeling language based on first-order logic. It

supports not only object models, but also operation and behavior models. Alloy is based on Z

[Spi92]. A comparison of Alloy with Z shows that Alloy has the benefit of simpler semantics,

automatic semantic analysis and tool support, and it is compatible with object modeling idioms.

Although Alloy is less expressive than OCL, it is based on a language that was tested and used in

large-scale industrial developments. OCL has its own limitations: its semantics are complicated;

it does not have transitive closure; its syntax has been criticized [DW98]; it is not currently in

wide use and there are few publicly available OCL model examples; and it is very difficult to

formalize OCL.

39

Alloy provides tool support, which can generate instances of invariants, simulate the

execution of operations, and check user-specified properties of a model. Alloy has been used in a

variety of case studies, one of which is using Alloy to check logical consistency among the

specifications of RBAC entities, relations and constraints [ZWC02]. Lin et al. also employ Alloy

to verify the security properties of a requirements model [LYM03].

In Chapter 4, we will use P3P elements (i.e., purpose, recipient) to specify conditions and

obligations for access control rules. As a special section, we present P3P in more detail herein for

future references.

P3P is an XML-based policy specification language that can be used to specify an

organization’s privacy practices in a way that can be parsed and used by policy-checking agents

on the user’s behalf. P3P predefines a set of values for its elements; for example, Table 2.1 shows

the 12 purposes that are defined in P3P1.1, which specify the purpose for which the data is

collected or used.

Table 2.1 Purposes Defined in P3P1.1 [P3P05]

Purpose Name Description

current Completion and Support of Activity For Which Data Was Provided

admin Web Site and System Administration

develop Research and Development

tailoring One-time Tailoring

pseudo-analysis Pseudonymous Analysis

pseudo-decision Pseudonymous Decision

individual-analysis Individual Analysis

individual-decision Individual Decision

contact Contacting Visitors for Marketing of Services or Products

historical Historical Preservation

telemarketing Telephone Marketing

other-purpose Other Uses

40

Additionally, 23 primary purposes are defined in P3P1.1 to provide a more detailed

description of data usage under purpose <current> in Table 2.1 and reason the recipient is

collecting data, as shown in Table 2.2.

Table 2.2 Primary Purposes Defined in P3P1.1 [P3P05]

Purpose Name Description

account Account and/or Subscription Management

arts Arts and Entertainment

browsing Web Browsing

charity Charitable Donations

communicate Communications Services

custom Customization

delivery Delivery

downloads Software Downloads

education Education

feedback Responding to User

finmgt Banking and Financial Management

gambling Online Gambling

gaming Online Gaming

government Government Services

health Healthcare Services

login Authentication and Authorization

marketing Advertising, Marketing, and/or Promotion

news News and Information

payment Payment and Transaction Facilitation

sales Sales of Products or Services

search Search Engines

state State and Session Management

surveys Surveys and Questionnaires

41

P3P defines the following recipients (see Table 2.3), which specify who will receive the

collected data.

Table 2.3 Recipients Defined in P3P1.1 [P3P05]

Recipient Name Description

ours Ourselves and/or entities acting as our agents or entities for whom we are

acting as an agent

delivery Delivery services possibly following different practices

same Legal entities following our practices

other-recipient Legal entities following different practices

unrelated Unrelated third parties

public Public fora

2.4.2 Security Policy Analysis

Security policy can be explained in two ways, depending on the context environment. For a

system, a security policy is a statement of the security we expect the system to enforce. Some

well-known security policies are military security policy [BL73, BL76], Clark-Wilson

commercial security policy [CW87], and Chinese Wall security policy [BN89]. These policies

may be found in various environments.

For an organization, a security policy is a document that sets out an organization’s security-

related procedures, rules and principles [WC98]. A security policy defines procedures of how

internal and external users interact with an organization’s network and how the overall computer

architecture topology will be implemented; lists an organization’s assets and where these assets

will be located; details the security goals, as well as any potential threats and vulnerabilities;

assesses security risks; describes how to address security breaches; and clarifies who is the

designated security coordinator and the responsibilities for each team member and each

42

employee. A security policy must be comprehensive, well-thought-out, testable and adaptable. A

security policy should be constantly tested and updated as the organization’s needs change, as

technology changes, and as security issues (e.g. security threats and vulnerabilities) change

[WC98].

There are various reasons to establish a security policy for an organization. The basic

motivation is the need to protect an organization’s assets. Thoroughly planned security policies

help minimize break-ins. Also, legal requirements force industry to define certain aspects of an

organization’s activities and take actions to protect customer data security and privacy. For

example, in the healthcare industry, confidentiality of patient records must be maintained. Other

reasons to establish a security policy include contractual requirements and regulatory

requirements. In short, good security starts with a security policy.

Organizational security policies are source documents for deriving access control policies for

the method presented in this dissertation. In the later chapters, when we refer to “high-level

security policies”, we are referring to the organizational security policies discussed above. How

to develop a security policy for an organization is beyond the scope of this dissertation. Readers

who are interested in this topic may refer to [SSH97, WC98]. This section focuses on security

policy modeling, specification, and consistency checking within the context of a particular

system’s security policy.

An important element in the development of a secure system is the production of a formal

security policy model. A formal security policy model is a “mathematically precise statement of a

security policy” according to the National Computer Security Center (NCSC) glossary of

computer security terms [NCS88]. The NCSC also defines a general process and some techniques

for security policy modeling in its Guide to Understanding Security Modeling in Trusted Systems

[NCS92].

Dobson and McDermid [DM89] present a modeling language for expressing security

policies, in which roles, agents, actions, and data are basic components of a security policy. This

43

is an early approach for investigating security policy specification languages in which no formal

syntax or semantics were defined for a security policy. Dobson and Martin [DM92] distinguish

organizational security policies from automated security policies: organizational security policies

are the set of laws, rules, regulations, and practices that regulate how an organization protects its

resources, whereas automated security policies are the set of restrictions and properties that

specify how a computing system prevents resources from being used to violate the organizational

security policies. This view is consistent with the view presented in this dissertation as discussed

in Chapter 1 (see Figure 1.2). Organizational security policies are the source documents for

ReCAPS, and automated security policies (in this dissertation, they are access control policies)

are the products of ReCAPS. Dobson and Martin show how to represent organizational security

policies using enterprise modeling, and how restrictions and properties of the automated security

policy play a key role in the enforcement of the organizational policy [DM92].

Freeman and Neely [FN93] stress the importance of security policy modeling during the

requirements analysis and architectural design phases of system development for high assurance

software systems. They observe that it is important to clearly define which part of security

policies should be formally specified and that the policy modeling team should focus its efforts

on what it really needs to model. This dissertation supports the perspective advocated by Freeman

and Neely—that it is important to specify access control policies during the requirements analysis

and system design phases of software development.

Freeman, Neely and Heckard [FNH94] propose a security policy modeling approach named

Boundary Flow Modeling (BFM). Similar to ReCAPS, which derives ACPs from requirements,

BFM is driven by security requirements and system architecture, rather than forcing an existing

generic security model on the intended system. The BFM approach consists of six steps: (1)

identify the policy statements to be modeled, (2) interpret the policy statements, (3) produce

model structure with constraints, (4) refine constraints for the system boundary, (5) refine

constraints for the system interior, and (6) perform an internal verification of the model.

44

However, the guidance provided by this approach is not prescriptive; for example, it is unclear

how analysts can identify and interpret policy statements when using BFM. Additionally, it is

unclear how the method relates the policies to system design.

Researchers have explored logic-based approaches for specifying security policies. Cuppens

and Saurel [CS96] propose a logic-based approach, which combines deontic logic to model the

concept of permission, obligation and prohibition with a modal logic of action. Additional

concepts such as role, responsibility and delegation are also considered. An advantage of a logic-

based policy specification approach is that it is relatively easier to verify the security properties of

a set of policies, compared with the declarative, semi-structured policy specification approach

used in this dissertation. For example, using Standard Deontic Logic (SDL) to provide a precise

and non-ambiguous specification of a security policy, Cholvy and Cuppens [CC97] propose a

methodology for checking the security policy consistency and querying a policy to discover the

actual norms (i.e. permissions, obligations and prohibitions) that apply to a given situation. These

logic-based approaches are complementary to the approach presented in this dissertation for

specifying access control policies. They are more useful for verification.

The above surveyed approaches focus on security policy modeling, specification, and

verification. The work presented in this dissertation focuses on ACP specification. Although

access control policy is a kind of security policy, none of the approaches surveyed above provides

procedural support for specifying access control policies for a software system.

2.4.3 Privacy Policy Analysis

Two major privacy protection principles are the OECD guidelines for data protection

[OEC80] and the FTC Fair Information Practice (FIP) Principles [FIP98]. The OECD guidelines

define eight privacy principles: collection limitation, data quality, purpose specification, use

limitation, security safeguards, openness, individual participation, and accountability. The OECD

45

principles intend to protect personal data privacy while pursuing free information flow between

different organizations and different countries. The five FIP principles (notice/awareness,

choice/consent, security/integrity, access/participation, and enforcement/redress) are

recommended by the U.S. Federal Trade Commission (FTC) to protect consumer privacy. Both

the OECD and FIP principles provide the general privacy requirements with which organizations

should comply. In the U.S., several industries have additional legislative acts (e.g. HIPAA and

GLBA) regulating their data practices.

Based on these general privacy principles and acts, each organization defines its own privacy

policies. These policies are the major privacy requirements that an organization should enforce in

their data processing systems. For example, when websites collect information from customers,

they need to inform customers for what purpose the data is being collected, who the data recipient

is, how long the data will be kept, and how the data will be used. (This is the notice/awareness

principle in the FIP principles). The website should also provide opt-in/opt-out choices for

customers or obtain customer consent on how to use the collected data (choice/consent principle).

The actual data operations of companies and organizations should be consistent with user

consented privacy policies (enforcement/redress principle). In this dissertation, organizational

privacy policies are source documents for the ReCAPS method to specify access control policies

for an organization’s information systems.

In addition to protecting the confidentiality and integrity of personal data, Fischer-Hübner

summarizes two other privacy protection principles: the purpose binding principle (i.e., data

collected for one purpose should not be used for another purpose) and the principle of necessity

(i.e., the collection and processing of data shall only be allowed if it is necessary for completing

appropriate tasks) [Fis01]. In this dissertation, purposes are specified in the condition part of an

access control rule to enforce the purpose binding principle.

Antón et al. have presented a body of work on privacy policy analysis from the requirements

engineering perspective [AE01, AE04, AEB04, AEC03, AEP01, AEV05, AHB04]. For example,

46

Antón and Earp propose strategies to employ scenario management and goal-driven requirements

analysis methods for specifying security and privacy policy for secure electronic commerce

systems [AE01]. Antón et al. found software requirements and security and privacy policies are

often misaligned [AEC03]. This observation further motivates the work in this dissertation as

discussed in Chapter 1. Antón et al. apply goal-based requirements analysis to better align

software requirements with security and privacy policies [AEC03]. A privacy requirements

taxonomy for websites has been presented in [AE04]; in this approach goal-mining techniques are

employed to analyze online privacy policies. In this taxonomy, privacy requirements are

classified as either privacy protection goals or privacy vulnerabilities. This taxonomy was further

used to analyze privacy policies for several domains, including finance [AEB04], healthcare

[AEV05], and e-commerce [AHB04]. This body of work forms the basis for the work presented

in this dissertation. However, Antón’s work primarily focuses on the level of natural language

policies and requirements, whereas the work presented in this dissertation focuses on mid-level

level policies (see Figure 1.3 in Chapter 1) and policy analysis and specification in ReCAPS is at

the design level. Additionally, Antón’s work is limited to privacy policy, whereas the policy

investigated in this dissertation includes both security policy and privacy policy.

2.5 Summary

This section summarized relevant work in requirements engineering and access control. We

positioned the work presented in this dissertation in the context of literature. In previous work

nobody has related high-level policies, system requirements, access control policies, and database

designs. In this dissertation, ensuring compliance across these software artifacts is an important

design principle. The approach presented in this dissertation helps bridge the gap between

requirements analysis and software design with respect to security and privacy. The next chapter

47

presents the two formative case studies, which serve as the origin of ideas, methodology and

techniques presented in this dissertation.

48

Chapter 3

Formative Case Studies

Genuine knowledge comes from practice.

—Chinese Proverb

As mentioned in Section 1.6, the research methodology of this work is the process of

conceptualization, empirical exploration, refinement and testing. This is an engineering approach

to scientific research, which typically involves studying a problem, proposing solutions, and

testing the solutions on real problems. This is in contrast to mathematical approaches to scientific

research, which derive research from constructing concepts, often in the form of formal proofs,

reflexive induction and reasoning. The process and heuristics presented in this dissertation were

developed and evaluated while performing access control analyses on real systems and real

policies, not constructed illustrations. This contrasts with other software engineering

methodology development approaches, in which methods are developed and later tested on

conceptualizations formed in isolation from real applications.

This chapter discusses the development of the Requirements-based Access Control Analysis

and Policy Specification (ReCAPS) method, which is detailed in Chapter 4, within the context of

its application to two formative case studies. Subsequent summative case studies, discussed in

Chapter 5, enabled evaluation and refinement of the method. The key distinction between

formative and summative is that formative case studies involve the development and evolution of

the methods simultaneously coupled with validation, whereas summative case studies involve the

validation of previously developed methods. These case studies unfolded over time, and ReCAPS

evolved as a result of its application to the case studies discussed in this chapter.

49

Each of these case studies involves a real system:

! Security and Privacy Requirements Analysis Tool (SPRAT) (Section 3.1)

! Transnational Digital Government (TDG) Remote Border Control System (Section 3.2)

These projects are discussed in the following sections. In each section, the background of

each project is briefly summarized. This is followed by discussions of the methodology employed

and the lessons learned through the application of the method.

3.1 Security and Privacy Requirements Analysis Tool (SPRAT)

The Security and Privacy Requirements Analysis Tool (SPRAT) [JAS04] is a research tool

under development at North Carolina State University with funding from the U.S. National

Science Foundation (NSF). The tool supports goal-based and scenario-based requirements

analysis and provides support for analyzing and specifying security and privacy requirements as

well as ACPs. It builds upon and extends two existing tools: the Privacy Goal Management Tool

(PGMT) [AEB04], and the Scenario Management and Requirements Tool (SMaRT) [SAA03].

With the help of SPRAT, analysts can seamlessly integrate goals, scenarios, requirements,

policies and documents in a project repository and conveniently trace from one element (e.g., a

goal) to another (e.g., a scenario) during requirements analysis. The SPRAT architecture calls for

centralized data storage with distributed client access, with an option that allows local data

storage. The envisioned users include requirements analysts, policy makers and security

engineers. The information stored in the centralized database is proprietary and needs to be

protected. Thus, access control is critical. For example, we have a rich privacy goal repository in

the PGMT, which is the result of five case studies conducted over the course of five years. We

treat these goals as valuable assets that need to be protected via access control. SPRAT analysts

will have certain permissions to access these goals. Additionally, we may grant industry

collaborators permission to view some attributes of the data (e.g., only the goal descriptions but

50

not the classifications and statistical data). In short, there are a variety of access control

requirements in the system, making it a sufficiently sophisticated system to analyze using our

approach.

3.1.1 Methodology and Case Study Artifacts

The SPRAT case study was conducted by two analysts (a software engineering professor and

a PhD student) for approximately 16 person-hours.

Two source documents were used in this case study:

! SPRAT Software Requirements Specification (SRS), Version 1.09

! SPRAT database design E/R diagram

Each analyst had a copy of the source documents and a copy of the method summary, which

included access control rule (ACR) identification steps but no guidance for ACR refinement (i.e.,

eliminating redundancies and resolving conflicts). Both analysts participated in the identification

of access control rules, whereas only one analyst (the PhD student) conducted the ACR

refinement steps. During the case study, the analysts devoted 30 minutes to initial training, in

which the analysts reviewed the method summary together and set up procedures on how to

document results. The objective of the training session was to ensure that both analysts had a

common understanding of the method and its objective.

After the initial training, the analysts began the ACR identification process (this process is

described in more detail in Chapter 4). Specifically, the analysts went through each requirement

in the SRS document to identify access control elements. Patterns deemed helpful in identifying

elements were documented as heuristics to aid analysts in future analyses. This kind of research

approach is appropriate and consistent with grounded theory in which existing phenomena is

analyzed to develop an understanding of the current state of a particular subject of interest.

Grounded Theory is theory derived from data that has been systematically gathered and analyzed

51

[GS67]. Therefore, the heuristics presented in this dissertation are not based upon a distinct

preconceived theory or hypothesis that we hoped to support or refute. Instead, our initial access

control analysis and specification efforts were scientific analyses to develop new theory. Because

at the time of this study there was no tool that supported access control analysis, the analysts

performed the study manually and documented everything on paper. Specifically, during the ACR

identification step, elements were marked on the SRS printouts using color coding and

documented in an access control matrix in preparation for refinement in the next step. Each row

in the access control matrix represents an access control rule, which is comprised of the following

elements: rule ID, mode, subject, action, object, condition, obligation, and source (these terms

are defined in the Glossary and described in more detail in Chapter 4). Each access control

element is a column in the access control matrix. An example access control matrix is shown in

Table 3.1. This is different from a traditional access control matrix shown in Table 3.2, in which

each row presents a subject, each column presents an object, and the cell contains the access

rights of the subject on the object. We chose the format shown in Table 3.1 because the format of

a traditional access control matrix is insufficient to represent all the necessary information for an

access control rule––e.g., conditions and obligations.

Table 3.1 An Example Access Control Matrix in the SPRAT Case Study

Rule

ID

Mode Subject Action Object Condition Obligation Source

1 Allow Analysts View Goals Only the goals in

the project that the

analyst is assigned

to

NULL FR-

GSM-16

2 Deny Guests Insert Scenarios NULL NULL FR-UA-

4

52

Table 3.2 An Example Traditional Access Control Matrix

File A Directory B

Alice Read, write Read

Administrators Read, write

Once all possible access control rules are identified from source documents, the ACRs must

be refined. In this case study, the analyst found it most efficient to first sort all candidate rules in

the access control matrix according to subject and object because redundancies often center

around these two elements. Any redundant or conflicting rules were then identified and the

analysts removed the redundant rules and resolved any conflicts (the process of removing

redundant rules and resolving conflicts is discussed in detail in Chapter 4). Because this was our

first formative case study, it was critical to document how we actually went about identifying

redundancies and resolving conflicts so that we could then evaluate whether this process was

generalizable to other systems and domains of interest. We documented this in the form of

heuristics that we applied and validated in our subsequent case studies. We also documented any

observations or recurring questions in the identification and refinement process that would be

helpful to other analysts.

3.1.2 Lessons Learned

This section summarizes the lessons learned from the SPRAT case study and addresses the

integration of these lessons into the ReCAPS method.

Access control analysis is data-centric.

The goal of access control is to protect system resources from unauthorized access. Access

control analysis involves identifying system resources that must be protected and ways to protect

53

them. In information systems, data is the most important system resource. Thus, access control

analysis is data-centric.

In contrast, requirements analysis is not data-centric. Functional requirements analysis

focuses on the functions of the envisioned system, while non-functional requirements analysis

focuses on attributes or constraints on functional requirements. Thus, requirements analysis is

function-centric. Even though recent object-oriented analysis methods have expanded the scope

of classical requirements analysis methods, the heart of requirement analysis is still specifying

functions for a system.

Because requirements specifications are the main source of our approach for deriving access

control policies, it is important for analysts to understand the scope of access control before they

start the ACP specification process. ReCAPS recognizes this difference between access control

analysis and requirements analysis and clearly defines the scope of access control at the

beginning, as discussed in Chapter 4. Not all requirements involved access to data. If a

requirement does not describe users’ access to some data, then we cannot derive any access

control policies from this requirement. For example, most non-functional requirements—except

security and privacy requirements, such as reliability and usability—are not concerned with

access control.

Consider the following three SPRAT requirements:

SPRAT FR-SSM-1: The system shall provide the ability to add a scenario to the system.

SPRAT FR-UAM-2: The system shall allow secure storage of passwords in the

database.

SPRAT SR-1: The system shall allow timestamps for all system interactions.

Requirement FR-SSM-1 involves user access (i.e., add) to some data (i.e., scenario) in the

system; thus, access control-related information is expressed in this requirement. In contrast,

because FR-UAM-2 and SR-1 do not describe any user access to specific data or system

resources, no access control rules can be derived from either of these requirements.

54

Checking requirements objects against database design helps ensure consistency.

One of the major challenges in software systems development is maintaining consistency

between requirements and design. We observed this to be true in this case study. We identified

two inconsistencies between the SRS and the database design in the SPRAT case study. As a

result of the analysis, the source documents were inevitable improved.

While the requirements specifications in the SPRAT case study were very comprehensive,

they were not as detailed as the database design in terms of information about objects. ReCAPS

provides a heuristic (see IHobject3 on page 84) that compels analysts to check every object

identified in the SRS against the database design. This heuristic helps analysts identify

inconsistencies between these two artifacts and clarify ambiguous objects identified in the SRS,

thus enabling analysts to improve the source documents and the quality of software products.

Consider the following SPRAT requirement:

SPRAT FR-UA-1: The system shall support an administrator level. The administrator

will have the following privileges:

a. Ability to create user groups such as NCSU TPP.org, GT TPP.org

b. …

We identified an object user group from this requirement. However, after checking with the

database ER diagram, we did not find any corresponding element in the database design. This

example showed that the database design and requirements were inconsistent; because the

database design was incomplete, it did not satisfy the requirements. We thus were able to correct

this error before it crippled later phases of software development for this project.

The database design may also provide more detailed information about objects than the

requirements specifications. This information may be useful during the refinement process.

Consider the following two requirements in the SPRAT:

SPRAT FR-GSM-12: The system shall be able to display the context of a goal.

55

SPRAT FR-GSM-16: The system shall allow analysts to view elements of a goal

returned by a query.

By checking the database, we were able to learn what elements a goal contains, and

determine that context is an element of a goal. This information was not available from the

requirements specification but helped us refine the two rules derived from these two

requirements: one allows analysts to view the context of a goal; the other allows analysts to view

elements of a goal. Because context is an element of a goal, we determined that the first rule was

redundant and, thus, removed the first rule.

Design decisions must be made during the ACP specification process.

In the SPRAT SRS, four kinds of users (user levels or roles) are clearly defined: System

Administrator, Project Manager, Analyst, and Guest. However, the allowable privileges for each

type of users are unclear in the SRS. At this time, it was important to make a design decision

about whether the privileges of roles could overlap or not. However, this design decision could

not be made without the intervention of stakeholders. After consulting stakeholders, we made the

following decisions:

! The privileges of roles cannot overlap to conform to the separation of duties security

principle [SCF96]; for example, there are no shared privileges for role System

Administrator and role Project Manager. Thus, the three roles (System Administrator,

Project Manager, and Analyst) in the system are independent, and no role hierarchy

[SCF96] is defined.

! System Administrators are responsible for user management, such as

creating/updating/deleting user/group accounts, assigning roles to users, and assigning

users to groups.

! Project Managers are responsible for managing projects, such as creating new projects

and assigning users to a project.

56

! Analysts are responsible for the analysis tasks within a project in which they are

assigned, such as goal analysis and scenario analysis.

These design decisions disambiguated requirements for specifying ACPs, and the

corresponding requirements were modified accordingly.

However, we delayed the design decision on what privileges should be assigned to Guests

because even the stakeholders were unclear about that at the time of initial identification. We

hypothesized that it would be easier to make that decision by considering all the possible

privileges a specific user may have after we produced the access control matrix. However, the

need to revisit this was documented to ensure that it would eventually be addressed.

Our experience with the SPRAT case study shows that the above hypothesis is indeed true.

After we produced the access control matrix, we showed all the possible privileges to the

stakeholders and helped them decide what privileges should be given to Guests. This time it was

much easier to make the decision than at the initial identification step because the stakeholders

were able to see all the possible privileges! As discussed in Chapter 4, ReCAPS requires that

analysts document all design decisions made during the ACP specification process. These design

decisions are an important part of the project documentation that justifies the rationales for the

software design.

The ACP specification process is also a requirements disambiguation process.

During the ACP specification process, we identified many ambiguities in the requirements

specifications. We believe this is partially because the ACP specification process is a late-phase

RE activity that bridges requirements and design. To identify AC elements, we constantly

challenge the requirements specifications by asking questions such as “who can do this?”, “how

does he/she interact with the system?”, “what objects are accessed in this process?”, “are these

objects designed in the database?”, and “is there any condition or obligation for the data access?”

Answering these questions inevitably helps disambiguate the requirements specifications. Thus,

57

the ACP specification process is also a requirements disambiguation process, and a side benefit of

ReCAPS is the improvements to source documents by identifying and clarifying these

ambiguities.

Consider the following SPRAT requirement:

SPRAT FR-GSM-6: The system shall provide the ability to update an existing goal.

This is an ambiguous requirement. To disambiguate the requirement, we asked the following

questions:

! Who can update an existing goal?

! How does he/she perform the update? (or what are the steps to perform the update?)

! Which elements of a goal can he/she update?

! Are all the elements designed in the database?

! Under what conditions can he/she update an existing goal?

! Are there any obligations if he/she updates an existing goal?

By asking these questions, we were able to learn that only Analysts can update an existing

goal. Analysts can update all elements of a goal if the goal exists in the system. This

disambiguation process helped us obtain a better understanding of the requirement and revise it

accordingly as this:

SPRAT FR-GSM-6 Revised: The system shall allow analysts to update all elements of an

existing goal.

The new requirement was more clear and precise than the previous one.

Scenario analysis helps clarify ambiguous requirements and identify AC elements.

Scenario analysis is an effective technique for clarifying ambiguous requirements. In the

SPRAT case study, there were requirements that describe only system features without further

clarification. ReCAPS suggests using scenario analysis to elaborate ambiguous requirements (see

58

IHsubject/action3 on page 88). A scenario is comprised of a sequence of events, pre-conditions, post-

conditions, obstacles, and any goals or requirements that are associated with this scenario. The

main elements of a scenario are a sequence of events that describe possible interactions between

users and the system. The sequence of events could be organized in normal flow, alternate flow,

and iterative flow. Scenario analysis is very helpful in the ACR identification process because we

want to know how users interact with the system and control their accesses accordingly. AC

elements, such as actors, actions and objects can be derived directly from the events of a scenario.

Consider the following SPRAT requirement:

SPRAT FR-PM-3: The system shall support multi-user analyst results comparison.

This requirement is so ambiguous that without context information and further clarification

it is impossible to understand what it means. However, this requirement contains access-related

information. To derive access control rules from this requirement, we must clarify the

ambiguities. In this case study, the analysts employed scenario analysis techniques to elaborate

this requirement, as shown in Table 3.3.

Table 3.3 Scenario Analysis for SPRAT Requirement FR-PM-3

Scenario Name Project Manager compares goal classification results of several analysts

Pre-conditions Goals exist in the system and the classification method is defined.

Events (1) Analysts classify goals independently according to predefined

categories.

(2) Project managers select analysts whose classification results they wish

to compare.

(3) The system shall display those goals that are classified differently and

how they are different (e.g., by showing the different categories)

Post-conditions NULL

Obstacles Analysts did not complete their goal classifications when Project Manager

compared their classifications.

Requirements FR-PM-3: The system shall support multi-user analyst result comparison.

Goals Get the goals that are classified differently by analysts and how they are

different.

59

The above scenario analysis provides the analysts a better understanding about the

requirement. Based on the scenario, the analysts were able to derive access control elements and

rules from events, pre-conditions and post-conditions.

It is helpful to specify ACPs from both users’ perspective and attackers’ perspective.

The purpose of access control is to ensure that every access to the system and its resources is

controlled. Thus, it is natural to consider users’ interactions with the system and control their

access accordingly. If a requirement is described from the system’s perspective, we want to find

out how users are affected. For example, in the SPRAT case study, consider the following

requirement:

SPRAT FR-GSM-12: The system shall be able to display the context of a goal.

This requirement is described from the system’s perspective, and no users are mentioned. To

specify access control policies, we need to find out who will access the information if the system

performs this function (i.e., display the context of a goal) and control those users’ access

accordingly. However, specifying ACPs from only users’ perspective is insufficient. Sometimes

we need to think from attackers’ perspective. What if users have hostile intent? Would users

exploit their privileges for their own good? This is especially useful for specifying conditions that

restrict users from doing things that compromise the security and privacy of system resources (see

IHcond7 on page 97). For example, in this case study, Analysts are able to perform all analysis

activities, such as creating/updating/deleting/viewing goals/scenarios/requirements/policies. To

help us think from an attacker’s perspective, we authored the following concrete scenario to

consider what an Analyst might do if he/she had hostile intent.

Consider the case when the SPRAT is used by students in a software engineering class for a

term project. Students are divided into groups. All members in a group are Analysts. The students

60

are required to specify requirements for a software system using goal analysis and scenario

analysis techniques. If Analysts have hostile intent, they might want to plagiarize other groups’

work. To counteract this malicious intent, we should specify access control policies that prevent

Analysts from accessing the other groups’ work. Thus, we define the following two rules:

! Analysts can perform analysis activities only within the project to which they are

assigned; and

! Analysts cannot assign themselves to any project in the system.

This example shows that considering an attacker’s perspective can aid in specifying access

control rules that protect system resources from unauthorized access.

Access control rules can be specified at different levels.

In the SPRAT case study, we observed that there are different kinds of access control rules.

Some rules are related to users’ access to databases; other rules are related to users’ access to

functions. These different kinds of rules imply that access control can be implemented at different

levels, e.g., database level and application level. ReCAPS distinguishes between two kinds of

actions in an access control rule: database actions and abstract actions. Database actions are direct

operations upon a database, such as insert, update, delete, whereas abstract actions are not, i.e.,

withdraw (money from a banking account), process (a transaction). Database actions are

identified to specify database-level access control policies, whereas abstract actions generally

map to application-level access control policies. For example, in this case study, the analysts

derived the following access control rules:

Example rule 1: Allow analysts to insert an entry into the table of goals.

Example rule 2: Allow analysts to classify goals.

 The first rule is a database-level access control rule, in which the action is a database action

(insert) and the object (goals) is an object in the database. The action in the second rule is an

61

abstract action. This rule can be rephrased as a application-level rule if goal classification is

implemented in a function:

Example rule 3: Allow analysts to access the goal classification function

Both database-level and application-level access control rules are useful, and ReCAPS

supports both, as discussed in Chapter 4.

3.1.3 Results

Table 3.4 shows the results of the SPRAT case study. The data in Table 3.4 shows that the

analysts made significant improvement to the source documents by creating 6 new requirements,

revising 27 existing requirements, and identifying 2 inconsistencies between the requirements

specifications and the DB design.

During the SPRAT case study, the analysts modified the process described in the initial

method summary according to the lessons learned discussed in Section 3.1.2. As previously

mentioned, the initial method summary included only the ACR identification steps, but not the

ACR refinement steps. The analysts hypothesized that it would be easier to specify access control

rules if we identified all the objects first and then specified rules that control users’ access to each

object. In the actual analysis process, they found this to not be true because it requires analysts to

go through the entire document n+1 times if there are n objects identified. Specifically, analysts

need to go through the entire document to identify all the objects. Then, for each object, analysts

need to go through the entire document to identify all accesses to this object. This process was

very inefficient. We thus revised the process to two steps: ACR identification and ACR

refinement. During ACR identification, analysts must identify all possible rules for each

requirement before they move on to the next requirement. After they finish the identification, they

must refine the rules produced by removing redundant rules and resolving conflicting rules. This

revision made the process much more efficient.

62

In the SPRAT case study, we created 17 heuristics (IHscope1, IHscope3, IHobject1-3, IHsubject/action1-3,

IHcond1-3, IHcond7-8.a, RHredundancy1-2, RHredundancy4, RHconflict1). These heuristics were later validated in

our subsequent case studies.

Table 3.4 Summary of the SPRAT Case Study Results

Pre-ReCAPS Post-ReCAPS

No. of tables / attributes in the DB design 39/57 41/59

No. of requirements (FR / NFR) 59 (56/3) 65 (62/3)

No. of modified requirements as a result of ReCAPS analysis N/A 27

No. of inconsistencies identified between the SRS and the DB

design as a result of ReCAPS analysis

N/A 2

No. of access control rules created during ACR identification

(after ReCAPS Step #2)

N/A 84

No. of final rules (after ReCAPS Step #3) N/A 73

No. of final policies (after ReCAPS Step #3) N/A 34

3.2 Transnational Digital Government (TDG)

The Transnational Digital Government (TDG) project, funded by the U.S. National Science

Foundation (NSF)5, is a collaborative research project involving researchers at seven universities,

as well as government agencies in three participating countries: U.S., Belize and Dominican

Republic. The project’s objective is to research advanced information technologies useful for

rapid collection, dissemination, and exchange of information related to transnational border

control. The system collects and shares immigration information. The prototype system project is

the object of this case study.

5
 The TDG Project URL: http://www.acis.ufl.edu/transdg/

63

The security and privacy of immigration data is critical in this project. Secure remote sharing

of sensitive data requires reliable access control mechanisms. RBAC and distributed trust

management were chosen to implement this functionality. Many organizations are involved in the

transnational border control process, including remote border stations, governments, police

departments, immigration departments, and customs. Information must flow among these

organizations as well as across national borders. Different countries have different security and

privacy policies and information sharing laws regulating the corresponding activities. Policy

enforcement was important throughout the system’s development to ensure compliance with the

corresponding laws and policies. Using our approach, we specified a set of ACPs for the TDG

project in collaboration with the TDG database team at the University of Florida.

3.2.1 Methodology and Case Study Artifacts

The TDG case study was conducted by the same two analysts as the SPRAT case study, for

approximately 6 person-hours.

