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Abstract. After a review of the circle fitting issue, we recall a rela-
tively unknown method derived from a classical geometric result.
We propose an improvement of this technique by reweighting the
data, iterating the procedure, and choosing at every step as the new
inversion point the one diametrically opposite to the previous inver-
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1 Introduction

Fitting a circle to a set of noisy data points is an old prob-
lem that has motivated a large amount of—often
duplicated—literature in various fielddn many situations,

what is perceived is not the complete locus of a circle, but

a sample of points, where the noise is scattered about an ard"P

of a circle? It was suggested that the larger the angle, the
better the precision of the estimated circle parameters, an
also the variances become infinitely high when the arc
angle approaches zetdlhe presence of noise means also
that an approximate way for fitting circles is requife@ne
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of the oldest robust methods used in the recognition and
extraction of circles from a digital image is the Hough
transform. Unfortunately the Hough transform is suitable
for problems having enough correct data to support the ex-
pected solution.The orthogonal distance regressi@DR)
method determines the curve that minimizes the sum of
square of distances from each data point to the closest point
on the curve. The ODR is well known to be computation-
ally difficult. Another major drawback related to the gen-
eral use of least squares is that they are sensitive to
outliers® If we enlarge the family addressed to the class of
conics, then essentially two types of methods have been
lemented for fittind. The first one has been referred to
as algebraic fitting, where the implicit form is used and the
esidual is minimized; the other is geometric fitting, where
he goal is to minimize the sum of the squares of the dis-
tances between the scattered points and the conic. In the
following, we shall understand by geometric approaches
those techniques obtained by using some classical geo-
metrical results. Thus their outcomes may finally belong
from both either algebraic or geometric distance methods.
The goals of this paper are to briefly review a known
method derived from a classical geometrical result and to
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present a new technique based on this method. The pro

posed technique enables us to deal with and to fit a circle in

a convenient form for scattered points when they are sym-
metrically and/or asymmetrically distributed around the cir-

al.

sistent. The accuracy obtained is related to the arc
length and to the noise present in the data.

4. Arcs with larger radii fit more closely to the data than
those with smaller radfi.

cumference of the circle. The approach proposed is based

on the property of an inversion transformation to map a
circle into a straight line, if the circle passes through the
pole of the inversiofi. The idea was originally traced by
Brandon and Cowley,but it is relatively unknown. Our
contribution consists of modifying the algorithm by weight-
ing the data, iterating the procedure, and choosing at ever
step as the new inversion point the one diametrically oppo
site to the previous inversion point. The paper is organized
as follows. Section 2 presents the previous geometrical ap

proaches. Section 3 describes and analyses the inversio

transformation method. Section 4 introduces the propose
weighting iterative method and provides the necessary in-
formation for implementing the procedure.

2 Previous Geometrical Approaches

In circle fitting, simple chord theorems for circles can be
used® as every circle is completely determined by three
noncolinear points. From an algebraic point of view, the
resulting matrix equation will be poorly conditioned if the
matrix is singular or near singular, and this will happen if

the data points are spread around a short arc. A least-

squares error criterion for circle fitting results in minimiz-
ing the mean square err@vISE) sum

N
MSE=Zl (R—R)?, 1)

where R=[(x;—A)?+(y;—B)?]¥2 In this formula,
(% ,y;) represent thex, y) coordinates of tha'th data
point, N=3 is the number of data point$A, B) are the
coordinates of the circle center, aitis the radius of the
circle.

It is quite easy to realize that the error criterion defined
by Eg. (1) is difficult to handle analytically and one rather
prefers to look for some other properties of the circle that in

some way show how far is a certain point from the given a

circle. Indeed, if we consider minimizing the sum,

N
;1 (RP—R?)2, )

The case in which the data result in ambiguous circle and
the circle fit must be rejected was considered in Ref. 12.

3 Inversion Method of Brandon and Cowley

%n their method the authors recalled a well-known prop-

erty of conformal mappings, precisely that circles through
the origin map to straight lines under inversion. Thus if the
(rilata pointsM;(x;,y;) lie approximately on a circle, their
magesN; (u; ,v;) will lie approximately on a straight line
after inversion(Fig. 2). Therefore we can use a standard
straight line fit formula(total least squaréd in the (u,v)
coordinates. Taking the inverse of the fitted straight line
using the same pole of inversiof@lso called inversion
point or pivot poinf P(X,Y) we retrieve the fitted circle.
Thus the algorithm that estimates a circle using this inver-
sion transformation methddan be written as follows:

(I-1) Given

N=number of points

M;(x; ,y;) = data to be fitted by circle

p=parameter of the inversion transformatibn
P(X,Y)=pole of inversion transformatioh

(I-2) Compute the dat&l;(u;,v;) in the uv plane with:

(Xi_X)P2
U= Xt =07+ (y,— V)2
3
L 2
Ui=Y+ (yl Y)p

(Xi—X)?+(y;i—Y)*

(I-3) Compute the parameteasandb of their fitted straight
line v=a+bu using total least squares mettad

=v—hu,
4
_ (S S0) FL(Suu=S,0)*+ 48,2

o 25,

then we can easily get the formulas for the center and the

radius of the circlgFig. 1). This is the elegant geometric
approach known as the Kasa mettfit has the following
properties:

1. It is more advantageous to minimize not the mean
squaregEq. (1)], but R?, whose contribution to Eq.
(2) is more important! This leads to a superfluous
sensitivity to any small errors in measurements.

circle center unless the data are symmetrically dis-
tributed around the circumference of the circle.

The bias is small and tends to 0 as the number of dat
points approaches infinity, i.e., the estimation is con-
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. The Kasa procedure gives biased estimates of the i

where

M =

Z| -

1% _
—_ u.’ v=
Ni< =31

N N
Sw=2, (=7 §,=2, (U= UW(vi=0), (5)

N

%Uvzi:zl (vi_mz-
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(1) Let denote by:
N
Ya=2(( —Nzﬂf?];

=1

Yp= 2[2 Zyz)-Nszyz
2, =2(( Zlyi)2 — NZ?/?];

1M2

Z

ZII

=(;m?>(zlmi)—zv<zlx,~ (32 (2 48)-N (3 2
ZIZ)Z% Zy (2 w) Zyz (X_jlw?yi)-

(2) The coordinates of the center of the circle are:

SiEy =585 p_ BaZe— L%

A=
Saty — 55 SaXy — 35

(3) The radius of the circle is given by:

1 [N N N N
R2=A2+BQ+N Soal—24Y 7, + > 4y} -2B> i
n=1 n= = n=1

Fig. 1 Circle center (A, B) and radius R with the Kasa method.

(I-4) Find the fitted circleC* that corresponds to the fitted straight line. For this aim we shalll isehe inverse of
inversion transformatioh The steps are