Two source documents were used in this case study:

! TDG Software Requirements Specification (SRS), Version 2.0

! TDG database schema design

Note that in this study, the source document was slightly different from the SPRAT case

study. In the TDG case study, we used the database schema design as one of the source

documents, whereas in the SPRAT case study, we used the database E/R diagram design. This

difference makes the results of these studies stronger because it shows our method applies to

various forms of database design.

The analysis process was similar to the process used in the SPRAT case study except that the

method was improved after the first case study. Specifically, we divided the analysis process into

two steps: identification and refinement. Both analysts participated in the identification of access

64

control rules, whereas only one analyst (the PhD student) conducted the ACR refinement step.

We also created a set of heuristics to help analysts perform the analysis.

Each analyst had a copy of the source documents and a copy of the new method summary.

During the case study, the analysts spent 30 minutes on initial training on the analysis method.

After the initial training, analysts started the ACR identification process. In contrast to the

SPRAT case study, the analysts applied and validated the heuristics created in the SPRAT case

study when they went through each requirement in the SRS document. When new patterns were

identified and no heuristic could be applied, these patterns were documented and included in the

heuristics set for future use and further validation. This is the characteristic of formative case

studies: they serve as both the origin and early validation of the method. The ReCAPS process

and heuristics were shaped during these case studies.

As in the SPRAT case study, access control elements were marked on the SRS printouts,

using color coding and documented in an access control matrix in preparation for refinement in

the next step. Once all possible rules were identified, they were refined. Again, the analysts

applied the heuristics created in the SPRAT case study and created new ones if necessary. As in

the SPRAT case study, the analysts documented any observations or recurring questions in the

identification and refinement process.

3.2.2 Lessons Learned

This section summarizes the lessons learned from the TDG case study and addresses the

integration of these lessons into the ReCAPS method.

Scenario analysis is useful for clarifying ambiguous requirements and specifying ACPs.

While scenario analysis already demonstrated its usefulness in clarifying ambiguous

requirements and specifying ACPs in the SPRAT case study, its effect was even more significant

65

in the TDG case study, thus validating the heuristics created in the SPRAT case study (see page

57). The requirements specifications of the TDG project are more ambiguous than those of the

SPRAT project. Scenario analysis helped us elaborate some ambiguous requirements. Figure 3.1

shows the scenario that border immigration agents at point-of-entry stations check in travelers

using the Scenario Management and Requirements Tool (SMaRT) [SAA03]. This scenario

contains several episodes, which can be treated as reusable scenarios. For example, Episode 2

describes different ways that a border immigration agent enters the traveler’s information in the

system.

As previously mentioned, access control elements can be derived from scenario elements. To

explain how the analysts derived access control rules from this scenario, consider the watch list

checking episode (Event 4—6) in this scenario (see Figure 3.1a). From Event 4, we identified an

object “watch list”. We mapped this object to the table SALIDA_WATCH, which stores the

actual watch list—information about suspicious travelers. The action word “access” is

ambiguous. At a minimum, “access” implies “read”. Thus, an access control rule was derived as

follows:

Example rule 1: Allow border immigration agents to select table SALIDA_WATCH.

Event 5 describes that border immigration agents can query the “watch list”. This is

essentially the same as the above rule.

Event 6 describes different cases of the query result. In the interest of space, we only discuss

the first case, when the traveler was identified on the watch list (Alternation Branch 6.1). In this

case, the system will instruct border immigration agents as to what should be done (Event 6.1.2).

Another access control rule was identified here:

Example rule 2: Allow border immigration agents to view actions to be taken upon a

traveler being identified on the watch list.

66

Figure 3.1a Scenario Analysis in the TDG Case Study

67

Figure 3.1b Scenario Analysis in the TDG Case Study

68

Event 6.1.3 describes border immigration agents taking actions instructed by the system. This is

not enforceable by the system. Thus, no access control rules were derived.

Inconsistencies between requirements specifications and database designs are common.

The TDG project is unique in its distributed development environment. The stakeholder

countries are Belize and Dominican Republic. The research team includes five universities in the

U.S. Such a distributed environment causes inevitable communication difficulties between all

stakeholders. In the TDG case study, we identified 17 inconsistencies between the requirements

specifications and the database design. Many of these inconsistencies are due to missing items

that were mentioned in the requirements specifications but not designed in the database. For

example, the SRS was attached with scanned documents from stakeholders in Belize and

Dominican Republic, including arrival/departure records, and entry permit. However, in the

database design, some fields that were shown on the arrival/departure records were missing in the

database design, such as mode of transportation (airline and flight number, vehicle license

number, and vessel name). Given that there are only 25 functional requirements in the system,

this number seems large. However, this was not really surprising given that the requirements

specifications were authored by the North Carolina State University team, whereas the database

was designed by the University of Florida team. Insufficient communication between both the

teams yielded inconsistencies between the requirements and the database design. This is a

common software engineering problem, and our case study shows that ReCAPS helps identify

and eliminate these inconsistencies. This is a side benefit of ReCAPS. This lesson learned from

the TDG case study validated the heuristics created in the SPRAT case study on checking

requirements specification against database design (see page 54).

69

The level of detail in an SRS affects the efficiency of ReCAPS on ACP specification.

The SPRAT SRS provides a more detailed functional description than the TDG SRS. In

contrast, the requirements description in the TDG project is high-level and stable, yet somewhat

ambiguous. We have tried to clarify the requirements, but the results are less than satisfactory due

to the distributed environment, large research team and communication complexities that

accompany any project of this size. As previously mentioned, our stakeholders were in two

developing countries: Belize and Dominican Republic. Our only direct contact with immigration

officers in these two countries was during our visit to Belize. At all other times, we contacted

them via our stakeholder liaisons in two universities in these countries. Additionally, the research

team was comprised of five US universities. Each university was investigating a different aspect

of the system. The requirements team joined the project nine months after it had been started.

These factors all contributed to the formidable challenge of disambiguating the requirements.

3.2.3 Results

Table 3.5 summarizes the results of the TDG case study. In this case study, we create a new

heuristic (IHscope2). Of the 17 heuristics created during the SPRAT case study, we applied and

validated 13 of them (IHscope1, IHscope3, IHobject1-3, IHsubject/action1-3, IHcond1-3, IHcond7, RHredundancy1). We

identified 17 inconsistencies between the requirements specification and the database design, as

shown in Table 3.6. All the inconsistencies were items in the requirements specification that were

missing from the database design. We did not make changes to the analysis process, which

implied that the analysis process was quite stable at this time.

70

Table 3.5 Summary of the TDG Case Study Results

Pre-ReCAPS Post-ReCAPS

No. of tables / attributes in the DB design 5/66 6/82

No. of requirements (FR / NFR) 44 (25/19) 44 (25/19)

No. of modified requirements as a result of ReCAPS analysis N/A 4

No. of inconsistencies identified between the SRS and the DB

design as a result of ReCAPS analysis

N/A 17

No. of access control rules created during ACR identification

(after ReCAPS Step #2)

N/A 18

No. of final rules (after ReCAPS Step #3) N/A 16

No. of final policies (after ReCAPS Step #3) N/A 6

3.3 Summary

This chapter presented the two formative case studies that served as the conceptual origin for

the Requirements-based Access Control Analysis and Policy Specification (ReCAPS) method.

Each case study detailed in this chapter involved a particular system:

! Security and Privacy Requirements Analysis Tool (SPRAT)

! Transnational Digital Government (TDG) Remote Border Control System

These case studies served as a source of early validation, shaping the ReCAPS method

through the lessons learned. The next chapter introduces ReCAPS in detail.

71

Table 3.6 Inconsistencies Identified in the TDG Case Study

Requirements Database Design

SRS document appendix: Belize arrival record Missing permit/visa number in table MAIN

SRS document appendix: Belize arrival record Missing frequency of visits in table MAIN

SRS document appendix: Belize arrival record Missing arrival address in Belize in table

MAIN

SRS document appendix: Belize departure

record

Missing last address in Belize in table

MAIN

SRS document appendix: Belize arrival record Missing mode of transportation: airline and

flight number in table MAIN

SRS document appendix: Belize arrival record Missing mode of transportation: vehicle

license number in table MAIN

SRS document appendix: Belize arrival record Missing mode of transportation: vessel

name in table MAIN

SRS requirement 2.3.1: The system shall allow

BIAs to determine if the traveler is on a “watch

list” of suspicious or wanted individuals

Missing Belize watch list

SRS requirement 2.3.1 annotation from Belize

stakeholder

Missing Belize watch list item: name

SRS requirement 2.3.1 annotation from Belize

stakeholder

Missing Belize watch list item: date of birth

SRS requirement 2.3.1 annotation from Belize

stakeholder

Missing Belize watch list item: nationality

SRS requirement 2.3.1 annotation from Belize

stakeholder

Missing Belize watch list item: reason for

being on the watch list

SRS requirement 2.3.1 annotation from Belize

stakeholder

Missing Belize watch list item: action to be

taken upon being identified

SRS document appendix: Dominican Republic

Exit Control Form

Missing Dominican Republic passport

number in table SALIDA

SRS requirement 2.3.1 annotation from

Dominican Republic stakeholder

Missing Dominican Republic watch list

item: gender

SRS requirement 2.3.1 annotation from

Dominican Republic stakeholder

Missing Dominican Republic watch list

item: reason for being on the watch list

SRS requirement 2.3.1 annotation from

Dominican Republic stakeholder

Missing Dominican Republic watch list

item: action to be taken upon being

identified

72

Chapter 4

Requirements-based Access Control Analysis and

Policy Specification (ReCAPS)

Rome was not built in a day.

—French Proverb

This dissertation addresses the challenges of specifying access control policies (ACPs) for

information systems; this kind of specification is a conceptually and practically complex process.

Often ACP specification has been isolated from requirements analysis and software design,

resulting in misalignment between different levels of policies and software artifacts [AEC03].

Additionally, ACP specification was often conducted in an ad-hoc manner based on tacit

knowledge according to the survey in Chapter 2, leaving systems vulnerable to security and

privacy breaches. This chapter introduces the Requirements-based Access Control Analysis and

Policy Specification (ReCAPS) method, which integrates policy specification into the software

development process and provides procedural support for ACP specification.

This chapter is organized as follows. Section 4.1 provides an overview of the ReCAPS

method. Section 4.2 details the process of specifying access control policies and introduces the

ReCAPS heuristics, using concrete examples from the two formative case studies, discussed in

Chapter 3. Section 4.3 discusses the SPRAT (Security and Privacy Requirements Analysis Tool)

ReCAPS module that supports ReCAPS activities.

73

4.1 Overview of ReCAPS

This overview first discusses ReCAPS within the context of an ICOM (Inputs-Constraints-

Outputs-Mechanisms) model. Then the underlying assumptions upon which the method was

developed are clarified. The design principles are subsequently explained. Finally, the main

activities an analyst performs when applying ReCAPS are briefly summarized.

4.1.1 An ICOM Model of ReCAPS

The fundamental basis for ReCAPS is that access control policies are representations and

implementations of security requirements at the software design level. Security requirements are

constraints on functional requirements [MHN04]. Thus, in order to specify access control policies

for a system, we need to examine the system’s functional requirements and non-functional

security requirements. Additionally, requirements-level knowledge alone is insufficient to specify

access control policies. Requirements are often specified as high-level goals or objectives. They

are often very general and implementation-independent. In contrast, access control policies are

concerned with a specific subject’s privileges to access a specific object. They are tightly

connected with system design. Thus, design-level knowledge must also be obtained because we

need to include detailed information about subjects and objects in access control policies.

Figure 4.1 portrays the ReCAPS method using a traditional ICOM (Inputs-Controls-Outputs-

Mechanisms) model [IDE93]. The sources (inputs) for the approach are various software

documents, including the software requirements specification (SRS), the design document and

database design (e.g., E/R diagram), as well as the high-level security and privacy policies. For

ReCAPS to be effectively applied, the SRS and the DB design are required sources. Other

documents, such as the design document and organizational security and privacy policies, are

optional (yet helpful) sources. The two required source documents are complementary in that the

74

requirements specification justifies the rationale for the ACPs (e.g., why a user is granted a

particular privilege to perform a task or access an object), whereas the database design details the

objects to which any access must be controlled. Both of these are necessary for ACPs.

The mechanisms of this method include an analysis process, a set of heuristics and software

tool support. The ReCAPS method aids software and security engineers (analysts) by providing a

detailed process description and associated heuristics that they can apply while examining

available source documents to derive and specify ACPs. This process and its associated heuristics

are detailed in Section 4.2. During this process, analysts employ requirements engineering (RE)

techniques (see Chapter 2), such as goal-based requirements analysis [DLF93], scenario analysis

techniques [PTA94], and misuse cases [Ale03, SO00], to help identify AC elements. A software

tool (see Section 4.3) was developed to support the ReCAPS activities.

The overall objective of our approach is to produce a comprehensive set of ACP

specifications that are aligned and compliant with the software requirements, security policies,

and privacy policies. The emphasis on alignment and compliance ensures that analysts are also

able to clarify ambiguities in the SRS, as well as identify and resolve any inconsistencies between

the SRS and database design. Thus, the source documents inevitably benefit from the process as

the SRS and DB design are augmented, which results in more complete, correct and less

Software

documentation
Access Control

Policies

ReCAPS

Process

Heuristics Tool

support

Information systems

Inputs

Outputs

Mechanisms

Controls

Revised software

artifacts

Figure 4.1 ReCAPS ICOM Model

75

ambiguous project documentation. During the ACP specification process, analysts often make

design decisions. This documented list of design decisions is another output of the method.

The ReCAPS method applies to only information systems, shown as controls in Figure 4.1.

4.1.2 Assumptions

It is important to clarify the underlying assumptions upon which the ReCAPS method was

developed to clearly frame the scope and contributions of this method. ReCAPS is based on the

following three assumptions that narrow the scope of our efforts to information systems:

Assumption #1: Analysts need a system’s DB design and SRS to specify ACPs for the

system. Both are minimal pre-requisite source documents for this approach. Essentially, ACPs

bridge the gap between an information system’s SRS and its DB design.

Assumption #2: There are various objects in a system to which access may be restricted. For

example, an employee may be allowed to print jobs to a local printer, but not to a central printer

in the neighboring office. This kind of resource access control is beyond the scope of this

dissertation. Instead, we focus on restricting access to data within a DB.

Assumption #3: ACPs are specified for information systems, supported by a database

containing sensitive data. We have not investigated ACP specifications for security kernels such

as file access in operating systems.

4.1.3 Design Principles

We followed the following design principles when developing the ReCAPS method for ACP

specification. These design principles are goals we want to achieve in ReCAPS.

Principle #1: Different levels of policies and system requirements must be brought into

better alignment to ensure that unauthorized accesses to sensitive data are prevented.

Organizational security and privacy policies, software requirements, and the operational

76

functioning of policy-enforcing systems are often misaligned. The underlying principle of our

approach is thus to ensure compliance between high-level security and privacy policies, access

control policies, system requirements and software designs.

Principle #2: Traceability across software artifacts (e.g., between ACPs and requirements)

must be maintained. Both policies and requirements may change throughout system development

and even after the system is deployed. They are interdependent with respect to change. When one

of them changes, it is important to make appropriate changes to the other. Otherwise,

inconsistency across these artifacts may cause security and privacy breaches. Traceability helps

analysts track changes and maintain consistency between requirements and policies.

Principle #3: Access control analysis and requirements analysis is an iterative process.

Both require one to maintain documents containing information with different levels of formality

and describing different kinds of information. Therefore, it is helpful to employ an inquiry-driven

approach [PTA94] to document important or recurring questions, design decisions, as well as

identified inconsistencies that are pending resolution.

4.1.4 Activities

Figure 4.2 portrays the main activities a software or security engineer undertakes to derive

ACPs from various available sources. The process is detailed with examples in Section 4.2. This

section provides an overview of the main activities.

There are two main kinds of activities in ReCAPS: analysis and refinement. Recall that

ACPs are comprised of AC rules and these rules are comprised of elements (e.g., subject, actions,

objects). During the analysis process, analysts scan available source documents, following the

ReCAPS steps while applying the heuristics to identify AC elements and specify AC rules. When

analysts examine source documents, they may find ambiguous requirements. In this case, they

need to consult stakeholders to clarify the ambiguities. For example, in the TDG case study,

77

analysts had to consult stakeholders about the check-in process at border-of-entry stations in

order to specify access control policies for border immigration agents. The analysis process

requires analysts to check requirements against the database design. For example, when we

identified an object “watch list”, we checked the database design to make sure this information

can be found. Because these artifacts are often produced by different software engineers (i.e.,

requirements specifications are produced by requirements engineers, whereas database is

designed by another group of software engineers, often software designers), analysts may also

find inconsistencies between the requirements and the database design. In this case, they need to

resolve these inconsistencies as discussed in Section 4.2. Additionally, the checking may reveal

items that are clearly described in the requirements specification but are not specified/designed in

the database. These missing items must be added to the database design to make it complete.

Incomplete designs are more expensive to rectify if they are identified in later phases of software

development. Additionally, incomplete designs may cause security and privacy breaches, even

system failure if the problems are not identified and corrected.

Figure 4.2 ReCAPS Analysis Activities

AC analysis

ACR refinement

Identify and remove

redundancies

Identify and resolve

conflicts
Group AC rules

into policies

Specify AC rules

Identify AC elements

Domain analysisSRS

DB design

Policies

ACPs

Augmented

src doc

Output

Input

78

After the identification step, analysts produce a set of candidate access control rules (see

example in Table 3.1 in Chapter 3 on page 51). Because these rules are derived from different

sources (e.g., requirements, high-level security and privacy policies), there may exist redundant

or conflicting rules. Our ultimate goal is to produce a set of access control policies that can be

implemented by software developers. Thus, analysts need to further refine these candidate rules

by removing any redundancy and resolving all conflicts. To remove redundancies and resolve

conflicts among candidate rules, analysts may need to go back to the sources from which the rules

were derived to find the source of the conflicts. Analysts may have to consult stakeholders to

resolve conflicting rules (see ERS case study in Chapter 5). After the refinement process, all AC

rules must be grouped into ACPs.

Analysts often make design decisions during the identification and refinement process. For

example, in the SPRAT case study, analysts made a design decision that the privileges of roles

cannot overlap (see page 55). Design decisions that are made during the analysis must be

documented. These documented decisions are part of project documentation and they justify the

rationale for the software design.

4.2 Analysis Process and Heuristics

This section details the steps that analysts perform when applying ReCAPS to specify access

control policies for information systems using examples from the two formative case studies.

There are four steps in the ACP specification process:

Step 1: Understand the problem domain;

Step 2: Scan available source documents to identify AC elements and specify AC rules;

Step 3: Refine access control rules; and

Step 4: Group AC rules into ACPs.

The ACP specification process is supported with four kinds of heuristics:

79

! Identification Heuristics (IH): for identifying access control elements;

! Refinement Heuristics (RH): for refining access control rules into policies;

! Specification Heuristics (SH): for specifying access control rules and policies; and

! Grouping Heuristics (GH): for grouping access control rules into policies.

Examples for how to apply these heuristics are explained in detail in this section.

4.2.1 Preparation

The objective of the preparation step is to develop an understanding of the problem domain

before analysts start the ACR identification and refinement steps.

Step 1: Understand the problem domain.

To obtain a general understanding of the problem domain, analysts need to quickly scan any

available source documents to understand the background of the envisioned system; this includes

information about the objective of the system and the main stakeholders. Generally, the software

requirements specification (SRS) contains introductory material that summarizes this information

and details the stakeholders and the end users. Because the purpose of ACP specification is to

control end-users’ access to the system, it is important to understand who the end-users are.

During the ACP specification process, analysts may need to consult stakeholders to clarify

ambiguities. Thus, it is also important to understand who the stakeholders are so that analysts can

contact them when needed (for example, to reconcile a conflict or disambiguate a policy or

requirement) during the analysis process.

Consider the following information from the introduction section of the TDG SRS

document:

TDG SRS Introduction: The critical stakeholders of this project include the following

parties:

80

(1) The Belize government

(2) The Belize border immigration agents

(3) The Belize immigration agencies

(4) The Dominican Republic (DR) government

(5) The Dominican Republic border immigration agents

(6) The Dominican Republic immigration agencies

(7) The Organization for American States (OAS)

In this example, we identified seven stakeholders for the TDG system. It is not clear how the

stakeholders interact with the system at this time. But in case there is a need to consult

stakeholders (or sometimes the person whom served as the source of a requirement) to clarify

some ambiguities in the requirements specifications or resolve some conflicts, we know which

stakeholder we should contact.

4.2.2 Access Control Rule Identification & Specification

The identification of access control elements from requirements specifications is primarily

based on a mapping relationship between access control elements and requirements specification

elements, as shown in Table 4.1.

Table 4.1 Mapping between ACP Elements and Requirements Specification Elements

Requirements Specification Elements Access Control Policy Elements

Actors Subjects

Actions Actions

Objects Objects

Constraints (Pre-conditions) Conditions

N/A Obligations

81

As previously explained in Section 2.3.3, a subject in an access control rule is an entity, such

as a user or program agent that may access objects. An object is an entity, such as a data field,

table, procedure or application to which access is restricted. In a sense, subjects and objects are

basically the same thing. For example, an application may be specified as an object in one rule, in

which a user is restricted to access this application; whereas the same application may be

specified as a subject in another rule, in which the application is restricted to access some file in

the system. This is what makes the analysis process challenging for analysts. An action is a

simple operation (e.g. read or write) or an abstract operation (e.g. deposit or withdraw).

Conditions are restrictions that must be satisfied before an access request is granted. Obligations

are actions that must be fulfilled if a request to access an object is granted. Each of these

elements, except obligations, may be directly mapped from a requirements specification element

as we discuss herein.

In requirements engineering, scenarios and goals are employed to model requirements. As

discussed in Section 2.1.3, a scenario is comprised of a sequence of events that describe

possible/envisioned interactions between users and a system. Scenario elements include actors,

actions, objects, and pre/post-conditions. Actors, actions and objects in a scenario correspond to

subjects, actions and objects in access control rules. A scenario’s pre-conditions express what the

scenario expects to be true when it begins [Als02]. In ReCAPS, these scenario pre-conditions

correspond to conditions in access control rules––restrictions that must be satisfied before an

access request may be granted. Thus, pre-conditions may be mapped to conditions in access

control rules. Additionally, requirements specifications often specify constraints that place a

condition on the achievement of a goal [Ant97]. Constraints can also be mapped to conditions.

Goals are targets for achievement and high-level objectives of the business, organization, or

system [Ant97]. As discussed in Section 2.3.3, the concept of goals is comparable to purposes in

access control policies. Thus, goals in requirements may be mapped to purposes in access control,

which are specified as conditions for an access control rule (see page 99).

82

These mapping relationships facilitate the process of deriving access control policies from

requirements specifications. The remainder of this section details the heuristics that provide

prescriptive guidance for identifying access control elements from requirements specifications.

Step 2: Scan available source documents to identify AC elements and specify AC rules.

The SRS is the major source from which to derive access control elements. Recall that the

five AC elements are: <subject, object, action, condition, obligation>. For each requirement in an

SRS, analysts need to follow steps 2.1 through 2.4 in the ReCAPS method to identify these

elements. It is not necessary to follow these steps in sequential order; an experienced analyst may

perform some of these steps in parallel.

Not every requirement contains access control-related information. Thus, as previously

mentioned, understanding the scope of access control is important for identifying access control

rules.

The following heuristics (IHscope1-3) help analysts determine whether or not any access

control rules can be derived from a requirement.

IHscope1: Access control analysis is data-centric. Thus, for each requirement, analysts should ask the following

question: does this requirement involve any user access to sensitive information in the system? If the

answer to the above question is yes, then access control rules may be derived from this requirement.

Otherwise, no access control rules can be derived from this requirement.

Consider the following TDG requirement:

TDG 2.8.1: The system shall have an Internet portal for MEM-related activities. (MEM:

Multilateral Evaluation Mechanism)

Given requirement TDG 2.8.1, it is easy to see that it does not involve any user access to

sensitive information in the system. Thus, no access control rules can be derived from this

requirement.

83

In contrast, consider the following SPRAT requirement:

SPRAT FR-GSM-3: The system shall allow analysts to classify goals.

This requirement describes a task that “analysts” can perform, which involves user’s (i.e.,

analyst) access (i.e., classify) to data (i.e., goals) in the system. Thus, access control rules may be

derived from this requirement.

IHscope2: If a requirement describes something that is not enforceable in the system, then no access control

rules can be derived from the requirement.

For example, a security requirement may describe some physical security safeguards (e.g.,

access pass to the building) to control users’ access to the building or system. However, this is not

something that can be enforced in the system, thus no access control rule can be derived from it.

IHscope3: No access control rules can be derived from non-functional requirements, except security and privacy

requirements.

Non-functional requirements are attributes of a system, such as compatibility, usability,

reusability, interoperability, scalability, reliability, and accuracy. Consider the following TDG

requirement:

TDG 3.3.2: The system shall provide 90% accuracy of speech recognition functionality.

This requirement defines the expected speech recognition accuracy for the system. Although

speech recognition involves users’ access to system resources, accuracy is a system attribute.

Thus, no access control rules can be derived from this requirement.

84

4.2.2.1 Identifying Objects

Step 2.1: Identify objects that need to be protected.

In software based information systems, objects are data to which access needs to be

restricted. Three heuristics (IHobject1 , IHobject2 , IHobject3)are provided to help analysts identify

objects:

IHobject1: To identify objects that must be protected in the system, it is helpful to examine the nouns that follow

verbs.

Consider the following SPRAT requirement:

SPRAT FR-GSM-3: The system shall allow analysts to classify goals.

Based on heuristic IHobject1, the noun “goals” follows the verb “classify”, thus “goal” is

tagged as an object. Note that because not every noun is an object, the following heuristic is used

to distinguish access-related objects from other objects.

IHobject2: To distinguish access-related objects from other objects, it is helpful to consider whether the

candidate object is a system resource that should only be accessed by authorized actors.

In the case of SPRAT FR-GSM-3 above, heuristic IHobject2 ensures “goals” is the identified

object to be protected instead of “analyst”.

IHobject3: To identify the objects that must be included in the database, every object identified in the SRS

should be mapped to an object (e.g., a table, a column, a row or a cell) in the database design.

Heuristic IHobject3 has two benefits. First, it compels analysts to clearly define what the

objects are in the database (e.g., a table, a column, a row or a cell in a table). Requirements are

often general and ambiguous, but access control policies must be specific. Analysts must check

85

the requirements against the DB design to make sure the objects are appropriately defined in the

DB design. Second, this heuristic helps ensure that the requirements and database design are

consistent with one another. Because requirements specification and design specification are

often treated separate phases and are often produced by different persons in a traditional software

development process, thus inconsistencies inevitably exist between these artifacts.

Consider the following TDG requirement:

TDG 2.3.1: The system shall allow border immigration agents to determine if the traveler

is on the “watch list”.

Requirements documents have auxiliary notes, such as questions, issues, rationales, and

comments. This TDG requirement was annotated with questions and answers from the

requirements engineers and stakeholders. These annotations provided detailed information about

exactly what is on the watch list as shown in TDG 2.3.1 Annotation below.

TDG 2.3.1 Annotation: Question C: What data is contained on the “watch list”?

Belize Answer: Name, Date of Birth, Nationality, Reason for being on the list, Action to

be taken.

DR Answer: Basically name, gender, citizenship, watch list inclusion explanation and

actions to be taken in case of positive identification.

 In the TDG DB design, three items that were mentioned in the annotation for requirement

TDG 2.3.1 were missing in the DB design: gender, the reasons for a person’s name being on the

watch list, and actions to be taken if person whose name appears on the watch list is encountered

at a border station. This example shows how heuristic IHobject3 helps analysts correct database

designs early on, preventing possible costly changes that may not have been identified until well

into the development lifecycle.

Access control can be implemented at different levels: database-level and application-level,

as discussed in Section 4.2.4. Here we present a heuristic for specifying database-level access

control rules with regard to the objects in these kinds of rules.

86

SHDLP1: To specify database-level access control policies, the object in each rule must be an object (e.g., a

table, a column, a row or a cell) in the database.

Note the difference between heuristic IHobject3 and SHDLP1. IHobject3 compels analysts to check

the objects identified from requirements (or other sources) against the database design. It mainly

serves as a cross checking mechanism. As long as the checking found there is a mapping (or an

inconsistency) between the requirements objects and the database design, IHobject3 has served its

purpose. In an application-level access control rule, the object does not have to be an object in the

database. However, to specify database-level access control rules, heuristic SHDLP1 clearly

requires that the object must also be an object in the database.

Consider SPRAT requirement FR-GSM-12:

SPRAT FR-GSM-12: The system shall be able to display the context of a goal.

The object identified from this example is the context of a goal, which maps to a column

context in database table goals. Thus, to specify database-level access control rules, the object

should be specified as: goals.context.

4.2.2.2 Identifying Subjects and Actions

Step 2.2: Identify responsible subjects and actions on the object.

The following heuristics are used to identify the subjects and actions of an access control

rule.

IHsubject/action1: Given a requirement expressed in the form “The system shall allow <someone> to <do

something>”, the subject is <someone> and the action is <do>.

The pattern in this requirement clearly identifies the subject and the action. Consider TDG

requirement 2.2.1:

87

TDG 2.2.1: The system shall allow border immigration agents (BIA) at point-of-entry

(POE) stations to retrieve a traveler’s data from the local database.

Based on heuristic IHsubject/action1 , the subject in this example is border immigration agent

(BIA) and the action is retrieve. Because not all requirements are stated in the pattern shown in

IHsubject/action1, the following heuristics identify several other common patterns that were found to

be common in the requirements specifications for the four systems analyzed in this dissertation.

IHsubject/action2: Given a requirement expressed in the form “The system shall support/provide the ability (be

able) to <do something>”, the subject is unclear. The <do> action has two possibilities as follows.

IHsubject/action2.a: The <do> action is performed by an subject. In this case, the analyst would need to consult the

stakeholders to disambiguate the requirement by asking precisely who will perform this action. By

clarifying the requirement, one can rephrase this requirement as “The system shall allow <someone> to

<do something>”, resulting in a less ambiguous requirement specification.

Consider SPRAT requirement FR-GSM-6:

SPRAT FR-GSM-6: The system shall support the ability to update an existing goal.

This requirement does not explicitly describe who can (or is allowed to) update an existing

goal. This is acceptable for requirements engineers during the early stages of specification, but it

is too ambiguous for system designers and software developers. Given such ambiguity in this

requirement concerning responsible subjects, the analyst needs to clarify precisely who can

update an existing goal. The requirement may then be rephrased as follows:

SPRAT FR-GSM-6 Revised: The system shall allow analysts to update an existing goal.

Based on heuristic IHsubject/action1, the subject in this example is analyst and the action is

update.

88

IHsubject/action2.b: The <do> action is not performed by any subject. Instead, it is an automated action performed

by the system. In this case, the analyst should consult the stakeholder(s) to determine who will access

what information if the system performs this action.

Once again, consider SPRAT requirement FR-GSM-12:

SPRAT FR-GSM-12: The system shall be able to display the context of a goal.

This is an ambiguous requirement because it is unclear who can request the system to

display this information and who can view the information displayed by the system. Upon asking

the stakeholder(s) for clarification this requirement can be rephrased as follows:

SPRAT FR-GSM-12 Revised: The system shall allow analysts to view the context of a

goal.

Following heuristic IHsubject/action1, the subject in this example is analyst and the action is view.

IHsubject/action3: Given a requirement expressed in the form, “The system shall provide/support/allow/<do>

<something>”, neither the subject nor the action is clear in this case. The <something> in this

requirement is often a feature or a function. In this case (the requirement is vague and subject/action

cannot be easily identified), analysts should employ scenario analysis to elaborate the requirement.

Consider the following SPRAT requirement:

SPRAT FR-PM-3: The system shall support multi-user analyst results comparison.

This requirement is so ambiguous that without contextual information and further

clarification it is impossible for most analysts to understand what it means. In cases such as this,

scenario analysis is an efficient way to elaborate and clarify the requirement. A scenario is

comprised of a sequence of events, pre-conditions, post-conditions, obstacles, and any goals or

requirements that are associated with this scenario. Similar to the control structures in a computer

program, the sequence of events could be organized as normal flow, alternate flow, and iterative

89

flow. Scenario analysis enabled us to identify the main events (e.g. the normal flow) in this

scenario as shown in Table 4.2.

Table 4.2 Scenario Analysis for SPRAT Requirement FR-PM-3

Scenario Name Project Manager compares goal classification results of several analysts

Pre-conditions Goals exist in the system; the classification method is defined; and the

analysts who have been selected to compare have completed their

classifications.

Events (1) Analysts classify goals independently according to predefined

categories.

(2) Project managers select analysts whose classification results they wish

to compare.

(3) The system shall display those goals that are classified differently and

how they are different (e.g., by showing the different categories)

Post-conditions NULL

Obstacles Analysts did not complete their goal classifications when Project Manager

compared their classifications.

Requirements FR-PM-3: The system shall support multi-user analyst result comparison.

Goals Get the goals that are classified differently by analysts and how they are

different.

Given an elaborated scenario, the main sources from which to identify subjects and actions

are a scenario’s sequence of events. Heuristics IHsubject/action1 and IHsubject/action2 can also be applied

while analyzing a scenario’s events to identify subjects and actions. From the scenario in Table

4.2 one can derive the subjects and actions shown in Table 4.3 below.

Table 4.3 Subjects and Actions Identified from SPRAT Requirement FR-PM-3

Source Subject Action

Event 1 Analyst Classify

Event 2 Project Manager Compare

Event 3 Project Manager View

90

Two kinds of actions can be derived from requirements specifications and identified during

scenario analysis: database actions and abstract actions. Database actions are direct operations

upon a database, such as insert, update, delete, whereas abstract actions are high-level operations

in contrast to concrete database actions, such as withdraw (money from a banking account),

process (a transaction). Database actions are identified to specify database-level access control

policies, whereas abstract actions generally map to application-level access control policies.

These different levels of policies are discussed in more details in Section 4.2.4. In ReCAPS, both

types of actions are identified from source documents and subsequently specified.

Specifically, the following heuristics are used to specify database actions.

SHDLP2: To specify database-level access control rules, the action in the rules must specify a standard

database operation (e.g., create, select, insert, update, and delete).

Consider SPRAT requirement FR-SSM-3:

SPRAT FR-SSM-3: The system shall provide the ability to delete a scenario from a

project without deleting it from the system.

The action word in this example is delete, which is a standard database operation. Thus,

delete is the action in the derived AC rule.

SHDLP3: When an action can be directly mapped to a database operation (e.g., add, enter, read, view, retrieve,

remove, change, and edit), map the action to a standard database operation and specify that database

operation as the action in the derived AC rule.

Consider TDG requirement 2.2.1 again:

TDG 2.2.1: The system shall allow border immigration agents (BIA) at point-of-entry

(POE) stations to retrieve a traveler’s data from the local database.

91

The action word retrieve is not a standard database operation, but it can be mapped to select,

which is a standard database operation. Thus, to specify database-level access control rules, we

can use select as action instead of retrieve.

SHDLP4: When the identified action is an abstract action, use scenario analysis to decompose the action into

several database operations.

Consider SPRAT requirement FR-GSM-3 again:

SPRAT FR-GSM-3: The system shall allow analysts to classify goals.

Classify is an abstract action that needs to be decomposed into several DB actions in order to

specify database-level access control rules. As prescribed by heuristic IHsubject/action3, this action

can be elaborated using scenario analysis, as shown in Table 4.4 (i.e., normal flow).

Table 4.4 Scenario Analysis for SPRAT Requirement FR-GSM-3

Scenario Name Analysts classify goals.

Pre-conditions Goals exist in the system and the classification method is defined.

Events (1) Analysts retrieve goals from the database to a local client.

(2) Analysts change some attributes of the goals at the local client.

(3) Analysts save the changes in the database.

Post-conditions Goals are classified.

Obstacles NULL

Requirements FR-GSM-3: The system shall allow analyst to classify goals.

Goals Classify goals according to predefined methods.

In this scenario, Event (1) is an obvious select DB operation and Event (3) is actually an

update DB operation. Event (2) is a local action that does not involve DB operations, so there is

no need to specify it in access control policies. Thus, the database actions, shown in Table 4.5,

can be derived from this example.

92

Table 4.5 Subjects and Actions Identified from SPRAT Requirement FR-GSM-3

Source Subject Action

Event 1 Analyst Select

Event 2 Analyst N/A

Event 3 Analyst Update

4.2.2.3 Identifying Conditions

Step 2.3: Identify conditions under which a subject is allowed to perform an action on an object.

Defining complete and correct conditions for each access control rule is critical for

protecting the security and privacy of system resources. If conditions are not defined correctly,

things can go wrong and security and privacy breaches may happen. Defining complete

conditions for access control policies is the most challenging part of the specification process

based on our experience. It is very difficult to evaluate whether the conditions defined for an

access control rule are sufficient to protect the data from unauthorized access, because it is very

difficult to evaluate whether a set of access control policies is complete or not. Although we

cannot guarantee the following heuristics will identify all conditions, our studies to date show

that their use does ensure better coverage.

There are explicit conditions and implicit conditions. Explicit conditions are clearly defined

as constraints or pre-conditions in requirements specifications, for example, temporal constraints

and location constraints. Heuristic IHcond1 helps capture this kind of conditions.

IHcond1: When a requirement specifies constraints (e.g., if, unless, when, during, before, and after), specify the

constraints as a condition in the resulting AC rule.

Consider TDG requirement 2.5.2:

TDG 2.5.2: The system shall allow border immigration agents (BIAs) at point-of-entry

(POE) stations to establish a new record on the watch list for a traveler

identified as exhibiting suspicious behavior if none currently exists.

93

In this example, if none currently exists is a constraint for border immigration agents

inserting a new record on the watch list. This constraint must be specified in the condition

element of the derived AC rule.

IHcond2: When a scenario contains pre-conditions, it is helpful to examine these pre-conditions and specify

those that fall within the scope of access control as a condition in the resulting AC rule.

Consider the scenario shown in Table 4.4 (see page 91), the pre-condition for this scenario is

“Goals exist in the system and the classification method is defined.” The first part of the pre-

conditions—“goals exist in the system”—should be specified as a condition for the resulting

access control rules.

Defining implicit conditions is a process of exploration and discovery. Implicit conditions

are trickier to identify than explicit conditions. We provide the following heuristics that help

analysts discover implicit conditions. There are six kinds of constraints that are useful for

identifying conditions: authentication constraints, contextual constraints (temporal, location,

relationship, affiliation, attribute, and state), usage constraints, database constraints, security

constraints, and privacy constraints (purpose, recipient, and consent). Each of these kinds of

constraints is defined below.

IHcond3: (Authentication constraints) If access to the requested data requires authentication, then define this

fact as a condition in the resulting AC rule.

Authentication constraints reflect the need for a subject to be authenticated before data

access can be granted. For example, in both the SPRAT and the TDG, all users must be logged in

before they can access any data in the system. Thus, user is logged in must be specified as a

condition for all access control rules.

IHcond4: (Contextual constraints) If the context of an access request plays a role when making grant/deny

decisions, these contextual constraints should be specified as conditions in the resulting rule.

94

Contextual constraints reflect the need to consider the context of an access request when

making grant/deny decisions, such as the time of the access request or the location from which

the access request is made. The HIPAA security regulation [HIP96] (Section 142.308(c)(1)(i)(B))

requires the use of either (1) user-based access control, (2) role-based access control, or (3)

context-based access control. Context-based constraints are often specified in the condition

element of access control rules. Beznosov summarizes several kinds of context information that

are important to access control in the U.S. healthcare domain [Bez98]. These contexts not only

apply to the healthcare domain, they also generally apply to other domains (e.g. e-commerce,

finance). There are six kinds of contextual constraints for an access request that are defined in

ReCAPS: temporal constraints, location constraints, relationship constraints, affiliation

constraints, attribute constraints, and state constraints. Each of these kinds of contextual

constraints is defined as a sub-heuristic below.

IHcond4.a: (Temporal constraints) If a data access is restricted by time or date constraints, specify them as

conditions in the resulting AC rule.

Temporal constraints specify time or date related restrictions that must be enforced before

data access can be granted. For example, in healthcare applications, time constraints are often

defined for shift-related positions such as nurses. In another e-commerce example, users of

CARFAX (an online company that provides detailed Vehicle History Reports to paid customers)

can only access the system for a period of three months.

IHcond4.b: (Location constraints) If a data access is restricted by any location constraints, specify them as

conditions in the resulting AC rule.

Location constraints specify a particular location from which the subject can be granted

access to a resource. Given the requirement “A doctor cannot access medical records of patients

whom he/she is not responsible for unless the request comes from the emergency room,” request

95

comes from the emergency room is a location constraint that must be specified in the access

control rule.

IHcond4.c: (Relationship constraints) If there are any relationship constraints between the subject and the

object, specify them as conditions in the resulting AC rule.

Relationship constraints specify a specific relationship between the subject and the object for

an access request. An example relationship that is very important in privacy protection is

ownership. For example, in e-commerce systems, when a user logs in to update his/her personal

information, he/she should be able to update only his/her own personal information, even though

in the database all users’ personal information may be saved in the same table. The relationship

between the subject and the object (e.g., the subject is the owner of the requested data) must be

specified as a condition in the resulting AC rule. (Note: One may argue that after personal data is

submitted to an organization, the organization owns the data instead of the individual that the data

is about. This is a valid argument but the discussion is beyond the scope of this dissertation.)

In healthcare applications, the relationship between the subject and the data subject (i.e., the

person that the data is about) often needs to be considered when making authorization decisions.

For example, if a healthcare staff (e.g., a nurse) is explicitly assigned to take care of a patient,

then she may be allowed to access that patient’s medical records. Thus, “responsible for” is a

relation that must be specified as a condition in the resulting AC rule.

IHcond4.d: (Affiliation constraints) If there are affiliation constraints for the subject, specify them as conditions

in the resulting AC rule.

Affiliation constraints specify a subject’s corporate, organizational, or group affiliation. For

example, if the subject must be affiliated with a group, department, or organization, to access

some resources before access is granted, this must be specified as a condition in the resulting AC

rule. For example, “all users that are affiliated with the university are allowed to access the

96

university library” specifies the required affiliation of all subjects that can be granted access to

the library. Note that the affiliation constraints are similar to the recipient constraints (see

IHcond8.b, page 101) as explained in that section.

IHcond4.e: (Attribute constraints) If there are any attribute constraints to the subject, specify them as conditions

in the resulting AC rule.

Attribute constraints specify a subject must possess some attribute (e.g., digital certificates)

for an access request to be granted. For example, if the subject is a certified professional by some

organization, then he/she is allowed to access some system resources.

IHcond4.f: (State constraints) If access request can only be granted when the system is in a specific state, then

specify this state constraint as a condition in the resulting AC rule.

State constraints limit data access based upon the reaching of some specific state within the

system. For example, if the current state of a web server (e.g., number of incoming requests per

second) has exceeded a certain limit, then any new access request will be denied. Such state

limits should be expressed as a condition in the resulting AC rule.

For another example, consider SPRAT requirement FR-PM-3 again:

SPRAT FR-PM-3: The system shall support multi-user analyst results comparison.

As previously mentioned (see Table 4.2), before a Project Manager can compare analysts’

goal classification results, analysts must have completed their classifications. This is a state that

the system must be in when a Project Manager compares goal classification results. Thus, one

condition for the AC rule that allows Project Manager to compare analysts’ goal classification

result is that analysts have completed their classifications. Otherwise, the data required for the

comparison would not be available. Note that this constraint can also be derived from the pre-

conditions of the scenario described in Table 4.2 (see page 89) using heuristic IHcond2 . This

suggests that different analysts can reach the same condition using different heuristics.

97

IHcond5: (Usage constraints) If there are any usage constraints that restrict the subject’s access to the object,

specify the constraints as conditions in the resulting AC rule.

Usage constraints specify restrictions on how a subject may access the requested object, such

as the number of times the subject can access the object. In e-commerce systems, usage-based

information often plays a role in access control [PS02, PS04]. For example, a paid user may be

allowed to download music ten times. This usage information must be specified in the condition

of the corresponding access control rules.

IHcond6: (Database constraints) If the resulting rule is a database-level AC rule, it is helpful to consider whether

there are any database constraints for the action. If yes, specify the constraints as conditions in the rule.

Database constraints specify restrictions on a database access request, such as when there

can be no duplicate entry in a table. For example, when an analyst tries to insert a new goal in the

repository, a condition for this access rule is that the goal does not exist in the repository.

IHcond7: (Security constraints) If is helpful to use general security principles such as least privileges and

separation of duties to construct misuse cases that a user may use to exploit the capabilities for hostile

intent. Corresponding security constraints should thus be specified in the resulting AC rule.

Security constraints specify restrictions that are based on general security principles such as

least privileges and separation of duties. These security principles are important to prevent fraud

and errors. Again, consider SPRAT requirement FR-PM-3 (see page 88). According to FR-PM-3,

the Project Manager is allowed to view goal classification results. Project Manager and Analysts

are not mutually exclusive roles, which means a user can assume both roles at the same time. We

thus ask “can a Project Manager exploit the capability for his/her own good?” and construct the

misuse case shown in Figure 4.3. Note that the misuse case diagram does not employ the standard

use case diagram. In this misuse case, user A assumes both roles: Project Manager and Analyst,

whereas user B assumes only the Analyst role. The attack pattern is shown as Step (1) – (3) in

Figure 4.3.

98

Step 1: B classifies goals,

Step 2: A views B’s classification results

Step 3: A classifies goals.

This is not desirable because A would be biased if he/she saw B’s classification results

before he/she has classified the goals. Misuse case analysis allowed us to specify a deny rule for

Project Manager to view goal classification results. We document this as Rule 2 in Table 4.6.

Table 4.6 Access Control Rules Derived from the Misuse Case

Policy

No

Rule

No

Mode Subject Action Object Condition Sources

1 Allow Role

(Project

Manager)

Read goals.taxonomy user.loggedIn=TRU

E

FR-PM-31

2 Deny Role

(Project

Manager)

Read goals.taxonomy Role (user, Analyst)

= TRUE AND

user.scheduledToCla

ssify = TRUE AND

user.classifyingFinis

hed = FALSE

FR-PM-3

(1) B: classify

goals

(2) A: View B’s

classification results

(3) A: classify goals

Analyst

Project

Manager

User A
User B

User assumes

role

Privilege from

role

Role

Key:

User performs

action

Figure 4.3 A Misuse Case for Project Manager

99

IHcond8: (Privacy constraints) If data can only be accessed for a specific purpose, by a certain group of people,

or after consent has been obtained, these privacy constraints should be specified as conditions in the

resulting AC rule.

Privacy constraints specify restrictions to data access requests in which the data are

particularly sensitive (e.g., medical history, financial data). There are three kinds of privacy

constraints: purpose constraints, recipient constraints, and retention constraints that are defined in

ReCAPS. These constraints correspond to the three privacy elements defined in P3P: purpose,

recipient, and consent [P3P05]. Another privacy element retention is often specified as

obligations in access control rules as discussed in Step 2.4.

IHcond8.a: (Purpose constraints) If specific data can be used for only certain purposes, then specify these

purpose constraints as conditions in the resulting AC rule.

Purpose constraints specify that data can be used only for specific purposes. An

organization’s privacy policy often states that specific types of data will only be used for specific

purposes (e.g., telemarketing, payment, research and development). The actual data practices in

the organization must always adhere to these purposes. This is the purpose binding principle for

privacy [Fis01]. To enforce the purpose binding privacy principle in access control, two kinds of

purpose are identified: consumer data purpose and business purpose. Consumer data purpose is

consented to by a consumer and recorded by a data collector and expresses how the

corresponding collected data can be used. Business purpose is the actual reason for a business

task that involves certain consumer data accesses or operations.

Customer consented data purposes are usually high-level and the number of such purposes is

limited. According to the Working Draft P3P1.1 Specification [P3P05] released by the World

Wide Web Consortium (W3C) on 4 January 2005, there are only 12 purposes defined (see Table

2.1 on page 39). Of course, each organization can define its own vocabulary for data purposes,

instead of using the purposes defined in P3P1.1.

100

Business purposes are defined in each organization according to its business process. They

may be defined more specifically than data purposes. For example, the contact purpose may be

divided into three categories: phone/fax contact, postal contact, and email contact. However, no

matter how business purposes are defined, they must be connected with data purposes. We

introduce the purpose hierarchy to support this.

A purpose hierarchy is a structure that organizes purposes and models purpose relations.

Purpose relations are partial ordered relations. A partial order is a reflexive, transitive, and anti-

symmetric relation. Partial ordered relations support complex purpose hierarchies, such as tree,

inverted tree, and lattice structures. We employ the use of a purpose hierarchy to map high-level

data purposes to low-level business purposes. If an operation is allowed for a given purpose, it is

also allowed for all sub-purposes. Figure 4.4 illustrates a sample hierarchy for the marketing

purpose. In this example, email marketing, postal marketing, and phone/fax marketing are sub-

purposes of both direct marketing and third-party marketing.

Purpose hierarchy allows unambiguous purpose lookup from business purposes to data

purposes. The following is an example of an ambiguous purpose lookup. If a customer consents

to have his personal information used only for email marketing purpose, the access decision of an

operation (i.e. whether the data access request is granted or denied) with the purpose of direct

marketing cannot be determined. This is because email marketing belongs to both the direct

marketing and third-party marketing purposes. The system cannot determine its exact parent

purpose.

Figure 4.4 Purpose Hierarchy for Marketing

Direct

Marketing

Email

Marketing
Postal

Marketing

Phone/Fax

Marketing

Third-Party

Marketing

Marketing

101

The above problem can be solved by placing restrictions on the purpose hierarchy. We only

allow business purposes to be mapped to the lowest level of the purpose hierarchy. The purpose

for an operation must be defined as specifically as possible. In this way, data purposes are either

in the same level as business purposes or in a higher level. This ensures there are no ambiguous

purpose lookups from business purposes to data purposes.

Next, we define the following operator << to evaluate the relation between two purposes:

Definition: Given two purposes p1 and p2, we claim purpose p2 contains p1 (or purpose p1

belongs to p2) if, and only if, p2 is on the path from the root of the purpose hierarchy down to p1

or p2 is the same as p1, which is represented as p1 << p2.

Based on the above definition of purpose hierarchy and purpose comparison operator, we

can specify purpose constraint in the condition element of an access control rule to enforce

purpose binding as follows:

action.BusinessPurpose << object.DataPurpose

Consider the following example: A particular piece of data (e.g., credit card information)

can be used only for payment (data purpose). Given the condition in the ACP rule above, a data

access request will be evaluated by an enforcement engine; the business purpose will be checked

against the requested object’s data purpose––payment.

IHcond8.b: (Recipient constraints) If only some recipients can access certain data, then specify recipient

constraints as conditions in the resulting AC rule.

Recipient constraints specify which group of people can access the specified data. This

heuristic is very similar to the affiliation constraints defined in IHcond4.d, which specify the

affiliation of a subject (e.g., a group, department, or organization). The difference is that in the

context of privacy protection, there is a set of predefined recipients (see Table 2.3 on page 41),

whereas the affiliation of a subject may be defined in a specific system.

102

Similar to the affiliation constraints, recipient constraints may be defined as this: the subject

of the AC rule belongs to one of the predefined recipients categories.

IHcond8.c: (Consent constraints) If certain data can be accessed only after consent is obtained, then specify

consent constraints as conditions in the resulting AC rule.

Consent constraints require a subject to acknowledge consent for their information to be

used in some specific way or purpose before data access can be granted for that purpose. For

example, certain medical data can be used for research and development purpose only if written

customer consent is obtained. Thus, obtaining customer written consent should be specified as a

condition in the resulting AC rule.

The heuristics discussed above provide a general taxonomy of common types of constraints.

These heuristics can serve a checklist that helps analysts define conditions for access control

rules.

4.2.2.4 Identifying Obligations

Step 2.4: Identify obligations that the subject or system must fulfill if an access request is

granted.

As previously stated, obligations are actions that must be fulfilled if an access request to

system resources or data is to be granted. Obligations are often triggered by some event. There

are two kinds of obligations: security obligations and privacy obligations.

IHoblig1: (Security obligations) If an auditing trail must be recorded upon access to certain data, recording

auditing trails must be specified as an obligation in the resulting AC rules.

Security obligations define actions that must be taken after an access request is granted for

the sake of additional security, such as accountability. For some classified information, the

accountability of information access is very important. Thus, every access to this information

103

must be logged in the auditing trails. In other cases, only certain kinds of accesses (e.g., update

and delete) are important and should be recorded. Thus, logging data accesses in these cases

should be specified as obligations for the resulting AC rules.

IHoblig2: (Privacy obligations) It is helpful to evaluate whether there are any privacy obligations in the resulting

AC rules.

Privacy obligations specify actions that must be fulfilled if an access request is granted when

the data is sensitive and therefore requiring special protections. There are several sub-heuristics

to aid analysts in identifying privacy obligations:

IHoblig2.a: If the subject is required to update/delete the data after access, specify updating/deleting data as

obligations in the resulting AC rule.

Consider the following requirement: require affiliates to destroy customer data after 30

days. In this example, deleting customer data is a privacy obligation that must be specified in any

corresponding AC rules.

IHoblig2.b: If the subject is required to manipulate the data after access, such as encrypting/decrypting and

anonymizing, specify the manipulation action as obligations in the resulting AC rule.

In some applications, data must be encrypted from any access after being used for a certain

number of times in a specific timeframe. Thus, encryption is a privacy obligation for the

corresponding AC rules.

IHoblig2.c: If the subject is required to notify data subjects after access, specify notification as obligations in

the resulting AC rule.

For example, send a report of customer data access logs to customers every month may be a

privacy obligation for some AC rules.

104

IHoblig2.d: If the subject is required to obtain consent or authorization after access, specify obtaining consent

or authorization as obligations in the resulting AC rule.

In some cases, data may be used for some purpose if consent can be obtained within a

certain period of time. This is different from the consent constraints discussed in heuristic

IHcond8.b. In a consent constraint, consent must be obtained before a data access request can be

granted, whereas in a consent obligation, a data access request can be granted and consent can be

obtained later.

4.2.2.5 Summary

This section provided a set of heuristics to help analysts identify AC elements from source

documents and specify AC rules. It is important to document the source requirement from which

an AC rule was derived because traceability is a primary design principle for this approach. With

tool support, the traceability between requirements and access control policies are maintained

automatically.

During Step 2, analysts produce a set of candidate AC rules that need to be refined in Step 3.

4.2.3 Access Control Rule Refinement

The access control rules derived from different sources in Step 2 may be redundant or

conflict with one another. Thus, these AC rules must be reconciled. Any redundancy must be

removed and all conflicts must be resolved.

Step 3: Refine access control rules.

Analysts conduct the following analysis for each subject to refine AC rules.

105

Step 3.1: Sort the AC rules according to subjects and objects.

Grouping rules according to objects allows analysts to identify redundant and conflicting

rules more easily, as described in Steps 3.2 and 3.3.

4.2.3.1 Identifying and Removing Redundancies

Step 3.2: Merge redundant AC rules and create new rules, if necessary.

RHredundancy1: If one rule subsumes another rule, then the second rule is redundant and should be removed.

Consider the following SPRAT requirements:

SPRAT FR-GSM-12: The system shall be able to display the context of a goal.

SPRAT FR-GSM-16: The system shall allow analysts to view elements of a goal

returned by a query.

From both requirements, the following rules can be derived:

Rule 1: Allow an Analyst to view the context of a goal.

Rule 2: Allow an Analyst to view the elements of a goal.

Because context is a goal element, Rule 2 actually subsumes Rule 1. Thus, Rule 1 is

redundant and should be removed.

RHredundancy2: Two logically equivalent rules that are specified in different modes (i.e., one allow rule and one

deny rule) are redundant. One of them must be removed.

This kind of redundancy stems from the mode of an access control rule because an allow

rule can be specified as a deny rule if the conditions are reversed and vice versa. Consider the

following two rules:

Rule 1: allow A to do B if condition C is satisfied

Rule 2: deny A to do B if condition C is not satisfied.

106

These two rules are logically equivalent and thus redundant. Only one is necessary. As a

general rule, analysts should keep the rule that is specified from the positive perspective (i.e.,

mode allow) and remove the deny rule. This is because by default an enforcement engine will

deny an access request if no rule is matched during the checking. Additionally, the allow rule

contains important access information, If deleted, valid access request may be denied (see

example on page 147). Sometimes combining both modes makes it easier to specify an access

control policy (see RHconflict2, page 108). Note Rule 1 and Rule 2 are not always equivalent. In the

security community, researchers have proposed provisional authorizations [JKS00], in which not

satisfying a condition does not necessarily lead to the deny of an access request. In this

dissertation, we do not consider this special case.

RHredundancy3: If two rules have different (not conflicting) conditions but the same other elements, then combine

the two conditions in one rule and remove the other rule.

In this case, combining the conditions means the conditions in both rules must be satisfied.

For example, in the SPRAT, there are two rules:

Rule 1: Allow an Analyst to view goals in a project if the Analyst is logged in.

Rule 2: Allow an Analyst to view goals in a project if the Analyst is assigned to this

project.

Analysts can remove the redundancy by combining the two conditions:

Rule 3: Allow an Analyst to view goals in a project if the Analyst is logged in and the

Analyst is assigned to this project.

RHredundancy4: Design decisions often introduce new rules and cause some candidate rules to be redundant.

Redundant rules must be removed.

For example, in the SPRAT, from the SRS the following three rules for role System

Administrator can be derived:

107

Rule 1: Allow System Administrator to create Project Managers.

Rule 2: Allow System Administrator to create Analysts.

Rule 3: Allow System Administrator to create Guests.

Because Project Managers, Analysts and Guests are roles in RBAC, we decided to employ

RBAC to control users’ access to data. Under this decision, two new AC rules for role System

Administrator can be created:

Rule 4: Allow System Administrator to create user accounts.

Rule 5: Allow System Administrator to assign roles to users.

In this case, rules 1–3 become redundant and need to be removed. In this way, the specified

rules are consistent with the design decision and more flexible than the candidate rules.

4.2.3.2 Identifying and Resolving Conflicts

Step 3.3: Reconcile any conflicting AC rules.

If the requirements or high-level policies from which AC rules were derived are in conflict

with one another, the resulting AC rules may conflict as well. Thus, any conflicts must be

resolved at this stage of the analysis. There are three kinds of conflicts that arise from the mode,

object and condition of AC rules.

RHconflict1: If two rules have the same elements but have conflicting modes, then this is a modality conflict.

Resolution of this kind of conflicts needs to go back to the sources from which these rules were derived.

In one rule the subject is allowed to perform an action on an object, while in another rule, the

subject is denied from performing the same action on the same object. This type of conflicts

results from sources and can be resolved by removing one of the rules that is not true. Before

resolving the conflict in the rules, analysts need to resolve the conflicts in the sources. Sometimes

they need to consult stakeholders to decide which is correct and which is not.

108

RHconflict2: If two rules define conflicting privileges for the same subject on two objects, in which one object

subsumes the other object, then this is a partial conflict. There are two ways to resolve this kind of

conflicts: (1) specify separate rules for each part of the object; or (2) group rules into an access control

policy, in which every rule must be evaluated and satisfied for an access request to be granted.

For example, in the SPRAT project, classification is an attribute of goals. However,

classification and goals have different access permissions for Guests as shown below:

Rule 1: Allow Guest to view goals.

Rule 2: Deny Guest to view classification of goals.

Analysts can resolve this conflict in two ways.

(1) Divide Rule 1 into several separate policies as follows:

Rule 1: Allow Guest to view elements of goals other than classification.

Rule 2: Deny Guest to view classification of goals.

(2) Group both rules into an access control policy. Both rules in the policy must be evaluated

during enforcement. Table 4.7 shows two rules that are grouped together to resolve such kind of

conflicts.

Table 4.7 Grouping Access Control Rules into a Policy to Resolve Conflicts

Policy

No

Rule

No

Mode Subject Action Object Condition Sources

1 Allow Role

(Guest)

Read Goals user.loggedIn=TRUE FR-UA-41

2 Deny Role

(Guest)

Read goals.taxonomy user.loggedIn=TRUE FR-UA-4

109

RHconflict3: If two rules have conflicting conditions but the same other elements, then this is a conditional

conflict. Resolution of this kind of conflicts needs to go back to the sources from which these rules were

derived.

In this case, analysts cannot simply combine the conditions because the conditions conflict

with each other. They have to go back to the sources from which the rules were derived.

Sometimes they need to consult stakeholders to decide which is correct, which is not. Only one

rule can exist.

Conflict identification is simplified by analyzing the grouped policies; however, the

ReCAPS method only detects explicit conflicts among the rules. More rigorous conflicts analysis

is beyond the scope of this dissertation.

4.2.4 Grouping AC Rules into ACPs

After the previous ACR identification, specification, and refinement steps, analysts have

produced a set of access control rules. Recall that an access control policy is comprised of a set of

access control rules. Upon completion of Step 3, all AC rules must be grouped into policies. The

purpose of grouping rules into policies is to facilitate the implementation of rule enforcement.

Thus, grouping is based on the decision on how to implement these AC rules in software design.

Access control can be implemented at different levels, e.g., database-level or application-

level. The rules/policies listed in Table 4.6 and Table 4.7 are database-level rules/policies; each

action in an AC rule is a DB operation and each object is an object in the DB. ReCAPS allows

software engineers to specify database-level and application-level access control policies, which

are called DLP and ALP respectively. This section presents ways to group AC rules into policies

so that these policies can be implemented at application level.

110

Step 4: Group logically connected AC rules into ACPs.

A set of rules is said to be logically connected if the rules have the same subject, action,

object, or any two of these. Thus, there are six possible ways in which AC rules may be grouped:

! Group all AC rules that have the same subject into a policy;

! Group all AC rules that have the same action into a policy;

! Group all AC rules that have the same object into a policy;

! Group all AC rules that have the same subject and object into a policy;

! Group all AC rules that have the same subject and action into a policy; and

! Group all AC rules that have the same action and object into a policy.

It is important to note that it is possible that a rule may be grouped into several policies

according to different grouping methods. For example, analysts can group all AC rules for a

subject’s privileges to access an object into a policy according to the fourth grouping method.

Alternatively, analysts could group all AC rules for this subject into an ACP according to the first

grouping method. In this case, some rules may belong to two policies. It is more often the case

that AC rules are grouped according to the fourth method as prescribed by GHgrouping1.

GHgrouping1: To specify application-level policies, it is often useful to group all the rules that concern a subject’s

privileges to an object into one policy.

The rationale behind this heuristic is that all privileges for a subject to access an object often

are often implemented in the same function. For example, in the SPRAT, there are several AC

rules that are defined for role System Administrator, concerned with user account management, as

shown in Table 4.8.

111

Table 4.8 ACPs for Role (System Admin) in the SPRAT Case Study

Policy

No

Rule

No

Mode Subject Action Object Condition Sources

1 Allow Role

(System

Admin)

Insert Users user.LoggedIn=true

and the username does

not exist in the

database

FR-UA 1

2 Allow Role

(System

Admin)

Select Users User.LoggedIn=true

and the username

exists in the database

FR-UA 1

3 Deny Role

(System

Admin)

Select users.pass

word

NULL FR-UA 1

4 Allow Role

(System

Admin)

Update Users user.LoggedIn=true

and the username

exists in the database

FR-UA 1

5 Allow Role

(System

Admin)

Delete Users user.LoggedIn=true

and the username

exists in the database

FR-UA 1

6 Deny Role

(System

Admin)

Delete Users Current login user’s

u s e r n a m e = =

users.username

FR-UA 1

1

… …

In the actual system, user account management is implemented in a single Java class (i.e.,

UserMgt class). Thus, the rules shown in Table 4.12 can be implemented at application-level by

controlling users’ access to the UserMgt class. Thus, these rules can be refined into the following

access control policy:

ALP 1: Allow a user to access Java class UserMgt.java if Role(user) = System

Administrator AND user.loggedIn = TRUE

This policy results in fewer conditions to be checked during run time, making them more

efficient and easier to implement. Basically, only user’s role and login status need to be checked

during enforcement. The other aspects of access control (e.g., System Administrators cannot view

112

users’ passwords (rule #3), System Administrators cannot remove themselves (rule #6)) are

encapsulated within the UserMgt class.

GHgrouping2: If a set of rules are grouped together to resolve conflicts (as described in Step 3.3), these rules

must always be grouped together.

As shown in Table 4.7, rules #1 and #2 are grouped together to resolve the partial conflict.

Both rules in the policy must be evaluated during enforcement. No matter which policy rules #1

is grouped into, rule #2 must always be grouped in that same policy.

After Step 4, analysts produce a set of ACPs, which are the final outputs of the ReCAPS

method.

4.2.5 Summary

In this section, we detailed the ReCAPS analysis steps and heuristics. Analysts start from

requirements specifications and other available source documents. They go through the

identification, specification, refinement, and grouping steps and produce a set of ACPs at the end

of the analysis. The identification step involves requirements analysis, such as scenario analysis;

and the grouping step involves design analysis. This demonstrates how the ReCAPS method

bridges the gap between requirements analysis and software design.

Analysts often make design decisions during the entire ACP specification process. For

example, the SPRAT SRS clearly states that the system shall support four system access levels:

administrator, project manager, analyst and guest. Given that access to the system is restricted to

these four levels (or roles), RBAC seems suitable for implementing access control. In our

analyses, we made additional design decisions. For example, instead of building a role hierarchy,

we ensured that the privileges assigned to each role never overlap. At which level to implement

access control is another design decision made during the analysis. Obviously, design decisions

113

have an impact on how ACPs are specified. It is important to document these design decisions as

well when performing the analysis.

The main artifacts produced by analysts during the ACP specification process are a set of

ACPs, documented design decisions, as well as augmented software documentation.

4.3 Tool Support

Part of the research involved the development of a software tool, the Security and Privacy

Requirements Analysis Tool (SPRAT), to support the ReCAPS method. The tool is presented in

this section as an enabling technology rather than a major contribution of the thesis. The author of

this dissertation was the chief architect for the tool and the developer for the ACP specification

module that supports ReCAPS. He also co-authored the software requirements specification

(SRS) document and co-designed the database.

4.3.1 Overview

As mentioned in Section 3.1, SPRAT supports goal-based and scenario-based requirements

analysis and provides support for analyzing and specifying security and privacy requirements,

policies, as well as ACPs. It builds upon and extends two existing tools, the Privacy Goal

Management Tool (PGMT) [AEB04], which was previously developed by the author of this

dissertation independently, and the Scenario Management and Requirements Tool (SMaRT)

[SAA03].

Framework

The underlying idea behind SPRAT is to provide an integrated framework to support goal

analysis, scenario analysis, requirements analysis and specification, policy analysis and

114

specification in a single project and support the traceability from one artifact to another (e.g.,

from an access control policy to a requirement, from a scenario to a goal). Figure 4.5 illustrates

the elements that are maintained in the SPRAT.

 In a project, analysts start from various available source documents, such as customer

interview transcripts, existing diagrams, textual statements of needs, and high-level security /

privacy policies, to derive goals. Then from these goals, they can use scenario analysis to

elaborate goals and specify requirements based on goal and scenario analysis. Analysts can

specify access control policies from requirements and other source documents as discussed in this

dissertation. During this specification process, they can still employ goal and scenario analysis to

help elaborate requirements and identify access control elements. The arrows in Figure 4.5 show

the traceability links across software artifacts.

Essentially, SPRAT is not limited to security and privacy requirements analysis. It can also

be used as a generic requirements and policy analysis and specification tool.

Users

It is assumed that the typical SPRAT user will be an experienced requirements engineer with

a considerable understanding of goal-based analysis techniques, scenario-based analysis

Figure 4.5 Elements Maintained in the SPRAT

Project

goals

scenarios

requirements

ACPs

documentation

115

techniques, and the ReCAPS method. It is also assumed that the typical SPRAT user will have a

considerable understanding of basic security concepts, especially in access control.

Potential users of the tool include, but not limited to, university lecturers and students,

researchers in software engineering and security, software engineers, requirements engineers,

security engineers, security administrators, security and privacy officers, and government law

enforcement officers.

Modules and Features

The main modules in the SPRAT are as follows:

! User management

! Document management

! Goal analysis and management

! Scenario analysis and management

! Requirements analysis, specification and management

! Access control analysis and policy specification

The tool comes with a default administrator account, which can be used to create other

accounts. In the user management module, administrators can create new user accounts, reset user

passwords, remove existing users, and assign roles to users. Users can update their personal

information, such as passwords. Project managers can assign/revoke analysts to/from a project

that they are responsible for.

In the document management module, analysts can import new documents or input new

documents to the repository, and specify the attributes of the document, such as version, date,

description, and domain. They can also remove documents from the repository.

In the goal analysis and management module, analysts can create new goals from other

sources, update and delete existing goals. Analysts can also view all the goals derived from a

certain source document in a project, such as a privacy policy. Analysts can classify goals

116

according to predefined classification methods. They can also create new classification methods.

Additionally, analysts can define the keywords used to specify goals.

In the scenario analysis and management module, analysts can create new scenarios from

other sources, update and delete existing scenarios. Analysts can view all the scenarios derived

from a certain source document or all the scenarios associated with a goal/requirement. Analysts

can specify normal flows, alternate flows, and iterative flows of events in a scenario.

In the requirements analysis, analysis and specification module, analysts can create new

requirements, update and delete existing requirements. Analysts can view all the requirements in

a project, or all other artifacts that are associated with a specific requirement (e.g., all the goals,

scenarios, and ACPs associated with a specific requirement).

In the access control analysis and policy specification module, analysts can derive access

control rules from various source documents. They can create new access control elements (i.e.,

subjects, actions, objects, conditions, obligations), edit and delete existing elements. Analysts can

view all the rules derived in a project and refine these rule into policies.

Traceability is a prominent feature of the SPRAT. From a certain artifact (e.g., a

requirement), analysts can easily trace all the other artifacts (e.g., goals, scenarios, ACPs) that are

associated with this artifact.

4.3.2 ACP Specification Module

The ACP specification module was developed independently by the author of this

dissertation to support the two main activities described in ReCAPS: ACR identification and

ACR refinement.

117

ACR Identification

In the ACR identification interface, analysts can choose which source document to work on:

requirements specifications, or high-level security and privacy policies. Then the system will

import the source statements one by one. Analysts may derive one or more AC rules from each

source statement. Figure 4.6 shows the interface for analysts to create new AC rules.

Our design principle for the SPRAT is to reuse all artifacts as much as possible. Thus, when

analysts are creating a new AC rule, they will specify each element for this rule. In our current

design, analysts will be able to select from a list of existing instances for each element (e.g.,

subject, action, and object, see drop-down boxes in Figure 4.6). Only when analysts cannot find

the appropriate instance from the list, they need to create a new instance for that element. As the

reusability increases, the efficiency of the identification process improves. Figure 4.7 shows the

interface for creating a new instance of subject. Each subject is either an agent, a role, or a group.

Figure 4.6 SPRAT Screen Shot for ACR Identification

118

Figure 4.7 SPRAT Screen Shot for Creating a New Subject

Figure 4.8 SPRAT Screen Shot for Viewing Source Detail

119

Figure 4.9 SPRAT Screen Shot for Refining ACRs

120

Figure 4.10 SPRAT Screen Shot for Viewing ACRs

121

Figure 4.11 SPRAT Screen Shot for Editing ACRs

Figure 4.12 SPRAT Screen Shot for Editing an Action

122

Each time analysts creates a rule, a traceability link is automatically created between the rule

and the source requirement (or statement) from which the rule was derived. This is very helpful

because it reduces the effort of documenting sources of AC rules. The left and right arrows at the

top-left corner in Figure 4.6 allow analysts to navigate between requirements or source statement.

All the rules that have already been derived from this source are listed in the table in Figure 4.6.

If an analyst quits the tool in the middle of the analysis process, the tool remembers the current

requirement or statement that the analyst is working on. Upon subsequent uses of the tool, the

analyst can perform access control analysis on the same document as during the previous session

because the tool automatically directs him/her to the requirement or statement at which he/she

stopped during the previous session. Additionally, analysts can click the “View Detail” button on

the top-right corner to view detailed information about the current requirement or source

document. From there analysts are able to trace to the other artifacts that are associated with this

requirement. Figure 4.8 shows an example of viewing details about the source. Additionally, if

the requirement is ambiguous, analysts may invoke scenario analysis module to author one or

more scenarios to elaborate the requirement. The integrative feature of the tool can be best

demonstrated in this way.

ACR Refinement

In the ACR refinement interface, analysts are able to view all the rules derived from source

documents in a project. They can sort the rules according to subject, action, object, and source.

By sorting rules, it is easier to identify redundant rules and conflicting rules. Figure 4.9 shows the

ACR refinement interface, which uses a tabular interface to list all the access control rules

identified in the current project. Each rule contains a rule ID, mode, subject, action, object,

condition, obligation, and source. The rules may be grouped into one or more policies as shown

in the first column in Figure 4.9. Analysts can double click on a rule to view the details of this

rule, as shown in Figure 4.10. Analysts can delete redundant rules or edit any selected rule. Figure

123

4.11 shows the interface of editing an existing rule. Analysts can edit also edit every element for a

rule as shown in Figure 4.12. Note that changing an element will affect all the rules that contains

this element. Additionally, analyst can group several AC rules into a policy or ungroup the rules

in a policy. Unfortunately, the tool does not provide automated redundancy identification or

conflicts identification. The identification and resolution is done manually by analysts.

4.3.3 Design and Implementation

The SPRAT was developed as a standalone tool using pure Java language to support

multiple platforms. The development platform was Eclipse 3.0, an open source software

development tool.

SPRAT employs the traditional client/server architecture. All software artifacts, such as

goals, scenarios, requirements, ACPs are stored in a project repository using MySQL database.

SPRAT client connects to the database via JDBC connection driver. Clients can use a centralized

database server hosted at North Carolina State University to save their project artifacts. They also

have an option to save project artifacts in a local MySQL database.

There are several reasons that we chose database storage scheme instead of a local files

storage scheme.

First, centralized database storage allows easier team collaboration. Every software project is

developed by a team, not an individual. Thus, collaboration support is very important for a CASE

tool such as SPRAT. A centralized database can ensure the integrity of data. In a local storage

scheme, there is a huge problem of data synchronization across different local copies.

Second, project repository has better security and privacy protection in a database. In

addition to the authentication mechanism provided by the tool itself, the database management

system provides additional mechanisms to protect the project data, which is often proprietary.

These mechanisms include access control, encryption, and backup and recovery. If the project is

124

using local files storage, the only available mechanism to protect data is encryption, which

obviously increases the overhead significantly.

Third, the database storage scheme is more scalable and efficient than the local files storage

scheme. As mentioned previously, analysts often need to trace across multiple project artifacts.

This joint search can be easily achieved in a database system using standard SQL queries.

However, it is very inefficient to do a search across several files, especially when the file size is

large.

 The limitation of the database storage scheme is that the system requires the installation

and management of a database during deployment. This causes extra cost in hardware, software,

and human resources. However, given the fact that most computers nowadays are connected to

the Internet, this is not a problem. Clients can choose to use the centralized database server hosted

at North Carolina State University, instead of installing a local database server.

4.4 Summary

This chapter details the Requirements-based Access Control Analysis and Policy

Specification (ReCAPS) method in four steps, coupled with heuristics and examples in each step.

It is worth noting that some examples are not from the two formative studies due to the limited

scope of both studies—for example, the heuristics for defining context constraints and the

heuristics for identifying obligations in Section 4.2.2. Next chapter discusses the validation of the

ReCAPS process and heuristics via its application to two summative case studies and through

utilization of the method in an empirical evaluation.

125

Chapter 5

Validation

Practice is the criterion of truth.

—Karl Marx

What distinguishes a good software engineering method from other software engineering

methods is whether or not it has been validated on real systems. Validation is required before the

effectiveness and usefulness of a method may be determined. Software methods, such as the

Requirements-based Access Control Analysis and Policy Specification (ReCAPS) method, need

early validation while under development. The formative case studies, discussed in Chapter 3,

offer early and preliminary validation due to their central role in shaping the ReCAPS method. In

contrast, the summative case studies discussed in this chapter seek to validate the method

developed during the formative case studies. It is important to note that all four case studies (two

formative and two summative) involve operational systems, not constructed illustrations. The two

summative validation case studies discussed in this chapter are:

! the Surry Arts Council (SAC) Web enhancement project; and

! the NCSU College of Management (CoM) Event Registration System.

Additional validation in the form of an empirical evaluation, involving software engineering

graduate students at NCSU, and development of tool support were completed and are also

discussed in this Chapter. The ReCAPS software tool was employed during the NCSU CoM

Event Registration System case study, providing an additional level of validation.

It is important to clarify the measurement mechanism for the ReCAPS method in order to

appropriately frame the evaluation efforts discussed in this chapter. Basili’s Goal-Question-

126

Metric (GQM) Paradigm [Bas92, BCR94, SB99] is a proven software measurement approach and

endorsed by the Department of Defense and the Software Engineering Institute (SEI) in their

Practical Software and Systems Measurement workshop. This chapter employs the GQM

paradigm to discuss the evaluation efforts.

Our goals for the ReCAPS method are as follows:

! Provide prescriptive guidance on ACP specification for information systems;

! Specify better quality ACPs using ReCAPS than without method guidance;

! Provide traceability support between ACPs and other software artifacts; and

! Improve source documents by clarifying ambiguities and resolve inconsistencies across

source documents.

To determine whether or not the ReCAPS method meets the above goals, we ask the

following questions:

! Is there any existing method that provides prescriptive guidance on ACP specification

for information systems?

! What is the state-of-the-art for ACP specification in practice?

! How can we measure whether a method provides prescriptive guidance?

! What are the quality criteria for a set of ACPs?

! Is there any existing ACP specification method that provides traceability support

between ACPs and other software artifacts?

! How are the source documents improved as a result of the analysis?

Using the GQM paradigm, the next step is to define the metrics that need to be collected

during the evaluation studies in order to answer the above questions. The first two questions and

the fifth question were answered in Chapter 2 by surveying the literature. To answer the third

question (How can we measure whether a method provides prescriptive guidance?), we collect

the following qualitative and quantitative evidence from the case studies and the empirical

experiment:

127

! How do analysts feel about the analysis process and heuristics in the summative case

studies? This is collected via the lessons learned from each case study.

! How do analysts who are previously unfamiliar with the ReCAPS method feel about the

analysis process? This is collected via feedback from the empirical study participants.

! Do analysts who are previously unfamiliar with the ReCAPS method think the

heuristics useful for ACP specification? This is collected via feedback from the

empirical study participants.

! Are the heuristics reusable? This is measured by the number of times each heuristic was

applied in each case study.

The fourth question (What are the quality criteria for a set of ACPs?) is answered and

discussed in detail in Section 5.3.2 (see page 157). The sixth question (How are the source

documents improved as a result of the analysis?) is measured using the number of inconsistencies

identified between the requirements specifications and the database design in each case study.

This chapter discusses the Requirements-based Access Control Analysis and Policy

Specification (ReCAPS) method in the context of the two summative case studies and the

empirical evaluation, each of which seeks to validate the method. Sections 5.1 and 5.2 present the

two summative case studies, respectively. Section 5.3 presents the empirical evaluation. Our

discussion is based on the GQM paradigm.

5.1 Surry Arts Council (SAC) Web Enhancement

The objective of this case study was to formally validate the efficacy of the ReCAPS method

when used to specify access control policies for a web-based application.

The Surry Arts Council (SAC) is a non-profit organization in Mount Airy, North Carolina

that provides opportunities for the local community to experience high-quality performances and

instruction in the performing and visual arts. Surryarts.org is the Web portal for disseminating

128

information about the Council, such as information about arts events in the community. The SAC

contracted a group of students at North Carolina State University (NCSU) to enhance its website

with e-commerce functionality so that customers can purchase tickets, memberships and other

items online.

The SAC Web enhancement project (a.k.a., the SAC project) is a standard web-based

application, in which security and privacy are critical features. Customer personal information

(e.g., contact information, payment information, and purchase history) is considered sensitive

data that must be protected from unauthorized access. Thus, access control is important in this

project. Additionally, the SAC project is different from the two formative case studies in its

nature. The SPRAT project is a standalone software tool with limited scope in access control; and

the TDG project is a research prototype (rather than a fully functional system) that is being

deployed for preliminary use; whereas the SAC project is a real, deployed application in which

real customers’ data security and privacy are vulnerable. This characteristic makes the SAC

project an ideal case for validating the ReCAPS method.

5.1.1 Methodology and Case Study Artifacts

The SAC case study was conducted by one analyst, a PhD student, for approximately six

person-hours. The task of the case study was to derive database-level access control policies from

four available source documents for the SAC web enhancement project. The four source

documents used in this case study were:

! SAC Web Enhancement Software Requirements Specification (SRS), Version 1.9

! SAC Web Enhancement design document, Version 1.2 (including database schema

design)

! SAC Security Policy, Version 1.9

! SAC Privacy Policy, Version 1.4

129

In the two formative case studies the available documentation was limited. In contrast, three

additional kinds of source documents were available for use in this case study: design document,

security policy and privacy policy. This allowed us to validate the generality of the ReCAPS

method and the associated heuristics. By generality, we mean the applicability of the method and

associated heuristics within the context of broader and different kinds of software documentation.

The analyst in this study participated in the two formative case studies; thus, he was familiar

with the methodology—no time was need for initial methodology training. The analyst

commenced this case study by first focusing on the identification process. Similar to the previous

two formative case studies, the SAC case study was conducted manually (without software

support) and everything was documented on paper. For example, during the ACR identification

step, the analyst marked the elements on the SRS printouts using color coding and then

documented this information in an access control matrix in preparation for refinement in the next

step. Additionally, any observations or recurring questions were documented.

5.1.2 Lessons Learned

This section summarizes the lessons learned from the SAC case study. In Chapter 3, the

presentation of each case study also includes a discussion of the lessons learned. The difference

between the lessons learned outlined in this chapter and the lessons learned presented in Chapter

3 is that the lessons learned during summative case studies are oriented much more toward

validation than development. Thus, the following discussion seeks to provide examples that

confirm and augment the ReCAPS method presented in Chapter 4.

Understanding the scope of access control is important to ACP specification.

Heuristics IHscope1-3 have proven very useful in terms of identifying whether any access

control rules may be derived from available sources. In the SAC case study, all three heuristics

130

were applied frequently. For example, we cannot derive any access control rules from the

following SAC requirements:

SAC C 1.1: Surryarts.org is now hosted by ADVI, a local hosting company in Mount

Airy. The new site will operate on a new host that supports the new features.

Heuristic IHscope1 applies to this requirement. This requirement defines some external

environment settings that are not concerned with user access to sensitive information in the

system. No access control rules were derived from this requirement.

SAC C 1.2: Surry Arts Council personnel can only do credit card processing manually.

Heuristic IHscope2 applies here. Processing credit card transactions manually is not

enforceable by the system. Thus, no access control rules were derived from this requirement.

SAC NFR 1.1: The Surry Arts Council logo will be clearly visible on surryarts.org.

Heuristic IHscope3 applies here. This non-functional requirement defines the visibility feature

of the system. No access control rules were derived here, either.

Mapping objects identified in source documents to the database design yields missing items

or inconsistencies between the requirements and the database design.

Objects may be identified using heuristics IHobject1-2. Objects identified from source

documents may be ambiguous and must be mapped to an object in the database. Heuristic IHobject3

helps analysts clearly define the objects. This checking process yields several missing items and

inconsistencies between the requirements and the database design in the SAC case study. To list a

few of them:

! FR 1.3 describes that the system shall allow clients to purchase memberships on the

Surry Arts Council website (surryarts.org). However, in the useracct table of the

database design, there is no field that reflects whether or not a user is a member.

131

! In the Order/Payment Module, the design document states that if the user is not logged

in at a certain point, the system will ask the user to log in, create an account or purchase

the item without an account. However, in the database design, the email field in the

payments table is set to NOT NULL and references the email field in the useracct table

as a foreign key, which means every email address that appears in the payments table

must also appear in the useracct table. In other words, users must have an account to

make purchases. This is a conflict with the design document.

! FR1.9 and the Admin Module of the design document state that items in the Catalog

Module will be added, deleted and modified from the admin interface. Setting the

quantity to zero can disable an item. However, in the catalog table of the database

design, there is no field for the quantity of product items. The missing quantity field

was thus added to the Catalog table to resolve this conflict.

Scenario analysis may be employed to elaborate ambiguous requirements.

The requirements specification of the SAC project was ambiguous and poorly written.

Consider the following SAC requirement:

SAC FR 1.4: The system shall support online ticket sales.

This requirement is ambiguous. Heuristic IHsubject/action3 was used to elaborate the requirement.

We authored the following scenario shown in Table 5.1 to describe the shopping experience of a

client.

The scenario shown in Table 5.1 is not complete. For the sake of space, we intentionally

omitted some branches, such as the client quitting the system in the middle of the process and the

client not providing all required information in the required format. The scenario is specific

enough for analysts to derive AC elements and specify AC rules.

132

Table 5.1 Scenario Analysis for SAC Requirement FR 1.4

Scenario Name Clients purchase tickets on surryarts.org website.

Pre-conditions Surryarts.org website is up and functional.

Events (1) A client browses the surryarts.org website for recent shows and

ticketing information.

(2) System displays the requested information about the shows and

ticketing information

(3) The client requests to purchase a certain number of tickets for selected

shows.

(4) System puts the items in a shopping cart and shows a list of all items in

the cart.

(5) The client continues shopping. Go back to (1).

(6) The client proceeds to check out.

(7) System asks a) log in? b) create an account? c) check out without an

account?

(8) If the client selects a), then go to authentication scenario.

(9) If the client selects b), then go to user registration scenario.

(10) If the client selects c), then system displays a form that must be filled

by the clients about billing and shipping information.

(11) The client fills required information in the specified format and

submits the order.

(12) System displays a message that shows the order has been placed and an

automated email confirmation has been sent to the client’s email

address.

Post-conditions NULL

Obstacles Tickets are sold out.

Requirements FR 1.4: The system shall support online ticket sales.

Goals Buy tickets online on surryarts.org website.

133

Explicit constraints should be specified in the condition part of AC rules.

Heuristic IHcond1 helps analysts to define explicit conditions that are specified in source

documents. In the SAC case study, we applied this heuristic and specified explicit conditions.

Consider the following statement in the SAC design document:

SAC Order/Payment Module: Users will be able to view their previous orders (that were

not canceled or deleted) at any point to see the state of their orders or to print

an invoice.

The above statement contains a clause that defines that certain orders may be viewable to

users. Thus, orders not cancelled or deleted must be specified in the condition part of the rule that

allows users to view previous orders.

Implicit conditions are more challenging to identify than explicit conditions.

Recall that explicit conditions are constraints that are clearly defined in the requirements

specifications, whereas implicit conditions are implied but not explicitly defined. In the SAC case

study, we realized that identifying implicit conditions is challenging and analysts need

prescriptive guidance for how to identify them. To address this need, we created a set of

heuristics for identifying and specifying these conditions as completely as possible. The set of

heuristics (IHcond3-8) provides a classification of frequently used conditions that help analysts

ensure better coverage. In the SAC case study, we applied several heuristics (IHcond3 , IHcond4.c,

IHcond6, IHcond8.a) for identifying implicit conditions. Consider the two rules shown in Table 5.2.

Rule #1 allows users to create a new account by inserting an entry into the table useracct.

We applied heuristic IHcond6 to determine if any database constraint exists that applies to this rule

and identified a precondition: when a user tries to create a new account, the same account cannot

already exist in the system. Because email is the primary key in the table useracct, we define a

condition for this rule: “useracct.email does not exist.”

134

Table 5.2 Rule #1 and Rule #2 in the SAC Case Study

Rule #1 Rule #2

Mode Authorization: Allow Authorization: Allow

Subject Agent: user Agent: user

Action Database Action: insert Database Action: read

Object useracct useracct

Condition Useracct.email does not exist AND

user provides all required info in the right

format

useracct.email exists AND user is

logged in AND current login

user.email == useracct.email

Obligation NULL NULL

Sources FR1.5 FR1.5

Rule #2 allows users to view their account information. We applied heuristics IHcond3 and

IHcond4.c to identify implicit conditions. Specifically, authentication is required for all users

because of privacy concerns, thus account information is protected from unauthorized access via

authentication. Applying heuristic IHcond3 resulted in the following condition being specified:

“user is logged in.” Additionally, a user can only access his/her own account information, not

other users’ account information. Thus, the relationship constraint between the subject and the

object is important and must be specified as a condition in the rule. Otherwise, privacy breaches

may happen because any user can access any other user’s account information. Thus, we

specified the following condition after applying heuristic IHcond4.c: current login user.email ==

useracct.email. This condition defines the relationship constraint between the subject (i.e., current

login user) and the object (i.e., useracct) for an access request to be granted.

5.1.3 Summary and Discussion

Table 5.3 summarizes the results of the SAC case study. We did not make changes to the

analysis process. This implies the analysis process is quite stable at this time.

135

Table 5.3 Summary of the SAC Case Study Results

Pre-ReCAPS Post-ReCAPS

No. of tables / attributes in the DB design 5/59 5/61

No. of requirements 15 15

No. of modified requirements as a result of ReCAPS

analysis

N/A 15

No. of inconsistencies identified between the SRS and

the DB design as a result of ReCAPS analysis

N/A 7

No. of access control rules created during ACR

identification (after ReCAPS Step #2)

N/A 38

No. of final rules (after ReCAPS Step #3) N/A 34

No. of final policies (after ReCAPS Step #3) N/A 21

During the SAC case study, we created ten heuristics (SHDLP1-4, IHcond4.c, IHcond6, RHredundancy3,

RHconflict3 , GHgrouping1-2) based on the experience and lessons learned. Specifically, heuristics

SHDLP1-4 were created to specify database-level AC rules. Heuristic IHcond4.c was created to

specify relationship constraints between the subject and the object of an access control rule. This

was based on the fact that each user can only access his/her own personal information when

he/she logs into the SAC.org website, not other users’ personal information. Heuristic IHcond6 was

created to specify database constraints for database-level AC rules. Heuristics RHredundancy3 and

RHconflict3 were created to reflect the fact that conditions may cause redundancy or conflicts

between access control rules. Heuristics GHgrouping1-2 were created to group AC rules into ACPs.

Additionally, it became evident that heuristics were needed to aid in specifying special kinds of

conditions and obligations that had not been encountered in our formative case studies. Four new

heuristics were created to aid in this task (IHcond4-5, IHoblig1-2). Heuristics IHcond4-5 define a set of

constraints that often have an impact for an enforce engine to make grant/deny decisions on an

access request. Heuristics IHoblig1-2 define security and privacy obligations that may exist in access

control rules.

136

We observed that some heuristics were employed more often than others (see Table 5.4). It

is worth noting that this does not mean that the heuristics that were not employed in the SAC case

study are not useful; it simply depends on the context and characteristics of the target system.

Although some heuristics were not applied to the SAC project, they did prove useful during the

formative case studies. Thus, we fully expect them to be valuable for analyzing other systems that

are more similar in nature to the systems analyzed during our formative analyses. Table 5.4

shows that a large number of the ReCAPS heuristics were applied at least five times during the

SAC project’s ACP specification effort. In particular, there were ten heuristics that were applied

at least ten times.

Table 5.4 Heuristics Usage Frequency in the SAC Case Study

Usage

Frequency

Heuristics

Applied > 10

times

IHscope1, IHobject1-3, IHsubject/action1, SHDLP1-2, IHcond3, IHcond6, GHgrouping1

Applied >= 5

and < 10 times

IHscope2-3, SHDLP3-4, IHcond1-2, IHcond4.c

Applied < 5

times

IHsubject/action2-3, IHcond8.a, RHredundancy1-3, RHconflict1-2, GHgrouping2

Not used IHcond4.a-b, IHcond4.d-f, IHcond5, IHcond7, IHcond8.b-c, IHoblig1-2, RHredundancy4,

RHconflict3

5.2 NCSU College of Management Event Registration System

The objective of the second summative case study was to further validate the ReCAPS

method by having analysts with some or no experience with the method apply it within the

context of a Web-based application. Additionally, the case study sought to validate the

137

usefulness of the Security and Privacy Requirements Analysis Tool (SPRAT; see Section 4.3) to

support ReCAPS analysis activities.

The Event Registration System (ERS) is sponsored by the College of Management at North

Carolina State University (NCSU) to simplify the event registration process for the College of

Management annual graduate symposium. The project, which began in January of 2005 and will

be deployed in October of 2005, is under development by a group of graduate students from the

College of Management and the Department of Computer Science at NCSU.

Similar to the SAC project, the ERS project is also a web-based application, in which users’

personal information must be protected from unauthorized access. Access control plays an

important role in this project.

5.2.1 Methodology and Case Study Artifacts

The ERS case study was conducted by three analysts for approximately 24 person-hours.

The task was to specify database-level access control policies for the Event Registration System

using the ReCAPS method with the aid of tool support available in the SPRAT. Among the three

analysts, one analyst was a ReCAPS expert; one had some experience with the method; and the

other had no experience at all. This team setup allowed us to observe how analysts with different

levels of prerequisite knowledge successfully apply or fumble with the method. It is worth

mentioning that all analysts were at the same stage in terms of understanding the problem

domain. No analyst had any knowledge about the ERS project before the case study.

Four source documents were used in this case study:

! ERS Software Requirements Specification (SRS), Version 2.3

! ERS database schema design

! ERS Security Policy, Version 2.2

! ERS Privacy Policy, Version 1.2

138

A major difference between this case study and the previous three is that tool support was

available to support the analysts during this case study. As mentioned in Section 3.1, the Security

and Privacy Requirements Analysis Tool (SPRAT), discussed in Section 4.3, supports ReCAPS

analysis activities. At the time of this case study, the SPRAT ACP specification module SPRAT

had been implemented, thus the analysis activities were much less manual and much more

efficient. Other modules, such as those that support goal analysis and scenario analysis, were still

under development; however, the ACP specification module is the only module needed to support

this validation effort.

The source requirements, the security policy, and the privacy policy were manually entered

into the database via SQL queries because the corresponding modules in SPRAT (i.e., the

requirements specification module and the document management module) had not been

completed. Upon commencing the ACP specification process, analysts were prompted to specify

which source document they wished to work on. As discussed in Chapter 4, the system provides

an interface that supports the analysts as they navigate between requirements or statements of the

given source document as they specify access control elements and rules. Upon completing the

ACR identification process, analysts use the refinement tool to sort all candidate rules, make

appropriate changes to rules and elements (e.g., remove redundant rules), and finally group rules

into policies. It is worth mentioning that the identification and refinement processes still require

human analysis; the tool provides a mechanism to help analysts document access control rules

and elements, automatically record the origins of each rule to support traceability, and sort rules

so that redundancies and conflicts can be identified more easily.

To ensure all analysts in this case study had sufficient training with the ReCAPS method,

about 75 minutes were devoted to initial ReCAPS training. The objective of the training session

was to ensure that all analysts have a common understanding on the method and its objective.

The detailed analysis steps and all available heuristics were reviewed during the training session.

Then the analysts started from the identification process and then the refinement process.

139

Although source documents, except database schema design, were already available in the

SPRAT, each analyst also had a printed hardcopy of the source documents during the case study.

Access control rules were documented using the SPRAT, but findings, observations, and

questions were documented either on the source documents or on additional paper. During the

case study, the three analysts took turns “driving” (the keyboard). All analysts participated in the

identification and refinement process.

5.2.2 Lessons Learned

This section summarizes the lessons learned from the ERS case study.

The SPRAT is efficacious in supporting the ReCAPS method, especially traceability.

The SPRAT support was helpful during the ERS case study and its benefits can be

summarized in several ways. First, reusing access control elements improves the efficiency and

consistency of the ACP specification process. The SPRAT allows analysts to select from a list of

existing elements when specifying a new access control rule. Only when no appropriate element

exists, do analysts need to create a new one. After the element is created, it joins the repository of

existing elements and may be reused in access control rules that are subsequently created.

Second, the tool automatically establishes traceability links between access control rules and the

source requirements or statements. This helps analysts by ensuring that traceability is maintained.

The traceability support was a tremendous aid to analysts in this study, especially in contrast to

previous studies in which the need to manually maintain traceability was a tremendous burden. In

the previous case studies, analysts had to document the sources of each access control rule

manually on the paper, which is tedious and difficult—not to mention prone to human error. The

SPRAT allows analysts to easily trace the sources of each rule as demonstrated in the ERS case

study. Third, the SPRAT allows analysts to analyze the collective rules in a system more

140

conveniently. For example, the tool allows analysts to sort all the rules according to different

elements (e.g., first sort by subjects, then by objects). In this way, it is easier to analyze the

collective privileges of a subject and identify any redundancy that may exist in the rule set.

Fourth, the SPRAT will eventually allow (upon completion of additional modules) analysts to

employ RE techniques, such as scenario analysis, to elaborate ambiguous requirements and

identify access control elements accordingly.

Traceability is essential during the ACR refinement process.

During the ERS case study, maintaining traceability between access control rules and source

requirement or statement proved to be extremely important throughout the ACR refinement

process. Often two very similar rules that were potentially redundant or in conflict with one

another were identified during the refinement process. However, because these rules were derived

from different sources they had to be traced back to the sources from which these rules were

derived to determine why they were specified differently and whether they could be merged or

reconciled. Consider the following two access control rules derived from ERS source documents

as shown in Table 5.5:

Table 5.5 Rule #50 and Rule #70 in the ERS Case Study

Rule #50 Rule #70

Mode Authorization: Allow Authorization: Allow

Subject Agent: anyone Agent: anyone

Action Database Action: insert Database Action: insert

Object registrants registrants

Condition registrants.username does not exist AND

registrants.email does not exist

value (registrants.username) ==

current users.username

Obligation NULL NULL

Sources FR18 Security Policy: II. Security Policy

141

Rules #50 and #70 are very similar. All elements are identical except for the condition and

source. The rules were derived from different sources: Rule #50 was derived from requirement

FR18, whereas Rule #70 was derived from Security Policy document, section II: Security Policy.

According to heuristics RHredundancy3 (see page 106) and RHconflict3 (see page 109), these rules

were either redundant or in conflict. To reconcile this situation in the ERS, we had to trace back

to the sources from which these two rules were derived as shown in Table 5.6.

Table 5.6 Source Detail for Rule #50 and Rule #70

FR18 Security Policy: II. Security Policy

The system will allow invitees who were

sent the URLs via post-cards earlier as well as

non-invitees who access the URL, to create

user accounts on the web-based system.

Description: As per instructions from the

sponsor, there will be no restriction on a user

account creation upon registration. Any person

may go to the system URL to register and

thereby create an account. The default privilege

is that of a ‘regular user’ and cannot be altered

by the registrant. The administrator only can

make a VIP account. (Regular users are not

sent VIP dinner invitations). The user has to

indicate if he is a student registered with

College of Management or has another

affiliation.

Origin: Interview meeting with sponsor, Kathy

Green, E-Commerce Program Manager, CoM

on 1/21/2005

Priority: 1

The user creates an account by choosing a

mandatory username and password (also has to

provide other mandatory information

mentioned below) at the website to register for

the symposium.

From these information sources and the database schema design, it is clear that Rule #70

assumes that users are required to take two steps to register for the symposium. First, users create

an account by providing a username as password. Second, users provide registration information

142

such as address, affiliation, and food preference. This is an assumption according to the database

schema design. The registrants table stores detailed information about registrants, whereas the

users table stores only username and password. The two tables are associated via username.

Based on this assumption, users may create an account and quit the system. They may come back

later to provide registrant information. In this case, the condition to insert an entry in the

registrants table is the new value for the username field must be the current user’s username.

Rule #50 assumes that users must provide all information (including username, password,

and registrant information) on the same Web page at one time. Thus, the condition for this rule is

that the username and email address do not exist in the registrants table because username is the

primary key and email is the unique key. Upon careful examination, it became evident that the

condition portion of both rules was incomplete. According to the first assumption, the username

and provided email address still should not exist when a user inserts an entry in the registrants

table. According to the second assumption, the value for the username field in the registrants

table should be the username in the users table. Thus, the condition in Rule #70 and Rule #50

were merged and Rule #70 was removed.

The above example exemplifies how analysts need to be able to trace rules to the source

documents (including database designs) from which the rules were derived. Traceability support

is thus very important in ReCAPS.

Checking the requirements against the DB design aids in identifying inconsistencies between

source documents.

The usefulness of heuristic IHobject3 was demonstrated again in the ERS case study. Many

inconsistencies between the requirements specification and the database design were identified. A

few example inconsistencies that would have lead to expensive repairs had they not been

identified cripple later phases of the software development process are as follows:

143

! Requirement FR16 states that the administrator should be permitted to delete/query

responses submitted by the registrants via the evaluation form. The report would

include: (1) date of the response; and (2) responses in the form of evaluation form.

However, applying heuristic IHobject3 revealed that in the database schema design, the

response date was missing.

! Requirement FR19 states that a VIP registrant can log into the system and accept/reject

the VIP dinner invitation. However, applying heuristic IHobject3 revealed that there was

no field that stores information about acceptance/rejection decisions in the database

schema design. Nor was there a field to store whether a VIP has been sent a dinner

invitation.

! Requirement FR25 states that the system will provide an option to the registrant to

remind/change his password. The reminder function will send the registrant’s password

to the registrant’s registered email address. However, the privacy policy section

regarding the Password Policy, states that a hash function is used to encrypt passwords

before passwords are stored in the database. Hash functions are known to be one-way

functions, which means it is computationally infeasible to retrieve the plain text from

the encrypted hash code. How can the remind process retrieve the password from the

database and send the password to the registrant’s registered email address? Applying

heuristics IHobject3 helped identify this inconsistency.

Global conditions eliminate the need to repeatedly specify the same condition in each AC

rule.

A global condition is one that applies to the entire system, does not change within the

lifetime of the system, and applies to all access control policies. In the ERS system, all users

must log into the system to perform tasks, but any user can create an account. Thus, “user is

144

logged in” is a condition for all access control rules. To be more efficient in ACP specification

and enforcement, the following global condition was specified for all access control rules:

Global condition: user is logged in

Once this global condition is defined, there is no need to define it yet again in each rule; thus

ACP specification can be accomplished more efficiently by defining global conditions. Because a

global condition encompasses all access control rules, the global condition must be checked by an

enforcement engine before other conditions are checked.

Subsumption is a major indicator of redundancy between AC rules.

Heuristic RHredundancy1 (see page 105) describes a specific kind of redundancy: subsumption.

Subsumption occurs when the subject (or object) in one rule contains the subject (or object) in

another rule. During the ERS case study, subsumption was a major indicator of potentially

redundant access control rules. Heuristic RHredundancy1 was frequently applied and proved effective

in identifying this kind of redundancy. Eight subsumption redundancies were identified in the

ERS case study. There are two kinds of subsumption (object subsumption and subject

subsumption) as we now discuss. Consider the two rules shown in Table 5.7:

Table 5.7 Rule #60 and Rule #62 in the ERS Case Study

Rule #60 Rule #62

Mode Authorization: Allow Authorization: Allow

Subject Role: registrant Role: registrant

Action Database Action: update Database Action: update

Object registrants.veglunch registrants

Condition current users.username ==

registrants.username

current users.username ==

registrants.username

Obligation NULL NULL

Sources FR21 FR22

145

The rules in Table 5.7 exemplify object subsumption. The only difference between Rule #60

and Rule #62 is the object. The object in Rule #60 is the veglunch field in table registrants,

whereas the object in Rule #62 is the entire table registrants. Obviously Rule #62 subsumes Rule

#60. Thus, Rule #60 was removed from the set of access control rules in the ERS during the

refinement process.

Table 5.8 shows an example of subject subsumption. Administrator is subsumed by anyone.

Thus, Rule #75 is subsumed by Rule #49. Thus, Rule #75 was removed from the set of access

control rules in the ERS.

Table 5.8 Rule #49 and Rule #75 in the ERS Case Study

Rule #49 Rule #75

Mode Authorization: Allow Authorization: Allow

Subject Agent: anyone Role: administrator

Action Database Action: insert Database Action: insert

Object users users

Condition users.username does not exist users.username does not exist

Obligation NULL NULL

Sources FR18 Security Policy: II. Security Policy,

1. Identification and

Authentication Policy

Modal redundancy may exist because rules are derived from different sources.

Modal redundancy occurs when two logically equivalent rules are specified with opposite

modes (i.e., allow and deny). Modal redundancy may exist between access control rules because

access information may be specified in different ways in different sources. Heuristic RHredundancy2

helps analysts identify this kind of redundancy; in this case, the redundancy can be resolved by

simply removing the deny rule. Consider the two ERS access control rules shown in Table 5.9.

146

Table 5.9 Rule #65 and Rule #78 in the ERS Case Study

Rule #65 Rule #78

Mode Authorization: Allow Authorization: Deny

Subject Role: registrant Role: registrant

Action Database Action: select Database Action: select

Object Registrants Registrants

Condition current users.username ==

registrants.username

current users.username !=

registrants.username

Obligation NULL NULL

Sources FR22 Security Policy: II. Security Policy,

5. Private Information Protection

Policy

Although the mode of the two rules shown in Table 5.9 is different, Rules #65 and #78 are

logically equivalent and thus redundant. They were created during the identification process

because access control was specified in two ways in the available ERS sources (see Table 5.10).

Table 5.10 Source Detail for Rule #65 and Rule #78

FR22 Security Policy: II. Security Policy, 5.

Private Information Protection Policy

The registered users can login through a

user interface and access their information.

Description: The registered users can login to

the website and access and modify their

information and their choices of sub events and

sub-sub-events.

Priority: 1

The registrants can query the attendees of

a particular panel discussion, but only the

names (first and last) would be revealed to

other registrants and not the other private

information.

Requirement FR22 clearly defines what registered users can do. In the security policy

source (Security Policy: II. Security Policy, 5. Private Information Protection Policy), access

147

information is specified in a different manner. From this statement, three AC rules were derived

during the identification process (see Table 5.11).

Table 5.11 Rules #76, #77 and #78 in the ERS Case Study

Rule #76 Rule #77 Rule #78

Mode Authorization: Allow Authorization: Allow Authorization: Deny

Subject Role: registrant Role: registrant Role: registrant

Action Database Action: select Database Action: select Database Action:

select

Object registrants.fname registrants.fname Registrants

Condition registrants exists AND

registrants.privacy_flag is set

to share AND

(panelusermapping.username

== registrants.username)

registrants exists AND

registrants.privacy_flag is

set to share AND

(panelusermapping.usernam

e == registrants.username)

current

users.username !=

registrants.username

Obligation NULL NULL NULL

Sources Security Policy: II. Security

Policy, 5. Private Information

Protection Policy

Security Policy: II. Security

Policy, 5. Private

Information Protection

Policy

Security Policy: II.

Security Policy, 5.

Private Information

Protection Policy

Careful examination of Tables 5.9 and 5.11 reveals the existence of modal redundancy. In

this case, Rule #65 (see Table 5.9) was kept in the system, whereas Rule #78 was removed

because by default an enforcement engine will deny an access request if no rules are matched

when the enforcement engine checks the access request against the rule set. If Rule #65 were

removed, then registrants would not be able to view their personal information, which is not

desirable because it would conflict with requirement FR22.

5.2.3 Summary and Discussion

Table 5.12 summarizes the results of the ERS case study. Although it was unnecessary to

apply all the ReCAPS heuristics during the ERS project, the existing ReCAPS process and

148

heuristics proved sufficient and efficacious. Thus, this summative case study served to further

validate the usefulness and efficiency of the ReCAPS process and heuristics. Moreover, there

was no need for additional heuristics that were not already available in the ReCAPS; this suggests

the analysis method and associated heuristics are stable and suitable for transaction intensive,

web-based information systems.

Table 5.12 Summary of the ERS Case Study Results

Pre-ReCAPS Post-ReCAPS

No. of tables / attributes in the DB design 16/87 16/89

No. of requirements 29 29

No. of modified requirements as a result of ReCAPS analysis N/A 23

No. of inconsistencies identified between the SRS and the DB

design as a result of ReCAPS analysis

N/A 47

No. of access control rules created during ACR identification

(after ReCAPS Step #2)

N/A 85

No. of final rules (after ReCAPS Step #3) N/A 68

No. of final policies (after ReCAPS Step #3) N/A 20

Most of the inconsistencies that were identified were characterized by discrepancies with

regard to data format. Specifically, the format for data fields defined in the requirements

specifications were often inconsistent with the actual format defined for these fields in the

database schema design. For example, the location of an event is defined as “free text up to 255

characters” in requirement FR1; whereas the field place in table symposium is defined as

varchar(50). Clearly, the fact that ReCAPS helped the analysts identify so many inconsistencies is

yet another indicator of how applying the ReCAPS method improves software quality.

As in the SAC project, some heuristics were applied more often than others in the ERS case

study as well (see Table 5.13). This does not mean the heuristics that were not used in the ERS

case study are not useful. As previously mentioned, those heuristics were not applied in the

149

summative case studies are more appropriate for systems with similar scope and domain as found

in the formative case study projects. These heuristics proved effective in these other contexts.

Table 5.13 shows that most of the ReCAPS heuristics are very helpful in the ACP specification

process. Ten heuristics were applied at least ten times and eight heuristics were applied at least

five times.

Table 5.13 Heuristics Usage Frequency in the ERS Case Study

Usage

Frequency

Heuristics

Applied >= 10

times

IHscope1, IHobject1-3, IHsubject/action1, SHDLP1-2, IHcond3, IHcond6, GHgrouping1

Applied >= 5 and

< 10 times

SHDLP3-4, IHcond1-2, IHcond4.c, RHredundancy1-3

Applied < 5

times

IHscope2-3, IHsubject/action2-3, IHoblig1, RHconflict2-3, GHgrouping2

Not used IHcond4.a-b, IHcond4.d-f, IHcond5, IHcond7-8, IHoblig2, RHredundancy4, RHconflict1

5.3 An Empirical Evaluation of ReCAPS

All four previous case studies were conducted by analysts who are somewhat familiar with

the ReCAPS method. Thus, two important attributes remain to be validated: the effectiveness /

usefulness of the method in comparison to other approaches (none of which exists) and whether

analysts who are unfamiliar with the method can effectively employ it without substantial

training. Specifically, these two factors are concerned with the following two questions:

! Does applying the ReCAPS method produce better results than other methods?

! Can individuals without prerequisite knowledge about the ReCAPS method employ it

effectively without significant training?

150

In order to answer these two questions, we performed an empirical study in a graduate-level

software engineering class at North Carolina State University during the Spring 2005 semester.

As previously mentioned, there is no prescriptive guidance on ACP specification. The closest

related work is Fontain’s mapping approach from KAOS specifications to Ponder policies

[Fon01], as discussed in Chapter 2. However, it is difficult to compare ReCAPS with Fontain’s

approach in an educational environment. Firstly, Fontain’s approach starts from KAOS

specifications, which are expressed in a formal language. It requires significant training for a

group of undergraduate and graduate students to understand and use KAOS specifications, which

is unsuitable for a class assignment in an educational setting. Secondly, the experimenter would

have to manipulate the source documents and produce KAOS specifications from these source

documents for the group that applies Fontain’s approach before the experiment. This results in

unfair comparison because the two groups start from different inputs to derive ACPs. Thirdly,

Fontain’s approach was published as a project report and has not been validated or peer reviewed.

Since the work was published in 2001, there was no follow-up work available to the public. Due

to the above concerns, we were forced to compare the ReCAPS with no method support at all.

The subjects were thus separated into two groups: a ReCAPS group and a control group. The

hypothesis for this empirical evaluation is that ReCAPS allows analysts to better specify access

control policies than does the lack of a method (which is the current state of the art). This section

presents the experimental method employed and discusses the results of the investigation.

5.3.1 Experimental Method

This experiment compares the use of ReCAPS in the specification of access control policies

for information systems with a control condition in which no method was stipulated. This section

explains the experimental method employed for this validation effort.

151

Design

The subjects were divided into two groups, each of which was asked to use one of the

following methods:

! the Requirements-based Access Control Analysis and Policy Specification (ReCAPS)

method;

! no method but the same criteria for quality ACPs was provided to both groups.

The independent measures involve a group using ReCAPS and a control group. Ideally, it

would better demonstrate the ReCAPS method’s effectiveness by comparing it with an existing

method for the same purpose. However, after an extensive review of the literature and upon

consulting experts in the research community and industry, we were unable to identify such a

method that could be used for comparison. Thus, we had no choice but to compare ReCAPS with

a control group.

Subjects

The subject population in the experiment was a group of students (undergraduate and

graduate students) enrolled in a graduate level software engineering class (CSC 510: Software

Engineering) at North Carolina State University in the Spring 2005 semester. Students in the class

were given the opportunity to voluntarily participate in an experiment for which they would be

compensated with extra credit to help raise their course grade. All participating subjects signed a

consent form that was approved by the North Carolina State University Institutional Review

Board.

Students participating in the experiment possessed varied backgrounds: 3 PhD students; 28

master’s students, and 17 undergraduate seniors. Of the 48 students enrolled in the course, 28

participated. Of the 28 participants, 26 submitted valid responses. An assignment was deemed

valid if the participant completed the entire assignment, including the time/effort form and

evaluation questions. Of the 26 valid responses, 2 were completed by PhD Students, 12 were

152

completed by MS students, and 12 were completed by undergraduate students. Table 5.14 details

the distribution of subject participants among the two experiment groups.

Table 5.14 Class Distribution of the Subjects Who Participated in the Experiment

of PhD

Students

of MS Students # of Undergrad

Students

Total

ReCAPS Group 1 7 6 14

Control Group 1 5 6 12

Total 2 12 12 26

Their knowledge in software engineering, databases, and security differed significantly. To

minimize noise that would have occurred with unbalanced groups, a survey was conducted before

the study to collect information from each of the subjects concerning their background in

software engineering, security and access control, as well as their class level (e.g. Senior, Master,

PhD student). The course instructors blinded any identifying information (e.g. students’ names)

from the individual conducting the empirical study to ensure that the students were assigned to

groups in an unbiased manner. All 48 students were then assigned to the two groups in a

balanced fashion. Students were first grouped according to their expertise and class level.

Allocation was random within a group with similar expertise and the same class level. For

example, when an undergraduate student with limited security knowledge was assigned to one

group, another undergraduate student with similar level of security knowledge was assigned to

the other group.

Although the above method ensures that all 48 students were divided into two balanced

groups, it is important to know whether those 26 students who participated and submitted valid

results still have equivalent background. We checked these 26 students’ background and Table

5.15 shows the number of students in each category. Each student's background in security,

software engineering, and database was ranked as good (G), medium (M), or no (N).

153

Table 5.15 Knowledge Background of the Subjects Who Participated in the Experiment

Security Software

Engineering

Database

G M N G M N G M N

Total

ReCAPS Group 6 4 4 6 2 6 11 0 3 14

Control Group 8 2 2 9 0 3 8 0 4 12

Total 14 6 6 15 2 9 19 0 7 26

The above data suggests that the ReCAPS group was less confident about their security and

software engineering skills than the control group; whereas the control group was less confident

about their database background than the ReCAPS group.

Materials

The project used in the experiment was a simplified version of the Surry Arts Council (SAC)

website e-commerce enhancement project. The SAC project is well-suited for this empirical

analysis because the system involves various kinds of access to sensitive information (e.g.,

customer contact information, financial information, purchase history). The security and privacy

of this information is critical to the success of the system, thus it is compelling from a security

perspective. Additionally, the project is a typical e-commerce application, which does not require

the experiment subjects to possess much additional or new domain knowledge. The original

requirements specifications were a little bit too complicated and extensive for a controlled

experiment in a class. Thus, we simplified the requirements specifications to ensure the project

was self-contained for the experiment and that it did not require a major time commitment on the

part of the study participants.

Two types of documents from the SAC project were used as the sources for this study: a

software requirements specification (SRS) document and a database schema design. The

154

simplified SRS contained ten requirements (in contrast to 15 requirements in the full SRS), and

the DB schema design contains five tables (as in the original DB design). The source documents

for both the ReCAPS and control groups were exactly the same.

What differed in the materials for both groups were the instructions. The ReCAPS group was

provided an assignment description, which summarized the method presented in this dissertation,

including the main activities and several heuristics. The control group was provided a different

assignment description, which only summarized necessary background information for how to

complete the study (much of this was identical to that provided to the ReCAPS group, but all

ReCAPS context was removed), what the results look like (e.g., what is access control, what an

access control policy is comprised of).

Although no specific method for how to specify access control policies was provided to the

control group, it is important to note that both groups were given the exact same set of criteria of

a good set of access control policies with examples of rules and policies. The instructions made it

clear that these criteria would be used to evaluate their results. The ReCAPS instructions did

include directions on how to ensure these criteria are met, whereas the control group knew the

criteria but the only guidance this group received about how to achieve the criteria were examples

of correct access control rules and policies. These quality criteria are discussed in detail in the

following Measurements section.

The subjects in both groups were provided with blank worksheets upon which they were

asked to document: the access control rules they derived from source documents as well as

inconsistencies identified between the requirements specifications and the database design. Each

subject was required to document the amount of time he/she spent on each step of the study

(including the amount of time devoted to reading and developing a solid understanding of the

assignment instructions). Upon completing the study, each subject was required to answer several

qualitative evaluation questions about their experience with the assignment and the

approach(es)/techniques they employed. Although the subjects’ answers to these questions are

155

anecdotal at best, they do provide valuable insights about the ReCAPS method, which we discuss

later in this section.

In summary, the materials used in this empirical study are as follows:

! NCSU Consent Form for Research;

! SAC project software requirements specifications document;

! SAC project database schema design;

! questions about their experiences with the assignment and the ReCAPS method;

! time effort form; and

! various assignment worksheets for documenting assignment results.

Procedure

An initial pilot study was run in a graduate level software engineering class in the Fall 2004

semester. There were 29 students enrolled in the course, 23 students participated, but only 12

students submitted valid responses. Pilot studies are necessary prerequisites for the design of a

sound empirical study. For example, this pilot student enabled us to revise the materials to ensure

that students in the subsequent empirical study fully understood what constituted a “valid

response.” The access control rules produced during this initial study were given to an

independent security expert to evaluate the quality of the rules specified by the students in the

pilot study. These evaluation criteria were included in the final empirical study to ensure that all

participants in both groups had a common understanding how their results would be evaluated.

These criteria are discussed in detail in Section 5.3.2.

Before conducting this empirical experiment that involved human subjects in research, we

obtained permission and approval from the NCSU Institutional Review Board (IRB). Subjects

were asked to sign a consent form before the study to comply with university policy for any

empirical research that involves human subjects. The experiment was run as an optional

156

homework assignment and students who participated received up to two points extra credit

towards their final grade in the course.

Questionnaires were administered to the students regarding their expertise level and class

level. As previously mentioned, students were then assigned to the two groups (the ReCAPS

group and the control group) in a balanced fashion.

The experimenter spent 10 minutes introducing the assignment in class to all students and

then handed the assignment to each student. Students were aware that there were two groups in

the study but none of them knew which group he/she was in. Subjects were given one week to

complete the study as an optional homework assignment without supervision. The assignment

was self-paced; subjects were free to work anytime, anywhere, and as much as they wished.

However, subjects were instructed to complete the assignment independently and limit their

references to only the materials provided.

The main task for the subjects in this study was to produce a set of access control policies

derived from two source documents. Additionally, subjects were required to improve both source

documents during the analysis and specification process; for example, if they identified an

inconsistency or missing requirement/data element, they were asked to document this in the

respective document(s). All results were documented using the provided worksheets.

Additionally, subjects were required to document the amount of time they spent on each step of

the study. It is important to note, however, that subjects were assured that the amount of time they

spent on the assignment would in no way affect their grades. Upon completing the study, subjects

were required to answer several qualitative questions concerning their experience during the

assignment.

To emphasize that the main part of the study was the set of access control policies produced,

students were informed that the ACPs would comprise 60% of their final grade on the

assignment. The entire grading policy was disclosed in the assignment description. Subjects were

instructed that they would not receive any partial credit for incomplete assignments to ensure that

157

they remembered to complete the time/effort form as well as answer the questions upon

assignment completion.

5.3.2 Results

This section discusses the statistical analysis results of the empirical evaluation of the

Requirements-based Access Control Analysis and Policy Specification (ReCAPS) method. We

employed the Mann-Whitney U Test [Rob73, Sie73] for the statistical analysis. The Mann-

Whitney U Test is a non-parametric method for testing the significant differences between two

independent groups with non-normal data and small sample size.

Measurements

Three main aspects of the experiment may be compared across the two groups of subjects:

the quality of resulting ACPs, the improvements to the two source documents, and the time effort.

We employed the following eight criteria to evaluate the quality of resulting ACPs. These quality

criteria were determined together with a security expert6.

! (1) All possible access control rules are specified.

! (2) Each rule is within the scope of access control.

! (3) Each action is a database operation and each object is an object in the DB.

! (4) The conditions for each rule are correctly specified and as completely as possible.

! (5) Each rule is traceable to the sources from which it was derived.

! (6) No two rules are redundant.

! (7) No two rules conflict with one another.

! (8) Logically connected rules are grouped together.

6
 Based on conversation and discussion with Dr. Ting Yu at North Carolina State University.

158

These eight criteria were used to evaluate the resulting ACPs. The improvements to both

source documents were measured using the number of inconsistencies identified between the

requirements specifications and the database design, the number of ambiguities and

inconsistencies identified within the requirements specifications, and the number of problems

identified within the database design.

It is important to note that all students were aware that their results would be evaluated using

the same quality criteria and what these criteria were, as mentioned in section Material (see page

153). This ensures that all students have a common understanding about the objective of the study

and prevents the experimental results from being skewed.

Evaluation Method

We followed the following process to quantitatively evaluate the quality of access control

rules derived by subjects. First, we counted all the rules derived by the subjects and compared

these rules with a rule set that was derived from the same sources and specified by experts. For

each rule in the experts’ rule set, we compared whether there was a semantically equivalent rule

in the subject’s rule set. If yes, we counted the subject-identified rule, otherwise we counted it as

incorrect. Note that the form of rules as specified by the subjects did not have to be identical to

that of those specified by the experts. In this way, we were able to create two sets of rules for

each subject: a set of rules A that are in the experts’ rule set and a set of rules B that are false

positive (either outside the scope of access control or cannot be derived from sources, see Figure

5.1).

For each rule in rule set A, we analyzed: whether each action is a database operation and

each object is an object in the DB, whether the conditions are correct and as completely specified

as possible, and whether the rule is traceable to the sources from which it was derived. . For the

entire rule set A, we analyzed whether there were any redundant or conflicting rules and whether

logically connected rules were grouped together. A set of rules is said to be logically connected if

159

the rules have the same subject, action or object. For example, a set of rules that specify the SAC

Manager’s privileges is logically connected because these rules all have the same subject: SAC

Manager.

For each rule in rule set B, we documented whether it is “outside the scope of access

control” or “cannot be derived from sources”.

We used the number of access control rules identified by each subject to measure criteria

1—4 and 6—7. However, traceability (Criterion 5) is evaluated as a binary measure: a subject is

either able to trace all rules to the sources or is not. We did not find a case in which a subject was

able to trace some rules to their sources but not others. In all cases, all rules were traced or none

were. With respect to grouping (Criterion 8), the rules were graded on a scale of 0—10 based on

the grouping in the subject’s rule set. Criterion 8 was scored as 10 if all rules were grouped into

policies, otherwise only partial credit was given, depending on based on how many rules were

correctly grouped.

We have discussed the measurement and evaluation method for the empirical study. Next we

discuss the results from three perspectives: the quality of access control policies, the

improvements to source documents, and the time effort.

A subject’s rule set:

all rules

Rule set A: rules that were

 also identified by experts

Rule set B:

false positive rules

Rules that are outside the

scope of access control

Rules that cannot be

derived from sources

Rules belong to one

or more categories*

Figure 5.1 Evaluation of a Subject’s Rule Set

*: E.g., ambiguous actions/objects, incomplete conditions, etc.

160

5.3.2.1 Quality of Access Control Policies

 Table 5.16 compares the performance of the ReCAPS group against the performance of the

Control group with respect to the eight evaluation criteria required of a set of high-quality set of

access control rules and policies. In Table 5.16, the evaluation criteria are listed in the first

column and the second column specifies whether the ReCAPS group outperformed the Control

group, based upon whether the Mann-Whitney U test revealed the results were statistically

significant. As shown in Table 5.16 and Figure 5.2, the ReCAPS group identified more access

control rules that were also identified by the experts than the control group (Criterion 1). The

average number of rules identified by the ReCAPS group that were also in the experts’ rule set is

22.29, compared with 15.17 rules identified by the control group. The results of this comparison

are statistically significant (Mann Whitney U = 152.5, p < 0.001, two-tailed test). This data shows

that the ReCAPS group provided better coverage of the access control rules and policies than the

control group.

Table 5.16 Summary of Empirical Evaluation Results

Evaluation Criteria ReCAPS > Control

(1) All possible access control rules are specified. Significant, p < 0.001

(2) Each rule is within the scope of access control. Not significant

(3) Each action is a database operation and each object is an object in

the DB.

Significant, p < 0.001

(4) The conditions for each rule are correctly specified and as

completely as possible.

Not significant

(5) Each rule is traceable to the sources from which it was derived. Significant, p < 0.001

(6) No two rules are redundant. Not significant

(7) No two rules conflict with one another. Not significant

(8) Logically connected rules are grouped together. Significant, p < 0.001

161

 If we subtract the number of rules that were identified by the experts from the total number

of rules identified by each subject, we obtain the number of false positive rules (recall that false

positive rules are either outside the scope of access control or cannot be derived from sources).

The ReCAPS group identified fewer false positive rules than the control group, as shown in

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ReCAPS

Control

0

5

10

15

20

25

30

of rules

Subjects

ReCAPS

Control

Figure 5.2 Number of Rules Identified by Each Subject That Were Also Identified

 by the Experts: The ReCAPS Group Outperformed the Control Group

 by Identifying More Rules That Were also Identified by the Experts.

Significant, p value < 0.001

(22.29)

(15.17)

1 3 5 7 9

1
1

1
3

ReCAPS

Control
0

5

10

15

20

25

30

of rules

Subjects

ReCAPS

Control

Significant, p value < 0.05

(8.25)

(5.79)

Figure 5.3 Number of False Positive Rules Identified by Each Subject:

 The ReCAPS Group Outperformed the Control Group by

 Identifying Fewer Number of False Positive Rules.

162

Figure 5.3. The average number of false positive rules identified by the ReCAPS group is 5.79,

compared with 8.25 false positive rules identified by the control group. The results of the

comparison are statistically significant (Mann Whitney U = 122.5, p < 0.05, two-tailed test). This

data further demonstrates that the ReCAPS not only ensures better coverage; it also reduces false

positive access control rules.

In the experiment, subjects were asked to specify database-level access control policies, in

which every action is a DB operation and every object is an object in the DB. This helps

minimize the number of ambiguous actions and objects identified. The ReCAPS group

outperformed the control group by identifying fewer rules with ambiguous actions/objects, as

shown in Figure 5.4. The average number of rules with ambiguous actions/objects identified by

the ReCAPS group is 2.71, compared with 14.58 rules identified by the control group. The results

of the comparison are statistically significant (Mann Whitney U = 160.0, p < 0.001, two-tailed

test).

An examination of those rules in which every element was correctly specified reveals that

the ReCAPS group yielded more rules with correctly specified elements than the control group,

1 3 5 7 9

1
1

1
3

ReCAPS

Control
0

5

10

15

20

25

30

of rules

Subjects

ReCAPS

Control

Significant, p value < 0.001

(14.58)

(2.71)

Figure 5.4 Number of Rules with Ambiguous Actions/Objects Identified by Each

 Subject: The ReCAPS Group Outperformed the Control Group by

 Identifying Fewer Rules with Ambiguous Actions/Objects.

163

as shown in Figure 5.5. Here, correctly means that each action is a DB action, each object is an

object in the DB, and any conditions are fully and correctly specified. The average number of

rules with every element correctly specified by individuals in the ReCAPS group is 9.43,

compared with 1.25 rules specified by individuals in the control group. The results of this

comparison are statistically significant (Mann Whitney U = 153.5, p < 0.001, two-tailed test).

The above data (see Figure 5.1—Figure 5.5) are compared using the number of rules in each

category (e.g., # of rules identified by each subject that were also identified by the experts, # of

false positive rules identified by each subject) by each subject. Another way to evaluate the data

is to calculate the percentage of rules in each category, as shown in Figure 5.6.

If the percentage is used to evaluate the data, all of the previously presented statistically

significant results concerning the comparison of the ReCAPS group and the Control group are

Figure 5.6 Formula to Calculate the Percentage of Rules in

 Each Category

Percentage =

Number of rules in a category identified by the subject

Total number of rules identified by the subject

1 3 5 7 9

1
1

1
3

ReCAPS

Control

0

5

10

15

20

25

30

of rules

Subjects

ReCAPS

Control

Significant, p value < 0.001

(9.43)

(1.25)

Figure 5.5 Number of Rules with Every Element Correctly Specified: The

 ReCAPS Group Outperformed the Control Group by Identifying

 More Rules with Every Element Correctly Specified.

164

still statistically significant. Moreover, using this approach, the results of evaluation criteria #4

become statistically significant using Mann-Whitney U test, as shown in Figure 5.7. The average

percentage of rules whose conditions are incorrectly or incompletely specified by individuals in

the ReCAPS group is 45%, compared with 64% of the rules specified by individuals in the

control group. The results of the comparison are statistically significant (Mann Whitney U =

123.5, p < 0.05, two-tailed test).

As previously mentioned, traceability was evaluated in a binary fashion in this study. The

individuals in the ReCAPS group consistently out performed the individuals in the control group

with regard to maintaining traceability, as shown in Figure 5.8. The results of the comparison are

statistically significant (Mann Whitney U = 154.0, p < 0.001, two-tailed test).

1 3 5 7 9

1
1

1
3

ReCAPS

Control
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Percentage of

rules

Subjects

ReCAPS

Control

Significant, p value < 0.05

(64%)

(45%)

Figure 5.7 Percentage of Rules with Conditions Incomplete or Incorrectly

 Specified by Each Subject: The ReCAPS Group Outperformed

 the Control Group by Identifying a Lower Percentage of Rules

 with Conditions Incomplete or Incorrectly Specified.

165

In summary, the ReCAPS group outperformed the control group in all eight evaluation

criteria. However, the Mann-Whitney U test results are only statistically significant in four of the

eight evaluation criteria (1, 3, 5, 8). In the remaining four criteria (2, 4, 6, 7), the results are

positive, but anecdotal at best because they are not statistically significant.

5.3.2.2 Improvements to Source Documents

The empirical study provided only anecdotal evidence that the ReCAPS group outperformed

the control group by identifying more inconsistencies between the requirements specifications

and the database design, more ambiguities/inconsistencies within the requirements specifications,

and more problems in the database design. Although these results are not statistically significant,

the data suggests that improvement to source documents is a side-benefit of the approach, not a

main contribution (see Tables 5.3 and 5.12).

1 3 5 7 9

1
1

1
3

ReCAPS

Control

0

1

w/ or w/o
traceability

Subjects

ReCAPS

Control

Significant, p value < 0.001

(1.00)

(0.17)

Figure 5.8 The ReCAPS Group Provided Better Traceability Support

 than the Control Group

166

5.3.2.3 Time Effort

The average amount of time spent on the assignment by individuals in the ReCAPS group

was 4.53 hours, compared with 3.79 hours by individuals in the control group, as shown in Figure

5.9. The results of this comparison are statistically significant (Mann Whitney U = 124.0, p <

0.05, two-tailed test).

Because of this fact, one might challenge the validity of the above data by suggesting that

the ReCAPS group outperformed the control group simply because they spent more time than the

control group. To address this, we performed a correlation analysis between the number of rules

that were in the experts’ rule set identified by the subjects and the amount of time spent on the

assignment by the subjects. The result shows there is no strong correlation between these two

factors, as shown in Figure 5.10. The variance R^2 (0.0326) would lead to a correlation

coefficient r close to 0.18. The correlation result is not statistically significant either, with p value

greater than 0.05.

1 3 5 7 9

1
1

1
3

Control

ReCAPS
0

1

2

3

4

5

6

7

Time effort

(hours)

Subjects

Control

ReCAPS

Significant, p value < 0.05

(4.53)

(3.79)

Figure 5.9 Time Spent on the Experiment by Each Subject: The

 ReCAPS Group Spent More Time on the Assignment

 than the Control Group.

167

We conducted the same correlation analysis within the ReCAPS group and the control

group. The results are shown in Figure 5.11. The variance R^2 for the ReCAPS group is 0.0939

(correlation coefficient r = 0.31) and the variance R^2 for the control group is 0.1221 (correlation

Figure 5.10 Correlation Analysis Shows There is No Correlation between

 the Time Effort and the Results in all Subjects

R
2
 = 0.0326

0

5

10

15

20

25

30

0 2 4 6 8

Time Effort (hours)

#
 o

f
v
a
li
d

 r
u

le
s

ReCAPS & Control

Not Significant, p value > 0.05

Figure 5.11 Correlation Analysis Shows There is No Correlation between the

 Time Effort and the Results in both ReCAPS and Control Group

R
2
 = 0.0939

R
2
 = 0.1221

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

Time Effort (hours)

#
 o

f
v
a
li

d
 r

u
le

s

ReCAPS

Control

Not Significant, p value > 0.05

168

coefficient r = 0.35). Neither of the correlation analysis result is statistically significant, either,

with p value greater than 0.05. Based on the above analysis, we can conclude that it is unlikely

that time/effort alone can account for the results in this empirical study.

5.3.3 Summary and Discussion

As previously stated, this empirical study sought to evaluate the effectiveness / usefulness of

the method in comparison to other approaches (none of which exists) and whether analysts who

are unfamiliar with the method can effectively employ it with reasonable training. The study

demonstrated the feasibility of employing the ReCAPS method as a policy specification method.

The results are supported by the similar specification of ACPs for the Surry Arts Council website

e-commerce enhancement project across the ReCAPS and control groups. Four of the evaluation

criteria for high-quality access control rules and policies were shown to yield statistically

significant results in which the ReCAPS group outperformed the Control group. Additional

anecdotal evidence supports the remaining four criteria as well.

Because we were limited in the size and complexity of the assignment that we could design

for an optional extra credit assignment, only a subset of the ReCAPS heuristics were evaluated in

this empirical study. The ReCAPS group was provided with 18 heuristics (IHscope1-2, IHobject1-3,

IHsubject/action1, IHsubject/action3, SHDLP1-2, SHDLP4, IHcond1, IHcond3, IHcond6, IHcond8, RHredundancy1-2, RHconflict1-

2). These heuristics were selected for this empirical study by design. First, because the study was

being conducted within the confines of a homework assignment, the selected heuristics could not

require excessive prerequisite knowledge nor could so many heuristics be included without

risking lack of participation due to the assignment’s length and complexity. Second, the set of

heuristics needed to stand on their own and be representative of the ReCAPS’ mission. Third, the

selected heuristics needed to be broadly applicable in the assignment. Based on these

169

considerations, we ensured that the set of heuristics used in this empirical study supported the

identification, specification and refinement of access control rules.

The empirical study results presented in Section 5.3.2 and the feedback received from the

ReCAPS group suggests that this subset of heuristics is very helpful in guiding analysts as they

derive access control rules and specify access control policies. One student made the following

statement in addressing whether the heuristics helped him/her perform the analysis efficiently:

“I believe it was very efficient. Several assumptions I would have overlooked were analyzed

more meticulously because I was forced to state them.”

Another student commented on the heuristics as follows:

“The heuristics, just as the breaking of the access control rule into four parts, helped me to

wrap my head around each section. This made the assignment manageable. Rather than trying to

do everything at once in a non-logical order, the heuristics force me to do each step in order and

sometimes in parallel.”

These anecdotal statements provide further insights into how the ReCAPS helps analysts.

The remaining heuristics will need to evaluated in follow up studies given that we were not able

to evaluate all of them in this study (e.g., heuristics for constructing misuse cases to specify

implicit conditions, heuristics for deriving ACPs from high-level security and privacy policies)

due to limitations on the scale of the study. Thus, it was not possible to evaluate the heuristics as

a complete set (e.g., whether they are complete and sufficiently comprehensive).

The above results are very encouraging, but they require careful interpretation. Because

there are no existing documented ACP specification approaches that provide prescriptive

guidance comparable to ReCAPS, any evaluation of ReCAPS necessarily involves comparing the

performance of subjects applying ReCAPS to those using a different type of method or using no

method at all. Examples of non-comparable methods include best industry practices. This

170

evaluation strategy was rejected, because we were unable to obtain a written version of best

industry practices from anywhere.

The alternative used in the current empirical study—comparing performance of individuals

in the ReCAPS group to that of individuals in a control group that was given no process

guidance—is open to the objection that any method may help people, at least initially, because of

the so-called Hawthorne Effect [FK78]. By virtue of being the focus of an investigation and by

manipulating their behavior in an obvious way (here, training in ReCAPS), subjects are more

attentive to the task at hand and perform better than they would have otherwise. Such a difference

stems not from the treatment (ReCAPS) but from the fact that there is a treatment.

There are two responses to this concern. First, it is still important to confirm that the

ReCAPS group significantly outperformed the control group. For the Hawthorne Effect to be a

potential threat to validity, there has to be a potentially valid effect to threaten. The statistical

analysis reveals that ReCAPS improved performance at the p < 0.001 level. Research in process

interventions is notoriously vulnerable to individual differences, task variables, experimental

demand characteristics and seemingly random properties of the experimental materials, e.g.,

different worksheets used for each group. Plausibly justified software engineering techniques and

methods often fail to show any advantage when subjected to experimental test. In many cases,

this may be because the techniques do not help at all; but in view of the factors just mentioned, it

is important to replicate such studies before accepting such results at face value. Thus, any

significant result, such as the one obtained in the current study, is clear prima facie evidence that

the treatment effect yields a genuine benefit.

The second response concerns the mechanism through which the Hawthorne Effect is

supposed to work. As suggested above, it could be that being subject to a visible treatment

caused subjects to pay more attention to the task or take it more seriously, presumably because

the attention they were receiving by being subjects in an experiment was reinforcing and they

wanted to do well. However, since there was no significant difference between the time spent on

171

the task by the subjects in the two groups, we can safely conclude that the results are not merely

due to one group focusing on the problem for longer. It is of course possible that the ReCAPS

subjects paid more careful attention and used the time they had more effectively and would have

done so with any instructions at all. However, this residual effect is unlikely for the following

reason. The Hawthorne Effect is most likely to arise in a repeated measures design where the

subjects are aware of the nature of changing treatments. (The original interventions at the

Hawthorne Plant, from which the effect gets its name, are a classic example of subjects being

aware that they were being subjected to one treatment after another.) In such a case, a control

condition is manifestly less a treatment than an experimental condition. However, in an

independent group design, such as the one used in the current study, the subjects in the

experimental condition had no experience of the control condition with which to compare it.

Subjectively, therefore, they were as likely to improve their performance as the ReCAPS subjects.

We conclude that the difference between the ReCAPS and control groups can be attributed to the

ReCAPS process and heuristics and not to any methodological artifact. Such a conclusion

requires future replication before it can be accepted as definitive, but it is better supported

currently than alternative explanations.

5.4 Summary

This chapter has presented three validation efforts (two summative case studies and an

empirical evaluation) for the Requirements-based Access Control Analysis and Policy

Specification (ReCAPS) method. Each case study detailed in this chapter involves a particular

system:

! the Surry Arts Council (SAC) web enhancement project; and

! the NCSU College of Management Event Registration System.

172

The ReCAPS method provides analysts with the prescriptive procedural guidance and

support needed for the identification and refinement of access control policies for software-based

information systems. The two summative case studies validated the efficacy of the ReCAPS

process and associated heuristics to derive access control policies from various source documents.

Combining the results in Table 5.4 and Table 5.13, we applied and validated 28 (I Hscope1-3,

IHobject1-3 , IHsubject/action1-3 , SHDLP1-4, IHcond1-4 , IHcond6 , IHcond8 , IHoblig1 , RHredundancy1-3 , RHconflict1-3,

GHgrouping1-2) of 32 total heuristics in the two summative case studies. Four heuristics (IHcond5,

IHcond7, IHoblig2, RHredundancy4) were not used in either case study. Among these 28 heuristics, ten of

them (IHscope1 , IHobject1-3, IHsubject/action1 , SHDLP1-2, IHcond3 , IHcond6 , GHgrouping1) were applied at least

ten times and five of them (SHDLP3-4, IHcond1-2, IHcond4.c) were applied at least five times in each of

the summative case studies. The empirical evaluation involving the Surry Arts Council web

enhancement project demonstrated the feasibility of employing ReCAPS as a reasonable analysis

method and showed that other people who were not familiar with the method can apply it

effectively without significant training. The next chapter presents the conclusions of this

dissertation and discusses plans for future work.

173

Chapter 6

Conclusions

Stand on a higher mountain and you will see farther.

—Chinese Proverb

This dissertation presents the Requirements-based Access Control Analysis and Policy

Specification (ReCAPS) method, which was designed to improve information system security at

the early stages of the software development process; especially during requirements analysis and

software design. This work was motivated by the fact that ACP specification was without

systematic procedural support and was often performed in an ad-hoc manner, resulting in systems

that are vulnerable to security and privacy breaches. Additionally, policy specification was

traditionally not part of the software development process and was especially isolated from

requirements analysis and software design. This could lead to access policies that are not in

compliance with system requirements. The ReCAPS method integrates policy specification into

the software development process and derives access control polices from various source

documents. ReCAPS provides prescriptive procedural guidance and tool support for specifying

access control policies for information systems.

The research in this dissertation was developed while performing analysis on operational

systems. The Requirements-based Access Control Analysis and Policy Specification (ReCAPS)

method and the Security and Privacy Requirements Analysis Tool (SPRAT) were developed by

applying them to their own development as well as to other operational systems. Through these

various case studies, the ReCAPS method was evaluated and evolved as a result of the lessons

learned from applying the method to the experiences detailed throughout this dissertation.

174

This chapter is organized as follows. Section 6.1 provides a synopsis of each chapter.

Section 6.2 summarizes the contributions of this work. Section 6.3 discusses plans for future

work. Section 6.4 concludes the dissertation.

6.1 Chapter Synopsis

Chapter 1 introduced and articulated the problem addressed in this work. Specifying

complete and correct policies that control users’ access to a system and its resources is important

for the protection of data security and privacy in information systems. Traditionally, the ACP

specification process has lacked systematic support and has been isolated from requirements

analysis in software development, resulting in access policies that are not compliant with system

requirements. This fact motivated the research presented in this dissertation, a systematic method

for specifying access control policies for information systems.

Chapter 2 provided a survey of the related work in security and software engineering, to

position the work presented in this dissertation. The ReCAPS builds upon this prior work by

integrating ACP specification in the software development process to ensure compliance between

policies, requirements, and software design in information systems.

Chapter 3 presented two formative case studies that served as the conceptual origin for the

ReCAPS method: the Security and Privacy Requirements Analysis Tool (SPRAT) and the

Transnational Digital Government (TDG) remote border control project. The ReCAPS method

was simultaneously developed and informally validated while being applied to real projects; thus,

the ReCAPS method evolved as a result of its application to the case studies that were discussed

in this chapter.

Chapter 4 detailed the ReCAPS method. The ReCAPS method is an analysis process that is

supported by a set of heuristics and a software tool. The presentation of the ReCAPS process

steps and associated heuristics focused on the activities an analyst performs when employing the

175

method, progressing from identification, specification, refinement, to grouping. A set of heuristics

was presented to guide software engineers through access control analysis, employing examples

from the two formative case studies to elucidate the heuristics.

Chapter 5 presented three validation efforts for the method presented in this dissertation: (1)

a summative case study involving the specification of access control policies for the Surry Arts

Council (SAC) web enhancement project; (2) a summative case study involving the specification

of access control policies for the NCSU College of Management Event Registration System

(ERS), using the SPRAT; and (3) an empirical evaluation in which the method was applied to a

small system by individuals who were previously not familiar with the ReCAPS method.

6.2 Summary of Contributions

The primary contribution of this dissertation is the introduction of the Requirements-based

Access Control Analysis and Policy Specification (ReCAPS) method, which is comprised of:

! a process description that details the steps an analyst takes to perform this kind of

analysis;

! a set of heuristics validated within the context of four operational systems and an

empirical study to assist analysts in identifying and refining access control rules; and

! a software tool that supports the ReCAPS analysis activities.

ACP specification is typically isolated from requirements analysis and software design. It is

often conducted without methodological support or systematic guidance. ReCAPS supports

access control analysis and ACP specification and offers three main advantages not currently

available:

! ReCAPS integrates ACP specification with requirements analysis and software design;

! ReCAPS provides traceability support to help ensure compliance between policies and

requirements; and

176

! ReCAPS offers prescriptive guidance for ACP specification with a rich set of heuristics.

Although ReCAPS is essentially an analysis method with support of a set of heuristics and a

tool, its most important contribution goes beyond that of a method. The new software

development scheme that builds ACP specification as an explicit part of the software

development process created by ReCAPS is significant. By integrating ACP specification with

requirements analysis and software design, ReCAPS provides a basic framework for ensuring

compliance between different levels of policies, system requirements and software design. The

impact of this compliance is significant. One of the problems that plague companies and

organizations is the degree of confidence they have in claiming that their information systems are

enforcing security/privacy laws and global policies. This problem also plagues law enforcement

agencies; currently there is a lack of technology to help them measure an organization’s

accountability for enforcing laws. The ReCAPS approach is a promising step in the right

direction towards solving these problems. First, we derive access control policies from system

requirements and high-level security and privacy policies. Because the sources are where security

requirements come from, this development scheme helps ensure that a software system is actually

enforcing high-level security / privacy laws and policies. Second, we establish traceability links

between high-level policies, system requirements, and access control policies. This traceability

support helps ensure that any changes in the high-level policies can be easily traced to the

corresponding software development artifacts (e.g., requirements specifications, DB designs,

ACPs), where appropriate changes can be made.

Figure 6.1 portrays the traceability links that are maintained across various artifacts in the

ReCAPS. When an ACP is derived, we establish a link between the policy and its sources (e.g., a

particular requirement, a particular section of the security policy or privacy policy, or a particular

table/field in the database design). When we employ RE techniques to elaborate requirements, we

also build requirements traceability links between each requirement and its origin, goals,

scenarios and stakeholders. By establishing the links across these artifacts, we can manage policy

177

and/or requirements evolution. In the event of a change in a policy or requirement, our approach

allows analysts to quickly locate the affected requirements or policies for subsequent

modification. By ensuring consistency between ACP, requirements and software designs, our

approach improves the quality of ACPs and helps bridge the gap between requirements and

design. Note that laws are outside the dotted rectangle in Figure 6.1 because they are outside the

scope of this dissertation. Ideally, high-level security/privacy policies and requirements

specifications should specify the security and privacy requirements governed by law. The

traceability between high-level security / privacy policies, requirements specifications and laws is

outside the scope of this dissertation.

As previously mentioned, prescriptive guidance on ACP specification is greatly needed

when developing secure software systems. ReCAPS provides the first methodological support of

this kind to date. We have validated the ReCAPS process and heuristics within the context of two

summative case studies and an empirical case study. Our validation efforts to date have shown

that the ReCAPS process and heuristics are helpful for analysts in specifying better quality ACPs.

Because ReCAPS is inherently inquiry-driven and iterative, it offers the same benefit as

other inquiry-driven approaches. As such, it helps analysts ensure that many of the ambiguities,

inconsistencies, and conflicts that often plague requirements specifications, software designs and

corresponding policies are identified and eliminated.

ACPs

Design DocReq’ts Spec

Goals

Scenarios

Security Policy Privacy Policy

DB design

Stakeholders

Origin

Law

Other Info

Figure 6.1 Traceability Support in ReCAPS

178

6.3 Current Limitations and Plans for Future Work

The work presented in this dissertation addresses some of the fundamental problems with

ACP specification; however, our approach does have its limitations, and work remains to be done

in these areas. This section discusses some of the main limitations of the ReCAPS method and

provides an overview of areas of future interest and work.

The main limitations of the ReCAPS method are:

! the method assumes that a requirements specification document and a database design

are available;

! formal analysis of the resulting ACPs for completeness and consistency is not available

at this time;

! the method does not provide much support for defining roles for RBAC systems; and

! delegation and refrain policies have not been investigated in ReCAPS.

The first area for future work involves extensions to the ReCAPS method. Plans for

extending ReCAPS can be summarized as pursuing the following four directions:

! specify ACP during requirements analysis and use ReCAPS to drive database design;

! provide formal analysis to the resulting ACPs to support automatic reasoning;

! define roles for RBAC systems; and

! investigate other types of access control policies, such as delegation and refrain

policies.

The fact that the ReCAPS’ assumes that an initial requirements specification document and a

database design are available implies that when analysts specify access control policies using the

ReCAPS method, requirements analysis and database design have already been completed. We

are considering moving the ACP specification process a bit earlier in the software development

process and integrating ACP specification with requirements analysis. Our prior experiences

179

suggest this is feasible. As reported in Chapter 3 and Chapter 5, the ACP specification process is

a requirements disambiguating process. For example, scenario analysis is used in heuristics

IHsubject/action3 and SHDLP4. Although the ReCAPS heuristics for identifying AC elements need to be

slightly revised when no available source documents are available, the heuristics are broadly

applicable. For example, the heuristics for identifying conditions can be reused during

requirements analysis without any change. Additionally, all the heuristics for refining AC rules

can still be used.

The challenging part is to identify objects when an initial database design is unavailable.

Currently, ReCAPS allows analysts to check the objects identified from source documents against

the database design. When the database design is not available, the checking is impossible. We

are considering extending ReCAPS to use it to drive database design. Object-oriented analysis

methods may be helpful in this process.

The work presented in this dissertation focuses on the identification and specification of

access control policies for information systems. The heuristics for refining AC rules are still

limited. For example, the conflicts identification heuristics can only detect explicit conflicts.

More rigorous conflict identification methods are needed. Formal methods can help in this matter.

Additionally, to evaluate whether a set of access control policies satisfies some security

properties, we need formal analysis on the resulting ACPs. Our plan in this direction is to develop

formal semantics for the policies being specified and develop a tool that can transform the

policies into Alloy specifications, which can be used to perform automated analysis using model

checking techniques [Hol97].

Role-based access control (RBAC) is widely used in many applications to simplify

authorization management. Defining roles for a complex organization and system can be very

complex. Although ReCAPS supports three kinds of subjects—agent, role and group—it does not

provide much support on defining roles for RBAC systems. In RBAC systems, role definition and

180

management should be part of the ACP specification process. A structured role engineering

process and a life-cycle model to manage roles are needed. Furthermore, organization theory may

be investigated to define roles for RBAC systems [CIN03].

In this dissertation, we found authorization and obligation policies were sufficient to

represent the policies in all four case studies. However, we have yet to investigate the other two

types of access control policies: delegation and refrain policies. Our plans for extending ReCAPS

also include investigating these kinds of policies.

In addition to the above extensions to ReCAPS, we plan to integrate the SPRAT with other

software tools and further validate the ReCAPS using the tool in an industrial setting. The above

discussions are aimed at extending ReCAPS to enrich the method and make it more useful.

Broader areas of future work are also under consideration.

ReCAPS is mainly an analysis method that can be used during the development of new

software systems. However, there are many legacy systems in place in most organizations and

this raises additional questions that must addressed: Can the ReCAPS method be used as a

checking method to check whether a legacy system is enforcing the high-level security and

privacy policies? Can the ReCAPS method be used to check whether two legacy systems with

different high-level policies are in compliance with one another? Answers to these questions have

practical significance. For example, when the HIPAA took effect on April 14, 2003, regulated

organizations wanted to know whether their legacy systems were in compliance with the new

law. In another example, if two organizations merge, both organizations have legacy systems in

place that are enforcing different policies. Can ReCAPS help them ensure that their legacy

systems are in compliance with one another? We believe the traceability support that ReCAPS

offers is a promising solution on this matter and industry has already expressed an interest in this

level of support offered by the ReCAPS.

The ACP specification method supported by ReCAPS is a top-down method. We start from

requirements and database design to specify ACPs. If we want to migrate an existing system to a

181

new system, we might want to employ a bottom-up or hybrid method that contains both top-down

and bottom-up techniques. In legacy systems, there are users who are performing tasks. There are

data elements that are in the database, being retrieved and updated. How can we extract access

control policies from these existing resources? We believe data-mining techniques may be useful

in this case.

6.4 Conclusions

ACP specification is a conceptually complex process and involves extensive human analysis.

In this dissertation, we presented the Requirements-based Access Control Analysis and Policy

Specification (ReCAPS) method that provides procedural guidance for this purpose. The use of

our approach in the practice of requirements engineering results in more complete, more accurate

access control policies that will be enforced by the software system. Additionally, the use of our

approach in software development improves the quality of software systems by identifying and

resolving inconsistencies early. Finally, the traceability support across software artifacts provided

by our approach helps ensure consistencies across these artifacts.

182

Appendix A

Summary of ReCAPS Analysis Activities

Step 1: Understand the problem domain.

Step 2: Scan available source documents to identify AC elements and specify AC rules.

Step 2.1: Identify objects that need to be protected.

Step 2.2: Identify responsible subjects and actions on the object.

Step 2.3: Identify conditions under which an actor is allowed to perform an action on an

object.

Step 2.4: Identify obligations that the actor or system must fulfill if an access request is

granted.

Step 3: Refine access control rules.

Step 3.1: Sort the AC rules according to subjects and objects.

Step 3.2: Merge redundant AC rules and create new rules, if necessary.

Step 3.3: Reconcile any conflicting AC rules.

Step 4: Group logically connected AC rules into ACPs.

183

Appendix B

Summary of ReCAPS Heuristics

Table B.1 ReCAPS Heuristics for Identifying AC Scope (Step 2)

Code Heuristic Page

IHscope1 Access control analysis is data-centric. Thus, for each requirement, analysts should ask
the following question: does this requirement involve any user access to sensitive
information in the system? If the answer to the above question is yes, then access
control rules may be derived from this requirement. Otherwise, no access control rules
can be derived from this requirement.

82

IHscope2 If a requirement describes something that is not enforceable in the system, then no
access control rules can be derived from the requirement.

83

IHscope3 No access control rules can be derived from non-functional requirements, except
security and privacy requirements.

83

Table B.2 ReCAPS Heuristics for Identifying Objects (Step 2.1)

Code Heuristic Page

IHobject1 To identify objects that must be protected in the system, it is helpful to examine the
nouns that follow verbs.

84

IHobject2 To distinguish access-related objects from other objects, it is helpful to consider whether
the candidate object is a system resource that should only be accessed by authorized
actors.

84

IHobject3 To identify the objects that must be included in the database, every object identified in
the SRS should be mapped to an object (e.g., a table, a column, a row or a cell) in the
database design.

84

184

Table B.3 ReCAPS Heuristics for Identifying Subjects and Actions (Step 2.2)

Code Heuristic Page

IHsubject/action1 Given a requirement expressed in the form “The system shall allow <someone>
to <do something>”, the subject is <someone> and the action is <do>.

86

IHsubject/action2 Given a requirement expressed in the form “The system shall support/provide the
ability (be able) to <do something>”, the subject is unclear. The <do> action has
two possibilities as follows.

87

IHsubject/action2.a The <do> action is performed by an subject. In this case, the analyst would need
to consult the stakeholders to disambiguate the requirement by asking precisely
who will perform this action. By clarifying the requirement, one can rephrase this
requirement as “The system shall allow <someone> to <do something>”,
resulting in a less ambiguous requirement specification.

87

IHsubject/action2.b The <do> action is not performed by any subject. Instead, it is an automated
action performed by the system. In this case, the analyst should consult the
stakeholder(s) to determine who will access what information if the system
performs this action.

88

IHsubject/action3 Given a requirement expressed in the form, “The system shall
provide/support/allow/<do> <something>”, neither the subject nor the action is
clear in this case. The <something> in this requirement is often a feature or a
function. In this case (the requirement is vague and subject/action cannot be
easily identified), analysts should employ scenario analysis to elaborate the
requirement.

89

185

Table B.4 ReCAPS Heuristics for Identifying Conditions (Step 2.3)

Code Heuristic Page

IHcond1 When a requirement specifies constraints (e.g., if, unless, when, during, before, after,
etc.), specify the constraints as a condition in the resulting AC rule.

92

IHcond2 When a scenario contains pre-conditions, it is helpful to examine these pre-conditions
and specify those that fall within the scope of access control as a condition in the
resulting AC rule.

93

IHcond3 (Authentication constraints) If access to the requested data requires authentication,
then define this fact as a condition in the resulting AC rule.

93

IHcond4 (Contextual constraints) If the context of an access request plays a role when making
grant/deny decisions, these contextual constraints should be specified as conditions in
the resulting rule.

93

IHcond4.a (Temporal constraints) If a data access is restricted by time or date constraints, specify
them as conditions in the resulting AC rule.

94

IHcond4.b (Location constraints) If a data access is restricted by any location constraints, specify
them as conditions in the resulting AC rule.

94

IHcond4.c (Relationship constraints) If there are any relationship constraints between the subject
and the object, specify them as conditions in the resulting AC rule.

95

IHcond4.d (Affiliation constraints) If there are affiliation constraints for the subject, specify them as
conditions in the resulting AC rule.

95

IHcond4.e (Attribute constraints) If there are any attribute constraints to the subject, specify them
as conditions in the resulting AC rule.

96

IHcond4.f (State constraints) If access request can only be granted when the system is in a
specific state, then specify this state constraint as a condition in the resulting AC rule.

96

IHcond5 (Usage constraints) If there are any usage constraints that restrict the subject’s access
to the object, specify the constraints as conditions in the resulting AC rule.

97

IHcond6 (Database constraints) If the resulting rule is a database-level AC rule, it is helpful to
consider whether there are any database constraints for the action. If yes, specify the
constraints as conditions in the rule.

97

IHcond7 (Security constraints) If is helpful to use general security principles such as least
privileges and separation of duties to construct misuse cases that a user may use to
exploit the capabilities for hostile intent. Corresponding security constraints should
thus be specified in the resulting AC rule.

97

IHcond8 (Privacy constraints) If data can only be accessed for a specific purpose, by a certain
group of people, or after consent has been obtained, these privacy constraints should
be specified as conditions in the resulting AC rule.

99

IHcond8.a (Purpose constraints) If specific data can be used for only certain purposes, then
specify these purpose constraints as conditions in the resulting AC rule.

99

IHcond8.b (Recipient constraints) If only some recipients can access certain data, then specify
recipient constraints as conditions in the resulting AC rule.

101

IHcond8.c (Consent constraints) If certain data can be accessed only after consent is obtained,
then specify consent constraints as conditions in the resulting AC rule.

102

186

Table B.5 ReCAPS Heuristics for Identifying Obligations (Step 2.4)

Code Heuristic Page

IHoblig1 (Security obligations) If an auditing trail must be recorded upon access to certain data,
recording auditing trails must be specified as an obligation in the resulting AC rules.

102

IHoblig2 (Privacy obligations) It is helpful to evaluate whether there are any privacy obligations in
the resulting AC rules.

103

IHoblig2.a If the subject is required to update/delete the data after access, specify updating/deleting
data as obligations in the resulting AC rule.

103

IHoblig2.b If the subject is required to manipulate the data after access, such as
encrypting/decrypting, anonymizing, etc., specify the manipulation action as obligations
in the resulting AC rule.

103

IHoblig2.c If the subject is required to notify data subjects after access, specify notification as
obligations in the resulting AC rule.

103

IHoblig2.d If the subject is required to obtain consent or authorization after access, specify
obtaining consent or authorization as obligations in the resulting AC rule.

104

Table B.6 ReCAPS Heuristics for Specifying AC Rules (Step 2)

Code Heuristic Page

SHDLP1 To specify database-level access control policies, the object in each rule must be an
object (e.g., a table, a column, a row or a cell) in the database.

86

SHDLP2 To specify database-level access control rules, the action in the rules must specify a
standard database operation (e.g., create, select, insert, update, delete, etc.).

90

SHDLP3 When an action can be directly mapped to a database operation (e.g., add, enter, read,
view, retrieve, remove, change, edit, etc.), map the action to a standard database
operation and specify that database operation as the action in the derived AC rule.

90

SHDLP4 When the identified action is an abstract action, use scenario analysis to decompose the
action into several database operations.

91

187

Table B.7 ReCAPS Heuristics for Identifying and Removing Redundancies (Step 3.2)

Code Heuristic Page

RHredundancy1 If one rule subsumes another rule, then the second rule is redundant and should be
removed.

105

RHredundancy2 Two logically equivalent rules that are specified in different modes (i.e., one allow rule
and one deny rule) are redundant. One of them must be removed.

105

RHredundancy3 If two rules have different (not conflicting) conditions but the same other elements,
then combine the two conditions in one rule and remove the other rule.

106

RHredundancy4 Design decisions often introduce new rules and cause some candidate rules to be
redundant. Redundant rules must be removed.

106

Table B.8 ReCAPS Heuristics for Identifying and Resolving Conflicts (Step 3.3)

Code Heuristic Page

RHconflict1 If two rules have the same elements but have conflicting modes, then this is a modality
conflict. Resolution of this kind of conflicts needs to go back to the sources from
which these rules were derived.

107

RHconflict2 If two rules define conflicting privileges for the same subject on two objects, in which
one object subsumes the other object, then this is a partial conflict. There are two ways
to resolve this kind of conflicts: (1) specify separate rules for each part of the object; or
(2) group rules into an access control policy, in which every rule must be evaluated
and satisfied for an access request to be granted.

108

RHconflict3 If two rules have conflicting conditions but the same other elements, then this is a
conditional conflict. Resolution of this kind of conflicts needs to go back to the
sources from which these rules were derived.

109

Table B.9 ReCAPS Heuristics for Grouping AC Rules into ACPs (Step 4)

Code Heuristic Page

GHgrouping1 It is often useful to group all the rules that concern a subject’s privileges to an object
into one policy.

110

GHgrouping2 If a set of rules are grouped together to resolve conflicts (as described in Step 3.3),
these rules must always be grouped together.

112

188

Appendix C

Evolution of the ReCAPS Method

This appendix contains the method summaries that were used in the four case studies.

Version 1 is the version before the SPRAT case study was conducted (Pre-SPRAT). Version 2

includes the changes made in the SPRAT case study, which was used in the TDG case study (Pre-

TDG). Version 3 is the Pre-SAC version and Version 4 is the Pre-ERS version.

C.1 ReCAPS Method Summary Version 1 (Pre-SPRAT)

Inputs for the case study:

(1) SPRAT software requirements specifications (SRS) document, Version 1.09

(2) SPRAT database design E/R diagram

Process for the case study:

Step 1: Read the SRS document, identify what objects need to be protected and associate

them with affected stakeholders.

These objects are data that are considered private and sensitive by the stakeholders. These

objects should not be publicly available and only authorized people can access them.

Needs heuristics to guide how to identify objects.

Step 2: Identify candidate attributes for each object.

Identification Heuristic: Refer to the database design if necessary.

Analysis Heuristic: Does any attribute need to be protected differently from the object? What

are these attributes? How do they need to be protected? Classify the way of protection according

189

to Ponder policy types: authorization, obligation, delegation, and refrain policies. Treat each

attribute as an object if it requires a different way to protect.

Step 3: Identify privacy related preferences associated with each object.

This step can be skipped in this case study because privacy preferences are not supported in

the SPRAT.

Step 4: Identify possible actions on the objects and the responsible actors.

Identification Heuristic: Read SRS document to identify possible actions.

Identification heuristic: Scenario analysis might be helpful to identify more detailed actions.

Step 5: Identify conditions under which an actor is allowed to perform an action on an

object.

Step 6: Identify obligations that the actor or system must fulfill if an access request is

granted.

Step 7: Identify the reasons why an actor is performing an action or accessing an object and

document these reasons as purposes. Example purposes include telemarketing, research and

development.

Step 8: Document the results of Step 4-7 and specify access control policies.

C.2 ReCAPS Method Summary Version 2 (Pre-TDG)

Inputs for the case study:

(1) TDG software requirements specifications (SRS) document, Version 2.0

(2) TDG database schema design

190

(Note: The TDG case study was conducted in two separate sessions. The database schema

design was not available in the first session. The analysts completed the case study in the second

session after they obtained the database design.)

Mini-Tutorial:

Access control policies are data-centric rather than function-specific (e.g., logging into a

system is not codified as an ACP). If a requirement does not describe access to some data, then

we cannot derive any access control related information from this requirement.

An experienced analyst can go through the requirements, identifying AC elements at the

same time. It is not necessary to follow the steps below in sequential order.

When we need to make a design decision to disambiguate requirements, this time of analysis

is the right time to make such design decisions. However, sometimes we need to delay these

design decisions until we create the AC matrix when it is hard to make the decision or the

privileges given to a user might change. We believe it is easier to consider all the possible

privileges a specific user may have when AC matrix is finished.

Observation: AC related information can be mainly derived from functional requirements.

For the SPRAT case study, we were unable to derive any AC information from the NFRs. We

need to determine if this is true for all systems to modify our methodology & heuristics

accordingly.

Process for the case study:

Step 1: Read the Introduction section of the SRS document to develop a general

understanding of the envisioned or planned system.

Identification Heuristic: It is often useful to look through the Introduction Section to

identify stakeholders and actors.

191

Step 2: For each requirement in the SRS document:

Step 2.1: Identify those objects that need to be protected and associate them with the

affected actors. These objects are data that are considered private or sensitive by the users. These

objects should not be publicly available and only authorized users can access them.

Identification Heuristic: Objects can be identified by looking at the words that follow

verbs.

Identification Heuristic: Every object identified in the SRS should also appear in the

database design. This is very useful because it forces analysts to disambiguate requirements early

on and commit to what the objects really are.

Step 2.2: Identify privacy related preferences associated with each object.

Step 2.3: Identify responsible actors and possible actions on the identified objects.

Identification Heuristic: If a requirement is stated as follows “The system shall allow

SOMEONE to DO SOMETHING”, then the actor (=SOMEONE) and action (=DO) is very clear.

Identification Heuristic: If a requirement is stated as follows “The system shall

provide/support the ability to DO SOMETHING”. Use of the word “ability” implies that a user

triggers some action in the system. We need to ask requirements engineers to disambiguate the

requirement by asking who will perform this action and who will be affected by this requirement.

We can often rephrase the requirement in this way “The system shall allow SOMEONE to DO

SOMETHING”.

Identification Heuristic: If a requirement is stated as follows “The system shall

provide/support SOMETHING”, then we need to determine who will access what information if

the system performs this action.

192

Identification Heuristic: When requirements are vague or when it is impossible to identify

any actor/action directly from requirements, we can use scenario analysis to elaborate the

requirements. The actor, action and object in an event can be mapped to the subject, action and

object of an access control policy, respectively. The pre-conditions can be mapped to the

condition of an access control policy.

Step 2.4: Identify conditions under which an actor is allowed to perform an action on an

object. Some of these conditions are already defined in the requirements specifications using

words such as when, before, after, unless.

Identification Heuristic: Does a user have to be authenticated before he/she can access the

requested data?

Step 2.5: Identify obligations that the actor or system must fulfill if an access request is

granted.

Step 2.6: Identify the reason why an actor is performing an action or accessing an object and

document these reasons as purposes. Example purposes include telemarketing, research and

development.

Step 2.7: Document the results of Step 2.1-2.6 and fill all access rights in an access control

matrix.

Note: If tool support is available, the step is not necessary because we document everything

throughout the analysis. If no tool support is available, we mark the elements on hard copies and

then document this information after the analysis.

Step 3: Specify what permissions should be assigned to each actor (e.g., administrators,

project managers, analysts and guests in the SPRAT case study). We need to determine access

193

rights for those actors that can be easily determined first. This process is the reconciliation and

abstraction process.

Step 3.1: We need to go through the access control matrix and sort the actions according to

objects (e.g. goals, scenarios, requirements).

When we have the SPRAT tool, it will greatly help analysts during this step of process. For

example, the tool will allow analyst to sort permissions according to objects, which helps analysts

to group permissions or remove redundant permissions.

Step 3.2: We need to remove redundant permissions.

Example: For analyst, we removed several redundant permissions, which are basically the

same but derived from different requirements. For example, “view contexts of goals” is contained

in the permission “view elements of goals”. We can remove the permission “view contexts of

goals”.

Step 3.3: We need to merge existing permissions based on implementation decisions. If

possible, we may need to create new permissions.

Example: We merge “create project managers, create analysts, create guests” into a new

permission: “create user account”. At the same time, we create a new permission: “assign roles to

users”. This is based on our implementation decision. We decide to employ RBAC to control of

the access of users to resources. Thus, it makes sense to create users and assign roles to users. For

“reset user password”, we simply convert this candidate permission as final permission.

Step 3.4: If there are conflicting rules, such as two rules with the same element but

conflicting mode (i.e., allow vs. deny), we need to resolve the conflict.

194

Step 3.5: Convert those permissions that are independent and stable as final permissions.

Example: For project manager, we did not perform any merge permissions or create any new

permission. We simply convert existing candidate permissions as final permissions. This is

because the final permissions are independent.

Note: In step 2, we have delayed the decision of assigning which set of permissions to some

users/roles (e.g., guests in the SPRAT case study). Now it is the right time to make the decision

because at this time we have the access control matrix available and the next step is design and

implementation.

Step 4: Decide how to implement access control.

Observation: To identify potential security vulnerabilities, it is helpful to investigate

whether a user assumes privileges that conflict with the separation of duties principle.

C.3 ReCAPS Method Summary Version 3 (Pre-SAC)

Inputs for the case study:

(1) SAC software requirements specifications (SRS) document, Version 1.9

(2) SAC design document, Version 1.2

(3) SAC Security Policy, Version 1.9

(4) SAC Privacy Policy, Version 1.4

Process and heuristics for the case study:

Step 1: Read the Introduction section of the SRS.

The SRS for both projects contains introductory material, which yielded a general

understanding of the envisioned system, the stakeholders and the end users. It is important for

195

system designers to understand the concerns of both end-users and stakeholders so they can

control end-users’ access to data accordingly.

Step 2: Scan the SRS to identify access control elements.

Before analysts can derive any access control elements, it is important to understand what is

inside or outside the scope of access control. If a requirement involves a user’s electronic access

to some data in the system, then the user part is inside the scope of access control; otherwise, it is

outside the scope. For example, a requirement may state physical security safeguards to control

users’ access to the building or system. This is outside the scope of access control. Additionally,

when a requirement states a user’s interaction with the system, only the user part is inside the

scope of access control. If a requirement states something that is not enforceable in the system,

then it is outside the scope of access control.

Actors, actions, objects, etc. can be identified using traditional inquiry-driven analysis. For

each requirement in the SRS, follow steps 2.1 through 2.6 (see Figure C.1) to identify these

elements. It is not necessary to follow these steps in sequential order, they merely serve as a

checklist; an experienced analyst may perform some of these steps in parallel.

Figure C.1 The Process of Access Control Analysis

3. Refine AC rules into ACPs. For each actor:2. Scan the SRS to identify AC elements. For each

requirement in the SRS:

2.1 Identify objects that need to be protected.

2.2 Identify responsible actors and possible actions on

the object.

2.4 Identify conditions under which an actor is allowed to

perform an action on an object.

2.5 Identify obligations that the actor or system must

fulfill if an access request is granted.

2.3 Document reasons why an actor performs an action,

or accesses an object, as purposes.

3.1 Sort the AC rules according to objects.

3.2 Merge redundant AC rules.

3.4 Merge existing rules based on access

control design decisions and create new rules, if

necessary.

3.5 Merge all remaining AC rules into final

ACPs.

1
. R

e
a

d
 th

e
 In

tro
d
u

c
tio

n
 s

e
c
tio

n
 o

f th
e

 S
R

S
.

2.6 Document the analysis results and design decisions 3.6 Document all design decisions.

3.3 Reconcile any conflicting AC rules.

196

Step 2.1: Identify objects that need to be protected.

Objects are data to which access needs to be restricted. Three general heuristics (H1, H2 and

H3) can be used for identifying these objects:

H1: Objects are nouns that can typically be identified by looking at the nouns that follow

verbs.

Consider the following SPRAT requirement:

FR-GSM-3: The system shall allow analysts to classify goals.

 The noun “goals” follows the verb “classify”, thus “goal” is tagged as an object. Note that

because not every noun is an object, the following heuristic is used to distinguish access-related

objects from other objects.

H2: Objects are system resources that should only be accessed by authorized actors.

In the case of FR-GSM-3 above, heuristic H2 ensures “goals” is the identified object to be

protected instead of “analyst”.

H3: Every object identified in the SRS should also appear in the database design.

Heuristic H3 forces analysts to ensure that the requirements and database design are

consistent with one another. Consider the following TDG requirement:

2.3.1: The system shall allow border immigration agents to determine if the traveler is on the

“watch list”.

This requirement was annotated with stakeholder comments on what data is contained in the

“watch list”. Three of these items were missing in the database schema: gender, the reasons for a

person’s name being on the watch list, and actions to be taken if person whose name appears on

the watch list is encountered at a border station.

Step 2.2: Identify responsible actors and possible actions on the object.

H4: If a requirement is stated as “The system shall allow <someone> to <do something>”,

then the actor is <someone> and the action is <do>.

197

Consider the following TDG requirement:

2.5.2: The system shall allow border immigration agents to create a new record in the

“watch list”.

The actor is border immigration agent and the action is create.

H5: If a requirement is stated as “The system shall provide/support the ability to <do

something>”. The word “ability” implies that a user triggers some action in the system. We need

to ask requirements engineers to disambiguate the requirement by asking who will perform this

action and who will be affected by this requirement. We can often rephrase the requirement in this

way “The system shall allow <someone> to <do something>”.

For example, the following requirement is in the SPRAT case study:

FR-GSM 6: The system shall support the ability to update an existing goal.

This requirement does not explicitly describe who can update existing goals. This is fine for

requirements engineers, but it is ambiguous for system designer and software developers. By

asking who will perform this action, we clarify that it is analyst’s responsibility to update existing

goals. The requirement may be rephrased as follows:

FR-GSM 6 Revised: The system shall allow analysts to update an existing goal.

Then we can apply H4 to this requirement and identify the actor is analyst and the action is

update.

H6: If a requirement is stated as “The system shall provide/support/allow/<do>

<something>”, one must determine who will access what information if the system performs this

action.

Consider the following requirement from the SPRAT case study:

FR-GSM 12: The system shall display the context of a goal.

This is a very ambiguous requirement. It is unclear in this requirement who can request the

system to display this information and who can view the information displayed by the system. By

asking requirements engineers to clarify that, we may rephrase the requirement as follows:

198

FR-GSM 12 Revised: The system shall analysts to view the context of a goal.

In this way, we can identify the actor is analyst and the action is view.

H7: When requirements are vague or when it is impossible to directly identify any

actor/action, scenario analysis can be used to elaborate the requirements.

Consider the following SPRAT requirement:

FR-PM-3: The system shall support multi-user analyst results comparison.

This requirement was so ambiguous that without clarification it is impossible to understand

what it means. Scenario analysis enabled us to identify the main events in this scenario as

follows:

Event 1: Analysts classify goals independently according to predefined categories.

Event 2: Project managers select analysts whose classification results they wish to compare.

Event 3: The system shall display those goals that are classified differently and how they are

different (e.g., by showing the different categories)

This analysis yields the following actors and actions, which are of interest for specifying

ACPs:

Actor: Analyst Action: classify

Actor: Project Manager Action: request

Actor: Project Manager Action: view

Step 2.3: Document reasons why an actor performs an action, or accesses an object, as

purposes.

This step is necessary only when the purpose of an access request affects grant/deny

decisions. Purpose is often used in the context of privacy protection. Example purposes include

telemarketing, payment, research and development. If the purpose of an access needs to be

considered when making grant/deny decisions, we specify the purpose in the condition part of an

AC rule as follows:

199

action.BusinessPurpose << object.DataPurpose

The symbol << means business purpose is contained in data purpose. Consider the following

example. A particular piece of data (e.g., credit card information) is supposed to be used only for

payment (data purpose). Given the condition in the ACP rule above, a data access request will be

evaluated by an enforcement engine (to either grant or deny access); the business purpose of this

access will be checked against the requested object’s data purpose—payment.

Step 2.4: Identify conditions under which an actor is allowed to perform an action on an

object.

Some of these conditions are clearly defined in the requirements specifications using words

such as when, before, after, unless. Others are implicit. Consider SPRAT requirement FR-PM-3

mentioned previously. If a user assumes the role of Project Manager and Analyst at the same

time, as an analyst, he can classify goals; as a project manager, he can view other analysts’

classification results. However, access to the information (classification results) is withheld until

he is finished with his own classification of the goals. This condition must be satisfied before a

Project Manager can view the classification results. We document this rule as follows:

IF Role (user, Project Manager) = TRUE AND Role (user, Analyst) = TRUE AND

user.scheduledToClassify = TRUE AND user.classifyingFinished = FALSE

THEN viewClassificationResults = DENY

Step 2.5: Identify obligations that the actor or system must fulfill if an access request is

granted.

Analysts often make design decisions during the ACP specification process. For example,

the SPRAT SRS clearly states that the system shall support four system access levels:

administrator, project manager, analyst and guest. Given that access to the system is restricted to

these four levels (or roles), RBAC seems suitable for implementing access control. In our

200

analyses, we made additional design decisions. For example, instead of building a role hierarchy,

we ensured that the privileges assigned to each role never overlap.

During Step 2, analysts produce a set of candidate AC rules that are used in Step 3 to specify

ACPs.

Step 3: Refine AC rules into ACPs

Recall that an access control policy is comprised of a set of access control rules. The access

control rules derived from different requirements could be redundant or in conflict with each

other. Thus, we have to reconcile the different rules identified in Step 2 and specify the collective

privileges that should be assigned to each actor. We conduct the following analysis for each actor:

Step 3.1: Sort the AC rules according to objects (e.g., goals, scenarios, requirements).

Grouping rules according to objects allows analysts to identify redundant and conflicting

rules more easily as described in Steps 3.2 and 3.3.

Step 3.2: Merge redundant AC rules.

As common in requirements specification, synonymous words are often interchanged. In the

SPRAT SRS, for example, “view elements of goals” encompasses “view contexts of goals”

because context is a goal element. These two rules were merged, yielding: “view elements of

goals”.

Step 3.3: Reconcile any conflicting AC rules.

If the requirements from which AC rules were derived are in conflict with one another, the

resulting AC rules may conflict as well. Thus, any conflicts must be resolved at this stage of the

analysis. For example, if two rules have the same elements but conflicting mode (i.e., allow vs.

deny), these two rules conflict with one another.

201

Step 3.4: Merge existing rules based on access control design decisions and create new

rules, if necessary.

In the SPRAT, we decided to employ RBAC to control users’ access to data. Based on this

decision, we merged the three privileges for the System Administrator role (create Project

Managers, create Analysts and create Guests) into: “create user account” and created a new

privilege: “assign roles to users”. In this way, the rules we specified are consistent with the

design decision and more flexible than the candidate rules.

Step 3.5: Merge all remaining AC rules into final ACPs.

The objective is to refine all the candidate rules into ACPs. The previous steps help

eliminate redundant rules, reconcile conflicting rules, and refine rules according to decision

decisions. Any remaining AC rules should be merged as ACPs. For example, in the SPRAT, we

did not merge or create any privilege for the Project Manager role. Instead, we simply merged the

AC rules into ACPs because these rules did not fit any of the cases described in Steps 3.2 through

3.4.

Step 3.6: Document all design decisions.

Recall that analysts make important design decisions during ACP specification. Flexible

access control is often desirable. In the SPRAT, for example, Project Manager can specify what

information within the system is accessible to Guests and how the information can be accessed.

But, increasing flexibility may also increase access control implementation complexity as well as

system development costs. Analysts must conscientiously make design decisions based on

qualitative tradeoff analysis (e.g., between implementation complexity and access control

flexibility). These design decisions must be documented.

The main artifacts produced by analysts during the ACP specification process for a given

project are a set of ACPs, documented design decisions, as well as augmented requirements and

database design specifications. As previously mentioned, we specify ACPs as a group of rules

202

that contain five elements: <subject, object, action, condition, obligation>. Table C.1 portrays a

SPRAT ACP, which contains two access control rules: a Deny rule and an Allow rule. In this

example, the ACP subject is a role—Project Manager. The ACP object is

GoalClassificationResults, which can be mapped to table clOptions in the database design. The

ACP action is V i e w . In the A l l o w rule, Project Manager is allowed to view

GoalClassificationResults under normal circumstances. However, the ACP also specifies a Deny

rule that restricts the Project Manager’s ability to view GoalClassificationResults under a

particular condition. Both rules will be evaluated by the access control enforcement engine to

make grant/deny decisions when a data access request occurs.

Table C.1 Example ACP from the SPRAT Case Study

Policy

No

Rule

No

Mode Subject Action Object Condition Sources

1 Allow Role

(Project

Manager)

View clOptions user.loggedIn=TRUE FR-PM-31

2 Allow Role

(Project

Manager)

View clOptions Role (user, Analyst) =

T R U E A N D

user.scheduledToClassi

fy = TRUE AND

user.classifyingFinishe

d = FALSE

FR-PM-3

C.4 ReCAPS Method Summary Version 4 (Pre-ERS)

The ERS case study was conducted after an initial version of the thesis was completed.

Chapter 4 of this thesis was used as the method summary by the analysts for training purpose.

Thus, no method summary is attached in this section.

203

Appendix D

Experimental Instrumentation for Empirical Study

This appendix contains the experimental instrumentation for the empirical study that we

conducted in a graduate-level software engineering class (CSC 510) in Spring 2005. Section D.1

contains the NCSU Informed Consent Form for Research. Section D.2 contains the assignment

description and worksheets that were available only to the ReCAPS group. Section D.3 contains

the assignment description and worksheets that were available only to the control group. The two

source documents (i.e., requirements specifications and database schema design) are proprietary

information and not available to the public.

D.1 NCSU Informed Consent Form for Research

North Carolina State University

INFORMED CONSENT FORM for RESEARCH

Title of Study: Deriving access control policies from requirements specifications and database designs

Principal Investigator: Qingfeng He Faculty Sponsor: Dr. Thomas L. Honeycutt

 Dr. Annie I. Antón

We are asking you to participate in a research study. The purpose of this study is to investigate the

effectiveness and usefulness of a research technique for specifying access control policies for information

systems.

INFORMATION

If you agree to participate in this study, you will be asked to use the specified method to specify access

control policies for a software system by analyzing two source documents. The estimated amount of time

required for the total duration of the study is 4-6 hours.

RISKS

N/A

BENEFITS

204

By performing this study, you will (1) better understand the role of access control analysis in bridging the

gap between requirements and design, and (2) be able to specify access control policies for information

systems using the specified method.

CONFIDENTIALITY

The information in the study records will be kept strictly confidential. Data will be stored securely. No

reference will be made in oral or written reports, which could link you to the study.

COMPENSATION

For participating in this study you will receive up to 2 points extra credit towards final grade for CSC 510.

If you withdraw from the study prior to its completion, you will not receive any partial extra credit.

CONTACT

If you have questions at any time about the study or the procedures, you may contact the researcher,

Qingfeng He, at 900 Main Campus Dr, Venture III Suite 165C-197, Raleigh, NC 27695-8207, or (Tel)

919.513.5082 (Email) qhe2@eos.ncsu.edu. If you feel you have not been treated according to the

descriptions in this form, or your rights as a participant in research have been violated during the course of

this project, you may contact Dr. Matthew Zingraff, Chair of the NCSU IRB for the Use of Human

Subjects in Research Committee, Box 7514, NCSU Campus (919/513-1834) or Mr. Matthew Ronning,

Assistant Vice Chancellor, Research Administration, Box 7514, NCSU Campus (919/513-2148)

PARTICIPATION

Your participation in this study is voluntary; you may decline to participate without penalty. If you decide

to participate, you may withdraw from the study at any time without penalty and without loss of benefits to

which you are otherwise entitled. If you withdraw from the study before data collection is completed your

data will be returned to you or destroyed at your request.

CONSENT

“I have read and understand the above information. I have received a copy of this form. I agree to

participate in this study with the understanding that I may withdraw at any time.”

Subject's print name____________________________ Student ID ________________ (Not SSN)

Subject's signature______________________________ Date _____________________________

Investigator's signature___________________________ Date ______________________________

205

D.2 ReCAPS Group Assignment Description and Worksheets

Access Control Analysis Assignment

Checklist

CSC 510 Spring 2005

North Carolina State University

You are required to submit all the following items in order to be eligible to receive any credit for this

assignment:

______ (1) The signed NCSU Consent Form for Research.

______ (2) Final Access Control Rules and Policies sheet, which contains a list of access control rules

and policies.

______ (3) A revised version of the software requirements document. You can mark your changes

directly on the document. You may also document any additional questions or comments

using a blank paper.

______ (4) A revised version of the database schema design. You can mark your changes directly on

the document. You may also document any additional questions or comments using a blank

paper.

______ (5) The Inconsistencies between SRS and DB design sheet.

______ (6) The Time Effort form you fill in. Your grade will not be determined by the amount of time

you spent on the assignment. However, if you fail to document your effort, you will lose 5

points.

______ (7) The Questions form with your answers on it.

______ (8) All scratch papers.

206

Access Control Analysis Assignment

Time Effort Form

CSC 510 Spring 2005

North Carolina State University

Date Task Description1 Begin Time End Time Total Minutes

Summary of effort:

__________ Minutes on Understanding the assignment (_____%)

__________ Minutes on Understanding the problem domain (Step 1) (_____%)

__________ Minutes on Step 2 (_____%)

__________ Minutes on Step 3 (_____%)

__________ Minutes on Other activities (_____%)

Total Effort: __________ Person-Hours

1
 Task Description: (1) Understanding the assignment, such as reading project description; (2)

Understanding the problem domain, such as reading the SRS and DB schema design; (3) Step 2: deriving

access control rules; (4) Step 3: refining rules into policies; (5) Other activities (please specify).

207

Access Control Analysis Assignment

Project Description

CSC 510 Spring 2005

North Carolina State University

1 Objective

The overall objectives of this assignment are to (1) understand the role of access control analysis in

bridging the gap between requirements and design, and (2) derive access control rules (policies) from

requirements specifications and database designs using the specified method. Please read this assignment

description very carefully to ensure you are able to effectively apply the techniques below to specify your

access control policies. Please keep track of the time you spend performing your analysis in the Time Effort

Form. Although time is an important metric, the amount of time you spend on this exercise will not affect

your grade in any way. This assignment should be completed independently. You may not talk with other

students about the assignment. You may not read any other material besides this assignment package

and class notes.

2 Overview of Analysis Method

An access control (AC) rule contains four elements: <subject, object, action, condition>. A subject is a

user or a program agent, or any entity that may access objects. An object is a data field, a table, a

procedure, an application or any entity to which access is restricted. An action is a simple operation (e.g.

read or write) or an abstract operation (e.g. deposit or withdraw). An ACP may express additional

conditions that must be satisfied before an access request can be granted. For example, in healthcare

applications, the location from which the access request originates might affect the grant/deny decision. If

an access request is from the emergency room, then the request may be granted. In this case, we can specify

the location of the request is emergency room as a condition for the AC rule. In addition to the above four

elements, an access control rule can have various modes (e.g., permit/deny/oblige/refrain). This assignment

requires you to only specify allow and deny rules. Allow rules authorize a subject to access a particular

object. Deny rules explicitly prohibit a subject from accessing a particular object.

For this assignment, two source documents are needed to specify access control policies (ACPs): an

SRS and a database design for a non-profit web portal system. We now detail the analysis process steps

listed in Figure 1 using concrete examples from the Security and Privacy Requirements Analysis Tool

(SPRAT) project. The SPRAT is a research tool that provides support for analyzing and specifying security

and privacy requirements using goals and scenarios. The information stored in the centralized database is

proprietary and needs to be protected. Thus, access control is critical in this system.

Figure 1. The process of access control analysis

3. Refine AC rules into ACPs. For each actor:2. Scan the SRS to identify AC elements. For each

requirement in the SRS:

2.1 Identify objects that need to be protected.

2.2 Identify responsible actors and possible

actions on the object.

2.3 Identify conditions under which an actor is

allowed to perform an action on an object.

3.1 Sort the AC rules according to objects.

3.2 Merge or remove redundant AC rules.

3.4 Group logically connected AC rules into AC

policies.

1
. U

n
d

e
rs

ta
n
d

 th
e

 s
c
o
p

e
 o

f a
c
c
e
s
s
 c

o
n
tro

l a
n
d

th
e

 p
ro

b
le

m
 d

o
m

a
in

.

2.4 Document the analysis results

3.3 Reconcile any conflicting AC rules.

208

Please use the steps below to guide you through your analysis effort. For each step, heuristics are

provided to assist you.

Step 1: Understand the scope of access control and the problem domain

Step 1.1: Scope of access control
Understand what falls within the scope of access control. Consider the following general rules:

(1) If a requirement involves a user’s access to some data in the system, it is inside the scope of access

control; otherwise, it is not.

(2) A requirement that states physical security safeguards to control users’ access to the building or the

system is outside the scope. As are requirements that state something that is manually done.

(3) Access control is not about controlling the system’s capabilities. It is about controlling users’ access

to the system. For example, if a user requests some data from the system and the system shows the

requested information. Then, the user part is within the scope of access control while the system

part is outside the scope of access control.

Step 1.2 Read the SRS Introduction section.
An SRS often contains introductory material, which yields a general understanding of the envisioned

system’s problem domain, the stakeholders and the end users.

Step 2: Scan the entire SRS to identify access control elements
For each requirement, Steps 2.1-2.4 serve as a checklist; you may perform some of these steps in

parallel.

Step 2.1 Identify objects that need to be protected.

H1: Objects are nouns that can typically be identified by looking at the nouns that follow verbs.

Consider the following SPRAT requirement FR-GSM-3:

FR-GSM-3: The system shall allow analysts to classify goals.

 The noun “goals” follows the verb “classify”, thus “goal” is tagged as an object.

H2: Objects are system resources that should only be accessed by authorized actors.

In the case of FR-GSM-3 above, heuristic H2 ensures “goals” is the identified object to be protected

instead of “analyst”.

H3: Every object identified in the SRS should be mapped to an object (e.g., a table, a column, a row, or a cell) in the
database.

Heuristic H3 forces analysts to clearly define what the objects are in the database. For your assignment,

every object in your set of derived access control rules should be an object in the database. H3 also

ensures that the requirements and database design are consistent with one another. Consider requirement

FR-UA-1:

FR-UA-1: The system shall allow the administrator to create user groups.

In this case, user group was specified in the SRS, but the corresponding data field had not been included

in the database design. Therefore, the SRS and DB were inconsistent. You should identify such

inconsistencies in your assignment.

Step 2.2 Identify responsible actors and possible actions for each object.
Actions can be classified as either database actions or abstract actions. Database actions are direct

operations upon a database, such as insert, update, read, delete, whereas abstract actions are not, for

example, withdraw (money from a banking account). Although both types of actions are important to

access control, the objective of this assignment is to specify database actions. For this assignment, the

allowable database operations are: VIEW (or READ, SELECT), CREATE, UPDATE (write to DB),

INSERT, and DELETE.

209

H4: Given the requirement “The system shall allow <someone> to <do something>”, the actor is <someone> and the action
is <do>.

H4.1: When the <do> action is a database operation, specify that action in the derived AC rule.

H4.2: Actions that are not database operations must be decomposed into database operations using scenario analysis.

Consider requirement FR-SSM-1:

FR-SSM-1: The system shall allow analysts to add a scenario in the repository.

The actor is analyst and the action is add (insert). Consider requirement FR-GSM-3:

FR-GSM-3: The system shall allow analysts to classify goals.

Classify is an abstract action that needs to be decomposed into DB actions. We can elaborate this action

using a scenario (a sequence of events). For example, to classify goals, analysts: (1) retrieve goals from the

database to a local client, (2) change some attributes of goals at the local client, and (3) save the changes in

the database. Event (1) is an obvious read DB operation and event (3) is actually an update DB operation.

Event (2) is a local action that does not involve DB operations, so there is no need to specify it in access

control policies.

H6: When a requirement is vague or when actor/action cannot be easily identified, use scenario analysis to elaborate the
requirements.

Consider requirement FR-PM-3:

FR-PM-3: The system shall support multi-user analyst results comparison.

Without clarification it is difficult to understand what this requirement means. Using scenario analysis

we identify the main events for this requirement as follows:

Event 1: Analysts classify goals independently according to predefined categories.

Event 2: Project managers select results of analysts whose classifications they
wish to compare.

Event 3: The system shall display those goals that are classified differently and
how they are different (e.g., by showing the different categories)

The actors identified in this step are specified as subject in your final set of ACPs for this assignment

(see Table 1).

Step 2.3 Identify conditions under which an actor is allowed to perform an action on an object.

H7: When a requirement specifies constraints (e.g., if, unless, when, during, before, after, etc.), specify the constraints as
conditions.

Given the requirement “A doctor cannot access medical records of patients’ whom he/she is not

responsible for unless the request comes from the emergency room”, request comes from the emergency

room is a constraint that must be specified in the access control rule.

H8: Define conditions by evaluating whether the rule sufficiently protects the confidentiality and integrity of data.

For example, in the SPRAT, users must be logged in before they can view goals in the repository. Users

can only view and update their own personal information. When a user is trying to insert a new goal, a

condition for this access rule is that the goal does not exist in the repository.

H9: Define conditions by evaluating whether there is any database constraint for the action.

For example, when a user is trying to insert a new goal, a condition for this access rule is that the goal

does not exist in the repository.

H10: Define conditions by evaluating the privacy concerns of the requirement.

Some data may be used only for certain purposes, which must be specified as a condition in the access

control rule. For example, if a requirement states that credit card information can only be used to complete

specific transaction, this should be specified as a condition in all the rules that involve credit card

information: purpose is to complete the specific transaction.

Step 2.4 Document the analysis results and the source requirements of each rule.
For each rule you specify, please document from which requirement the rule was derived. This is

important for maintaining traceability between policies and requirements.

Upon completion of Step 2, you will have a set of candidate AC rules to use in Step 3 to specify your

final ACPs.

210

Step 3: Refine AC rules into ACPs
In Step 3, you need to specify ACPs from the AC rules you derived in Step 2. The AC rules produced in

Step 2 may be redundant or conflict with one another. Thus, we need to remove redundant rules and resolve

any existing conflicts before you can specify the final ACPs as follows:

Step 3.1 Sort AC rules from Step 2 according to subjects and then objects.
Sorting rules in this way allows you to identify redundant and conflicting rules more easily as described

in Steps 3.2 and 3.3.

Step 3.2 Merge or remove redundant AC rules.
Some rules are redundant because they use synonymous words. In the SPRAT SRS, for example, “view

elements of goals” encompasses “view contexts of goals” because context is a goal element. These two

rules can be merged as: “view elements of goals”. Another type of redundancy stems from the mode of an

access control rule because an allow rule can be specified as a deny rule if the conditions are reversed and

vice versa. For example, allow A to do B if condition C is satisfied may also be specified as deny A to do B

if condition C is not satisfied. These rules are redundant; thus only one is necessary. You can specify AC

rules using the mode that is easiest for you. Sometimes combining both modes makes it easier to specify an

access control policy (see Rule 2&3 for Policy 2 in Table 1).

Step 3.3 Reconcile any conflicting AC rules.
If the requirements from which AC rules were derived are in conflict with one another, the resulting AC

rules may conflict as well. Thus, any conflicts must be resolved at this stage of the analysis. There are two

kinds of conflicts:

(1) Modality conflicts. In one rule the subject is allowed to perform an action on an object, while in

another rule, the subject is denied to perform the same action on the same object. This type of

conflicts results from requirements and can be resolved by removing one of the rules that is not

true.

(2) Partial conflicts. For example, in the SPRAT project, classification is an attribute of goals.

However, classification and goals have different access permissions for Guests as shown below.

Rule 1: Allow Guest to view goals.

Rule 2: Deny Guest to view classification of goals.

We resolve this conflict by grouping both rules as an access control policy. Both rules in the policy must

be evaluated during enforcement (see Rule 2&3 for Policy 2 in Table 1).

Step 3.4 Grouping logically connected AC rules into ACPs
Your final ACPs should be a set of logically connected access control rules (see Table 1) as we now

discuss. Rule 1 allows Analyst to create a new goal. The object goals is a table in the database that stores

all the goals. Policy 2 contains two access control rules: a deny rule and an allow rule (see Step 3.3). They

are grouped into one policy because they are logically connected (i.e., the same subject performs the same

action on an object and on part of the object). Either rule alone cannot fully specify the security

requirements. Both rules in the policy must be evaluated during enforcement. Policy 3 also contains two

access control rules. Rule 5 allows a Project Manager to view table clOptions , which stores

GoalClassificationResults in the database. Rule 4 denies a Project Manager to view

GoalClassificationResults under certain circumstances.

211

Table 1. Example access control rules and policies (This is not a complete list)

Policy
No

Rule
No

Mode Subject Action Object Condition Sources

1 1 Allow Role
(Analyst)

Insert goals user.LoggedIn=true and the goal
does not exist in the database

FR-GSM
1

2 Deny Role

(Guest)

Read goals.classification Null FR-GSM

11

2

3 Allow Role
(Guest)

Read goals Null FR-GSM
11

4 Deny Role
(Project
Manager)

Read clOptions Role (user, Analyst)=true and
user.scheduledToClassify=true
and

user.classifyingFinished=false

FR-PM 33

5 Allow Role

(Project
Manager)

Read clOptions user.LoggedIn=true FR-PM 3

3 Attributes of high quality ACPs

The attributes of a high quality set of access control policies are as follows:

(1) All possible access control rules are derived from the SRS.

(2) Each rule is within the scope of access control as defined for this assignment (see Step 1.1).

(3) Each action is a database operation and each object is an object in the DB (see Step 2.1 and 2.2).

(4) The conditions for each rule are correctly specified and as completely as possible (see Step 2.3).

(5) Each rule is traceable to the requirement(s) from which it is derived (see Step 2.4).

(6) No two rules are redundant (see Step 3.2).

(7) No two rules conflict with one another (see Step 3.3).

(8) Logically connected rules are grouped together (see Step 3.4).

Please note that in Table 1, the rules are sorted according to subject and object. The action for each

rule is a database action and the object is an object in the database. Each rule can be traced back to the

requirement(s) it is derived from. Some rules are grouped into policies.

4 Tasks

This assignment package contains a software requirements document and a database schema design.

You need to read this assignment description very carefully before you start. Your task is to derive a set of

access control rules/policies from these two sources, specify the policies and rules in the format shown in

Table 1, improve both source documents, and finally to answer the questions on page 15.

5 Grading

All of the items listed in the checklist (page 1) must be submitted in order to be eligible for any

credit for this assignment. This assignment will count 2 points extra credit towards your final grade in

CSC 510. As shown below, the main part of the assignment is the quality of access control rules. Be sure

to evaluate your own results using the attributes described in Section 3. Your grade will be calculated as

follows:

Access control rules: 60%

Requirements specifications: 10%

Database design: 5%

Inconsistencies identified between the SRS and the DB design: 10%

Effort form: 5%

Answer questions: 10%

212

Access Control Analysis Assignment

Inconsistencies between SRS and DB design

CSC 510 Spring 2005

North Carolina State University

SRS DB schema design Inconsistency

213

Access Control Analysis Assignment

Final Access Control Policies and Rules (Page 1)

CSC 510 Spring 2005

North Carolina State University

PLEASE DRAW A HORIZONTAL LINE IN BETWEEN EACH RULE / POLICY

Policy

No

Rule

No

Mode Subject Action Object Condition Sources

214

Access Control Analysis Assignment

Final Access Control Policies and Rules (Page 2)

CSC 510 Spring 2005

North Carolina State University

Policy
No

Rule
No

Mode Subject Action Object Condition Sources

215

Access Control Analysis Assignment

Questions

CSC 510 Spring 2005

North Carolina State University

1. Did you find the analysis method you used useful and easy to follow for specifying access control

policies? If so, how? If not, what aspect was difficult?

2. Did the heuristics help you perform the analysis efficiently? If so, how? If not, how they can be

improved? Which heuristics were most helpful to you and why?

3. Did you develop any additional heuristics?

4. Which step or which part of the method can be improved?

5. Did you read other materials when completing the assignment? If so, please list them.

216

D.3 Control Group Assignment Description and Worksheets

Access Control Analysis Assignment

Checklist

CSC 510 Spring 2005

North Carolina State University

You are required to submit all the following items in order to be eligible to receive any credit for this

assignment:

______ (1) The signed NCSU Consent Form for Research.

______ (2) Final Access Control Rules and Policies sheet, which contains a list of access control rules

and policies.

______ (3) A revised version of the software requirements document. You can mark your changes

directly on the document. You may also document any additional questions or comments

using a blank paper.

______ (4) A revised version of the database schema design. You can mark your changes directly on

the document. You may also document any additional questions or comments using a blank

paper.

______ (5) The Inconsistencies between SRS and DB design sheet.

______ (6) The Time Effort form you fill in. Your grade will not be determined by the amount of time

you spent on the assignment. However, if you fail to document your effort, you will lose 5

points.

______ (7) The Questions form with your answers on it.

______ (8) All scratch papers.

217

Access Control Analysis Assignment

Time Effort Form

CSC 510 Spring 2005

North Carolina State University

Date Task Description2 Begin Time End Time Total Minutes

Summary of effort:

__________ Minutes on Understanding the assignment (_____%)

__________ Minutes on Understanding the problem domain (_____%)

__________ Minutes on ACP analysis (_____%)

__________ Minutes on Other activities (_____%)

Total Effort: __________ Person-Hours

2
 Task Description: (1) Understanding the assignment, such as reading project description; (2)

Understanding the problem domain, such as reading the SRS and DB schema design; (3) ACP analysis:

deriving access control rules; (4) Other activities (please specify).

218

Access Control Analysis Assignment

Project Description

CSC 510 Spring 2005

North Carolina State University

1 Objective

The overall objectives of this assignment are to (1) understand the role of access control analysis in

bridging the gap between requirements and design, and (2) derive access control rules (policies) from

requirements specifications and database designs. Please read this assignment description very carefully to

ensure you are able to effectively apply the techniques below to specify your access control policies. Please

keep track of the time you spend performing your analysis in the Time Effort Form. Although time is an

important metric, the amount of time you spend on this exercise will not affect your grade in any way. This

assignment should be completed independently. You may not talk with other students about the

assignment. You may not read any other material besides this assignment package and class notes.

2 Overview of Analysis Method

An access control (AC) rule contains four elements: <subject, object, action, condition>. A subject is a

user or a program agent, or any entity that may access objects. An object is a data field, a table, a

procedure, an application or any entity to which access is restricted. An action is a simple operation (e.g.

read or write) or an abstract operation (e.g. deposit or withdraw). An AC rule may also express additional

conditions that must be satisfied before an access request can be granted.

For this assignment, two source documents are needed to specify access control policies and rules: the

SRS and database design for a non-profit web portal system. This assignment requires you to specify two

kinds of rules: allow and deny rules. Logically connected AC rules can be grouped into access control

policies (ACPs). Allow rules authorize a subject to access a particular object. Deny rules explicitly prohibit

a subject from accessing a particular object. Allow or deny is called the mode of an AC rule.

 The following requirement is taken from the Security and Privacy Requirements Analysis Tool

(SPRAT) project. The SPRAT is a research tool that provides support for analyzing and specifying security

and privacy requirements using goals and scenarios. The information (goals, scenarios, requirements, etc.)

stored in the centralized database is proprietary and needs to be protected. Thus, access control is critical in

this system. Consider requirement FR-SSM-1:

FR-SSM-1: The system shall allow analysts to add a scenario in the repository.

The actor is analyst, the action is add (insert), and the object is scenario. We may derive an AC rule:

AC Rule 1:

Mode: Allow

Subject: Analyst

Action: Insert

Object: Scenario

Condition: Null

 You may find ambiguous requirements in the SRS and problems in the database schema design. You

may also find inconsistencies between the SRS and the DB design. You can improve both documents by

resolving ambiguities and inconsistencies.

The main artifacts that you must produce for this assignment are a set of ACPs and the augmented

requirements and database design specifications.

219

3 Attributes of high quality ACPs

The attributes of a high quality set of access control policies are as follows:

(1) All possible access control rules are specified.

(2) Each rule is within the scope of access control.

(3) Each action is a database operation and each object is an object in the DB.

(4) The conditions for each rule are correctly specified and as completely as possible.

(5) Each rule is traceable to the sources from which it was derived.

(6) No two rules are redundant.

(7) No two rules conflict with one another.

(8) Logically connected rules are grouped together.

4 Tasks

This assignment package contains a software requirements document and a database schema design.

You need to read this assignment description very carefully before you start. Your task is to derive and

specify a set of access control rules/policies from these two sources, improve both source documents, and

finally to answer the questions on page 12.

5 Grading

All of the items listed in the checklist (see page 1) must be submitted in order to be eligible for any

credit for this assignment. This assignment will count 2 points extra credit towards your final grade in

CSC 510. Your grade will be calculated as follows:

Access control rules: 60%

Requirements specifications: 10%

Database design: 5%

Inconsistencies identified between the SRS and the DB design: 10%

Effort form: 5%

Answer questions: 10%

220

Access Control Analysis Assignment

Inconsistencies between SRS and DB design

CSC 510 Spring 2005

North Carolina State University

SRS DB schema design Inconsistency

221

Access Control Analysis Assignment

Final Access Control Policies and Rules (Page 1)

CSC 510 Spring 2005

North Carolina State University

222

Access Control Analysis Assignment

Final Access Control Policies and Rules (Page 2)

CSC 510 Spring 2005

North Carolina State University

223

Access Control Analysis Assignment

Questions

CSC 510 Spring 2005

North Carolina State University

6. Explain how you went about deriving ACPs from the SRS and the DB design. If you developed

general guidelines (e.g., when I see x, I know it is y), please list them.

7. Did you read other materials when completing the assignment? If so, please list them.

8. Do you feel that you were efficient in specifying ACPs and identifying inconsistencies?

9. What aspects of specifying ACPs were difficult?

10. Did you find the ACP example useful?

11. Would more guidance be helpful?

224

Bibliography

[AE01] A.I. Antón and J.B. Earp. Strategies for Developing Policies and Requirements for

Secure Electronic Commerce Systems. In E-Commerce Security and Privacy, edited

by A. K. Ghosh, Kluwer Academic Publishers, pp. 29-46, 2001.

[AE04] A.I. Antón and J.B. Earp. A Requirements Taxonomy to Reduce Website Privacy

Vulnerabilities. Requirements Engineering Journal, Vol. 9 (3), pp. 169-185, 2004.

[AEB04] A.I. Antón, J.B. Earp, D. Bolchini, Q. He, C. Jensen and W. Stufflebeam. Financial

Privacy Policies and the Need for Standardization. IEEE Security & Privacy, Vol. 2

(2), pp. 36-45, 2004.

[AEC03] A.I. Antón, J.B. Earp and R.A. Carter. Precluding Incongruous Behavior by

Aligning Software Requirements with Security and Privacy Policies. Information

and Software Technology, Vol. 45 (14), pp. 967-977, 2003.

[AEP01] A.I. Antón, J.B. Earp, C. Potts, and T.A. Alspaugh. The role of Privacy and Privacy

Values in Requirements Engineering. IEEE 5th International Symposium on

Requirements Engineering (RE’01), pp. 138-145, 2001.

[AEV05] A.I. Antón, J.B. Earp, M.W. Vail, N. Jain, C. Gheen and J.M. Frink. An Analysis of

Web Site Privacy Policy Evolution in the Presence of HIPAA. Accepted, to appear

in: IEEE Security & Privacy, 2005.

[AHB04] A.I. Antón, Q. He, and D. Baumer. Inside JetBlue's Privacy Policy Violations. IEEE

Security & Privacy, Vol. 2 (6), pp. 12-18, 2004.

[AHK03] P. Ashley, S. Hada, G. Karjoth, C. Powers and M. Schunter. Enterprise Privacy

Authorization Language (EPAL 1.1) Specification. IBM Research Report, 2003.

http://www.zurich.ibm.com/security/enterprise-privacy/epal

[Ale03] I. Alexander. Misuse Cases: Use Cases with Hostile Intent. IEEE Software, Vol. 20

(1), pp. 58-66, 2003.

[Als02] T.A. Alspaugh. Scenario Networks and Formalization for Scenario Management.

PhD thesis, North Carolina State University, Raleigh, NC, 2002.

[AMP94] A.I. Antón, W.M. McCracken and C. Potts. Goal Decomposition and Scenario

Analysis in Business Process Reengineering. Proc. of the 6th International

Conference on Advanced Information Systems Engineering (CAiSE’'94), pp. 94-

104, 1994.

[ANS01] American National Standard for Telecommunications: Telecom Glossary 2000.

American National Standard T1.523-2001, American National Standard Institute,

2001.

[Ant96] A.I. Antón. Goal-Based Requirements Analysis. Proc. of the 2nd IEEE

International Conference on Requirements Engineering (RE'96), pp. 136-144, 1996.

225

[Ant97] A.I. Antón. Goal Identification and Refinement in the Specification of Sofware-

Based Information Systems. PhD thesis, Georgia Institute of Technology, Atlanta,

GA, 1997.

[AP98] A.I. Antón and C. Potts. The Use of Goals to Surface Requirements for Evolving

Systems. Proc. of the 20th International Conference on Software Engineering

(ICSE’98), pp. 157-166, 1998.

[AS99] G.-J. Ahn, R. Sandhu. The RSL99 language for role-based separation of duty

constraints. Proc. of the 4th ACM Workshop on Role-based access control

(RBAC'99), pp. 43-54, 1999.

[Bas92] V.R. Basili. Software Modeling and Measurement: The Goal Question Metric

Paradigm. Computer Science Technical Report Series, CS-TR-2956 (UMIACS-TR-

92-96), University of Maryland, College Park, MD, 1992.

[BBF00] E. Bertino, P.A. Bonatti, and E. Ferrari. TRBAC: a temporal role-based access

control model. Proc. of the 5th ACM Workshop on Role-based access control

(RBAC'00), pp. 21-30, 2000.

[BCR94] V. Basili, G. Caldiera and D. Rombach. The Goal Question Metric Approach.

Encyclopedia of Software Engineering. Wiley 1994.

[Bez98] K. Beznosov. Requirements for Access Control: US Healthcare Domain. Proc. of

the 3rd ACM Workshop on Role-Based Access Control, pp. 43, 1998.

[Bib77] K.J. Biba. Integrity considerations for secure computer systems. Technical Report

MTR-3153, Rev. 1, MITRE Corporation, 1977.

[BJW02] C. Bettini, S. Jajodia, S. Wang, D. Wijesekera, Provisions and obligations in policy

rule management and security applications. Proc. of the 28th Int’l Conf. on Very

Large Data Bases (VLDB'02), pp. 502-513, 2002.

[BKL02] G. Brose, M. Koch, and K.-P. Löhr. Integrating Access Control Design into the

Software Development Process. Proc. of the 6th International Conference on

Integrated Design and Process Technology (IDPT), 2002.

[BL73] D.E. Bell and L.J. LaPadula. Secure computer systems: Mathematical foundations.

Technical Report MTR-2547, Vol. 1, MITRE Corporation, 1973.

[BL76] D.E. Bell and L.J. LaPadula. Secure computer system: Unified exposition and

multics interpretation. Technical Report MTR-2997, Rev. 1, MITRE Corporation,

1976.

[BN89] D.F.C. Brewer and M.J. Nash. The Chinese Wall Security Policy. Proc. of the 1989

IEEE Symposium on Security and Privacy, pp. 206-214, 1989.

[Boe81] B.W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

226

[Boo94] G. Booch. Object-Oriented Analysis and Design with Applications. 2nd ed.,

Benjamin/Cummings, Redwood City, CA, 1994.

[Bro87] F. Brooks. No Silver Bullet: Essence and Accidents of Software Engineering. IEEE

Computer, Vol. 20 (4), pp. 10-19, 1987.

[Bro02] S. Brown. Uncloaking the Insider Threat. White paper, published at ITtoolbox

S e c u r i t y K n o w l e d g e B a s e , 2 0 0 2 .

http://security.ittoolbox.com/documents/document.asp?i=2836

[CC97] L. Cholvy and F. Cuppens. Analyzing Consistency of Security Policies. Proc. of the

1997 IEEE Symposium on Security and Privacy, pp. 103-112, 1997.

[Cho04] Choicepoint . Elect ronic Pr ivacy Informat ion Center , 2004.

http://www.epic.org/privacy/choicepoint/

[CHO99] S. Clarke, W. Harrison, H. Ossher, and P. Tarr. Subject-Oriented Design: Towards

Improved Alignment of Requirements, Design and Code. Proc. of the 14th ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA’99), pp. 325-339, 1999.

[Chu93] L. Chung. Dealing with Security Requirements During the Development of

Information Systems. Proc. of the 5th International Conference on Advanced

Information Systems Engineering (CAiSE’93), C. Rolland, F. Bodat, C. Cauvet

(editors), LNCS 685, pp. 234-251, 1993.

[CIN03] R. Crook, D. Ince, and B. Nuseibeh. Modelling Access Policies Using Roles in

Requirements Engineering. Information and Software Technology, Vol. 45 (14), pp.

979-991, 2003.

[CNY00] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in

Software Engineering. Kluwer Academic Publishers, 2000.

[Coc97] A. Cockburn. Structuring Use Cases with Goals. Journal of Object-Oriented

Programming, Vol. 10 (5), pp. 56-62, 1997.

[COP98]
Children's Online Privacy Protection Act of 1998. Federal Trade Commission,

1998. http://www.ftc.gov/ogc/coppa1.htm

[Coy96] E.J. Coyne. Role Engineering. Proc. of the 1st ACM Workshop on Role-Based

Access Control (RBAC’96), pp. 15-16, 1996.

[CS96] F. Cuppens and C. Saurel. Specifying a Security Policy: A Case Study. Proc. of 9th

IEEE Computer Security Foundations Workshop, pp. 123-134, 1996.

[CS98] R. Chandramouli and R. Sandhu. Role Based Access Control Features in

Commercial Database Management Systems. Proc. of the 21st National

Information Systems Security Conference, 1998.

[CSI02] T h e C o m p u t e r S e c u r i t y I n s t i t u t e , 2 0 0 2 .

http://seclists.org/lists/isn/2002/Mar/0016.html

227

[CSO04] 2004 E-Crime Watch Survey Summary of Findings. Conducted by the CSO

magazine, the US Secret Service, and CERT Coordination Center, 2004.

http://www.cert.org/archive/pdf/2004eCrimeWatchSummary.pdf

[CW87] D.R. Clark and D.R. Wilson. A Comparison of Commercial and Military Computer

Security Policies. Proc. of the 1987 IEEE Symposium on Security and Privacy, pp.

184-194, 1987.

[Dam02] N.C. Damianou. A Policy Framework for Management of Distributed Systems.

PhD Thesis, Imperial College, London, 2002.

[DD82] D. E. Denning and P. J. Denning, Cryptography and Data Security. Addison-

Wesley, 1982.

[Den76] D.E. Denning. A Lattice Model of Secure Information Flow. Communications of the

ACM, 19 (5), pp. 236-243, 1976.

[DL96] A. Dardenne and A. van Lamsweerde. Formal Refinement Patterns for Goal-Driven

Requirements Elaboration. Proc. of the 4th ACM SIGSOFT International

Symposium on the Foundations of Software Engineering (SIGSOFT 1996/ FSE-4),

pp. 179-190, 1996.

[DLF93] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-Directed Requirements

Acquisition. Science of Computer Programming, Vol. 20 (1-2), pp. 3-50, 1993.

[DM89] J.E. Dobson and J.A. McDermid. A Framework for Expressing Models of Security

Policy. Proc. of the 1989 IEEE Symposium on Security and Privacy, pp. 229-239,

1989.

[DM92] J. Dobson and M. Martin. Representation of Security Policy for a

Telecommunications Application. Proc. of the 8th International Conference on

Software Engineering for Telecommunication Systems and Services, pp. 87-92,

1992.

[DPD97] Directive 97/66/EC of the European Parliament and of the Council of 15 December

1997 concerning the processing of personal data and the protection of privacy in the

t e l e c o m m u n i c a t i o n s s e c t o r . E u r o p e a n U n i o n , 1 9 9 7 .

http://europa.eu.int/ISPO/legal/en/dataprot/protection.html

[DW98] D.F. D’Souza and A.C. Wills. Objects, Components and Frameworks with UML:

The Catalysis Approach. Addison-Wesley, 1998.

[Eps02] P. A. Epstein. Engineering of Role/Permission Assignments. Ph.D. Dissertation,

School of Information Technology and Engineering, George Mason University,

Fairfax, VA, 2002.

[ES01] P. Epstein and R. Sandhu. Engineering of Role/Permission Assignments. Proc. of

the 17th Annual Computer Security Applications Conference (ACSAC 2001), pp.

127-136, 2001.

228

[ES99] P. Epstein and R. Sandhu. Towards A UML Based Approach to Role Engineering.

Proc. of the 4th ACM Workshop on Role-Based Access Control (RBAC’99), pp.

135-143, 1999.

[FH97] E.B. Fernandez and J.C. Hawkins. Determining Role Rights from Use Cases. Proc.

of the 2nd ACM Workshop on Role-Based Access Control (RBAC’97), pp. 121-125,

1997.

[FIP98] Fair Information Practice Principles. Privacy Online: A Report to Congress (Part

III). Federal Trade Commission, http://www.ftc.gov/reports/privacy3/fairinfo.htm,

June 1998.

[Fis01] S. Fischer-Hübner. IT-Security and Privacy. Lecture Notes in Computer Science

1958 (LNCS 1958), Springer-Verlag, 2001.

[FK78] R.H. Franke and J.D. Kaul. The Hawthorne experiments: First statistical

interpretation. American Sociological Review, 43, pp. 623-643, 1978.

[FKC03] D.F. Ferraiolo, D.R. Kuhn, and R. Chandramouli. Role-Based Access Control.

Artech House computer security series, 2003.

[FKP03] A. Fuxman, R. Kazhamiakin, M. Pistore and M. Roveri. Formal Tropos: language

and semantics. University of Trento and IRST, Trento, Italy, 2003.

[FM04] I. Fundulaki and M. Marx. Specifying access control policies for XML documents

with XPath. Proc. of the 9th ACM Symposium on Access Control Models and

Technologies (SACMAT’04), pp. 61-69, 2004.

[FN93] J.W. Freeman and R.B. Neely. On Security Policy Modeling. Proc. of the 8th

Annual Conference on Computer Assurance: Practical Paths to Assurance

(COMPAS’93), pp. 61-69, 1993.

[FNH94] J.W. Freeman, R.B. Neely, M.A. Heckard. A Validated Security Policy Modeling

Approach. Proc. of the 10th Annual Computer Security Applications Conference,

pp. 189-200, 1994.

[Fon01] P.-J. Fontaine. Goal-Oriented Elaboration of Security Requirements. Project

Dissertation, Université Catholique de Louvain, Belgium, 2001.

[GF94] O. Gotel and A. Finkelstein. An Analysis of the Requirements Traceability

Problem. Proc. of the 1st International Conference on Requirements Engineering

(ICRE’94), pp. 94-101, 1994.

[GH93] J.V. Guttag and J.J. Horning, with S.J. Garland, K.D. Jones, A. Modet, and J.M.

Wing. Larch: Languagues and Tools for Formal Specification. Springer-Verlag,

1993.

[GLB01] Gramm-Leach-Bliley Act: Financial Privacy and Pretexting. Federal Trade

Commission, 2001. http://www.ftc.gov/privacy/glbact/index.html

229

[GS67] B. Glaser and A.L. Strauss. The Discovery of Grounded Theory: Strategies for

Qualitative Research. Aldine Publishing Company, 1967.

[HA03] Q. He and A.I. Antón. A Framework for Modeling Privacy Requirements in Role

Engineering. Proc. of the 9th International Workshop on Requirements

Engineering: Foundation for Software Quality (REFSQ'03), pp. 137-146, 2003.

[HBM98] R.J. Hayton, J.M. Bacon, and K. Moody. Access control in an open distributed

environment. Proc. of the 1998 IEEE Symposium on Security and Privacy, pp. 3-14,

1998.

[HIP96] The 1996 Health Insurance Portability and Accountability Act (HIPAA),

http://www.hhs.gov/ocr/hipaa/.

[HMA04] P. Hope, G. McGraw, and A.I. Antón. Misuse and Abuse Cases: Getting Past the

Positive. IEEE Security and Privacy, Vol. 2 (3), pp. 90-92, 2004.

[Hol97] G.J. Holzmann. The SPIN Model Checker. IEEE Transactions of Software

Engineering, Vol. 23 (5), pp. 279-295, 1997.

[IDE93] Integration Definition for Function Modeling (IDEF0), Draft Federal Information

Processing Standards Publication 183, 1993. http://www.idef.com/pdf/idef0.pdf

[IEE93] IEEE Standards Collection: Software Engineering. IEEE Standard 610.12-1990,

IEEE, 1993.

[HRU76] M.H. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems.

Communications of the ACM, 19 (8), pp. 461-471, 1976.

[Jac02] D. Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Transactions

on Software engineering and Methodology, Vol. 11 (2), pp. 256-290, 2002.

[JAS04] N. Jain, A.I. Antón, W.H. Stufflebeam, and Q. He. Security and Privacy

Requirements Analysis Tool (SPRAT) Software Requirements Specification. NCSU

Computer Science Technical Report TR-2004-7, April 9, 2004.

[JBC98] M. Jarke, T.X. Bui and J.M. Carrol. Scenario Management: An Interdisciplinary

Approach. Requirements Engineering Journal, Vol. 3 (4), pp. 155-173, 1998.

[JKS00] S. Jajodia, M. Kudo, V.S. Subrahmanian, Provisional Authorizations. Proc. of the

1st Workshop on Security and Privacy in E-Commerce, 2000.

[JSS01] S. Jajodia, P. Samarati, M.L. Sapino, V.S. Subrahmanian. Flexible support for

multiple access control policies. ACM Transactions on Database Systems, Vol. 26

(2), pp. 214-260, 2001.

[JSS97] S. Jajodia, P. Samarati, and V.S. Subrahmanian. A Logical Language for

Expressing Authorizations. Proc. of the 1997 IEEE Symposium on Security and

Privacy, pp. 31-42, 1997.

230

[Kai95] H. Kaindl. An Integration of Scenarios with their Purposes in Task Modeling. Proc.

of the 1995 Symposium on Designing Interactive Systems: Processes, Practices,

Methods, and Techniques (DIS'95), pp. 227-235, ACM, Aug. 1995.

[Kai00] H. Kaindl. A Design Process Based on a Model Combining Scenarios with Goals

and Functions. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 30 (5),

pp. 537-551, 2000.

[Kav02] E. Kavakli. Goal-Oriented Requirements Engineering: A Unifying Framework.

Requirement Engineering Journal, Vol. 6 (4), pp. 237-251, 2002.

[KG03] D. Kulak and E. Guiney. Use Cases: Requirements in Context. 2nd edition, Addison-

Wesley, 2003

[KKC02] A. Kumar, N. Karnik, and G. Chafle. Context Sensitivity in Role-based Access

Control. ACM SIGOPS Operating Systems Review, pp. 53-66, July 2002.

[KS02] G. Karjoth and M. Schunter. A Privacy Policy Model for Enterprises. Proc. of the

15th IEEE Computer Security Foundations Workshop, pp. 271-281, 2002.

[Lam01] A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour.

Proc. of the 5th International Symposium on Requirements Engineering (RE’01),

pp. 249-262, 2001.

[Lam04] A. van Lamsweerde. Elaborating Security Requirements by Construction of

Intentional Anti-Models. Proc. of the 26th International Conference on Software

Engineering (ICSE’04), pp. 148-157, 2004.

[Lam74] B.W. Lampson. Protection. Proc. of the 5th Princeton Symposium on Information

Science and Systems, pp. 437-443, 1971. Reprinted in ACM Operating Systems

Review, Vol. 8 (1), pp. 18-24, 1974.

[LDL98] A. van Lamsweerde, R. Darimont and E. Letier. Managing Conflicts in Goal-Driven

Requirements Engineering. IEEE Transactions on Software Engineering, Vol. 24

(11), pp. 908-925, 1998.

[LDM95] A. van Lamsweerde, R. Darimont and P. Massonet. Goal-directed Elaboration of

Requirements for a Meeting Scheduler: Problems and Lessons Learnt. Proc. of the

2nd IEEE International Symposium on Requirements Engineering (RE’95), pp. 194-

203, 1995.

[LL00] A. van Lamsweerde and E. Letier. Handling Obstacles in Goal-Oriented

Requirements Engineering. IEEE Transactions on Software Engineering, Vol. 26

(10), pp. 978-1005, 2000.

[LL02a] E. Letier and A. van Lamsweerde. Agent-Based Tactics for Goal-Oriented

Requirements Elaboration. Proc. of the 24th International Conference on Software

Engineering (ICSE’02), pp. 83-93, 2002.

231

[LL02b] E. Letier and A. van Lamsweerde. Deriving Operational Software Specifications

from System Goals. Proc. of the 10th ACM SIGSOFT International Symposium on

the Foundations of Software Engineering (SIGSOFT 2002/ FSE-10), pp. 119-128,

2002.

[LYM02] L. Liu, E. Yu, and J. Mylopoulos. Analyzing Security Requirements as

Relationships Among Strategic Actors. Proc. of the 2nd Symposium on

Requirements Engineering for Information Security (SREIS'02), 2002.

[LYM03] L. Liu, E. Yu and J. Mylopoulos. Security and Privacy Requirements Analysis

within a Social Setting. Proc. of the 11th International Requirements Engineering

Conference (RE'03), pp. 151-161, 2003.

[MCN92] J. Mylopoulos, L. Chung, B. Nixon. Representing and Using Nonfunctional

Requirements: A Process-Oriented Approach. IEEE Transactions on Software

Engineering, Vol. 18 (6), pp. 483-497, 1992.

[MHN04] J.D. Moffett, C.B. Haley, and B. Nuseibeh. Core Security Requirements Artefacts.

Technical Report Number 2004/23, Department of Computing, Open University,

UK, 2004.

[Mof99] J.D. Moffett. Requirements and Policies. Proc. of Policy Workshop, HP-

Laboratories, Bristol, UK, 1999.

[MS93] J.D. Moffett and M.S. Sloman. Policy Hierarchies for Distributed Systems

Management. IEEE Journal on Selected Areas in Communications, Vol. 11 (9), pp.

1404-1414, 1993.

[NCS88] National Computer Security Center (NCSC), Glossary of Computer Security Terms,

N C S C - T G - 0 0 4 , V e r s i o n - 1 , O c t o b e r 1 9 8 8 .

http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-004.txt

[NCS92] National Computer Security Center (NCSC), A Guide to Understanding Security

Modeling in Trusted Systems, NCSC-TG-010, Version-1, J Williams primary

author, October 1992. http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-

010.txt

[NE00] B.A. Nuseibeh and S.M. Easterbrook. Requirements Engineering: A Roadmap. In

A.C.W. Finkelstein (ed.) The Future of Software Engineering. (Companion Volume

to Proc. of the 22nd International Conference on Software Engineering), pp. 35-46,

2000.

[NS02] G. Neumann and M. Strembeck. A Scenario-driven Role Engineering Process for

Functional RBAC Roles. Proc. of the 7th ACM Symp. on Access Control Models

and Technologies (SACMAT’02), pp. 33-42, 2002.

[OAS05] OASIS eXtensible Access Control Markup Language (XACML). Version 2.0,

February 1, 2005. http://www.oasis-open.org/committees/xacml

232

[OEC80] OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal

Data. Organization of Economic Cooperation and Development (OECD), 1980,

http://www1.oecd.org/publications/e-book/9302011E.PDF.

[P3P05] The Platform for Privacy Preferences 1.1 (P3P1.1) Specification. The World Wide

Web Consortium (W3C), 4 January 2005. http://www.w3.org/TR/2004/WD-P3P11-

20040210/

[Pet78] L. Peters. Relating Software Requirements and Design. Proc. of the Software

Quality Assurance Workshop on Functional and Performance Issues, pp. 67-71,

1978. (Also published in ACM SIGSOFT Software Engineering Notes, Vol. 3 (5),

pp. 67-71, 1978.)

[PP02] C.P. Pfleeger and C.L. Pfleeger. Security in Computing. 3rd ed., Prentice Hall,

2002.

[Pre05] R.S. Pressman. Software Engineering: A Practitioner’s Approach. 6th edition,

McGraw-Hill, 2005.

[PS02] J. Park and R. Sandhu. Towards Usage Control Models: Beyond Traditional Access

Control. Proc. of the 7th ACM Symposium on Access Control Models and

Technologies (SACMAT’02), pp. 57-64, 2002.

[PS04] J. Park and R. Sandhu. The UCONABC Usage Control Model. ACM Transactions

on Information and Systems Security, Vol. 7 (1), pp. 128-174, 2004.

[PTA94] C. Potts, K. Takahashi and A.I. Antón. Inquiry-Based Requirements Analysis.

IEEE Software, Vol. 11 (2), pp. 21-32, 1994.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language

Reference Manual. Addison-Wesley, 1999.

[Rob73] C. Robson. Experiment Design and Statistics in Psychology. Penguin Books Ltd.,

Harmondsworth, Middleseex, England, 1973.

[RSA98] C. Rolland, C. Souveyet, and C. B. Achour. Guiding goal modeling using scenarios.

IEEE Transactions on Software Engineering, Vol. 24 (12), pp. 1055-1071, 1998.

[RSW00] H. Roeckle, G. Schimpf, and R. Weidinger. Process-Oriented Approach for Role-

Finding to Implement Role-Based Security Administration in a Large Industrial

Organization. Proc. of the 5th ACM Workshop on Role-Based Access Control

(RBAC’00), pp. 103-110, 2000.

[RZF01] C. N. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. SPL: An Access Control

Language for Security Policies with Complex Constraints. Proc. of Network and

Distributed System Security Symposium (NDSS’01), pp. 89-107, 2001.

[SAA03] W. Stufflebeam, A.I. Antón, and T.A. Alspaugh. SMaRT - Scenario Management

and Requirements Tool. Proc. of the 11th IEEE International Requirements

Engineering Conference (RE’03), pp. 351, 2003.

233

[SB99] Rini van Solingen and Egon Berghout. The Goal/Question/Metric Method: A

Practical Guide For Quality Improvement of Software Development. McGraw-Hill,

1999.

[SCF96] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, C.E. Youman. Role-Based Access Control

Models. IEEE Computer, Vol. 29 (2), pp. 38–47, 1996.

[Sch00] G. Schimpf. Role-Engineering Critical Success Factors for Enterprise Security

Administration. Proc. of the 16th Annual Computer Security Applications

Conference (ACSAC’00), 2000.

[Sha01] M. Shaw. The Coming-of-Age of Software Architecture Research. Proc. of the 23rd

International Conference on Software Engineering (ICSE 2001), pp. 657-664, 2001.

[Sie73] S. Siegel. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill

Kogakusha Ltd., 1973.

[SL02] M. Sloman and E. Lupu. Security and Management Policy Specification. IEEE

Network, Vol. 16 (2), pp. 10-19, 2002

[SMJ01] A. Schaad, J. Moffett, J. Jacob. The Role-Based Access Control System of a

European Bank: A Case Study and Discussion. Proc. of the 6th ACM Symposium on

Access Control Models & Technologies (SACMAT’01), pp. 3-9, 2001.

[SO00] G. Sindre and A.L. Opdahl. Eliciting Security Requirements by Misuse Cases.

Proc. of the 37th International Conference on Technology of Object-Oriented

Languages and Systems (TOOLS-37’00), pp. 120-131, 2000.

[Spi92] J.M. Spivey. The Z Notation: A Reference Manual. 2nd edition, Prentice-Hall,

Englewood Cliffs, NJ, 1992.

[SSH97] Site Security Handbook. RFC 2196, Network Working Group, Internet Engineering

Task Force (IETF), 1997. http://www.ietf.org/rfc/rfc2196.txt

[SV01] P. Samarati, S. De Capitani di Vimercati. Access Control: Policies, Models, and

Mechanisms. IFIP WG 1.7 International School on Foundations of Security

Analysis and Design (FOSAD 2000), LNCS 2171, pp. 137-196, 2001.

[UML05] The Unified Modeling Language Specification, Version 1.5. Object Management

Group, 2005. http://www.omg.org/technology/documents/formal/uml.htm

[WC98] K.M. Walker and L.C. Cavanaugh. Computer Security Policies and SunScreen

Firewalls. Sun Microsystems Press, 1998.

[Wes67] A. Westin. Privacy and Freedom. New York, 1967.

[WK99] J. Warmer and A. Kleppe, The Object Constraint Language: Precise Modeling with

UML. Addison-Wesley, 1999.

234

[WPJ98] K. Weidenhaupt, K. Pohl, M. Jarke and Peter Haumer. Scenarios in System

Development: Current Practice. IEEE Software, Vol. 15 (2), pp. 34-45, 1998.

[YC02] E. Yu and L. Cysneiros. Designing for Privacy and Other Competing Requirements.

Proc. of the 2nd Symposium on Requirements Engineering for Information Security

(SREIS'02), 2002.

[YC03] E. Yu and L.M. Cysneiros. Designing for Privacy in a Multi-Agent World. In:

Trust, Reputation and Security: Theories and Practice, R. Falcone, S. Barber, L.

Korba and M. Singh (editors), LNCS 2631, Springer-Verlag, pp. 209-223, 2003.

[YL01] E. Yu and L. Liu. Modelling Trust for System Design Using the i* Strategic Actors

Framework. In: Trust in Cyber-Societies - Integrating the Human and Artificial

Perspectives, R. Falcone, M. Singh, Y.-H. Tan (editors), LNCS 2246, Springer-

Verlag, pp. 175-194, 2001.

[Yu93] E. Yu. Modeling Organizations for Information Systems Requirements Engineering.

Proc. of the 1st IEEE International Symposium on Requirements Engineering

(RE’93), pp. 34-41, 1993.

[Yu97] E. Yu. Towards Modelling and Reasoning Support for Early-phase Requirements

Engineering. Proc. of the 3rd IEEE International Symposium on Requirements

Engineering (RE’97), pp. 226-235, 1997.

[Zav97] Pamela Zave. Classification of Research Efforts in Requirements Engineering. ACM

Computing Surveys, Vol. 29 (4), pp. 315-321, 1997.

[ZWC02] J. Zao, H. Wee, J. Chu, and D. Jackson. RBAC Schema Verification Using

Lightweight Formal Model and Constraint Analysis. Massachusetts Institute of

Technology, 2002.

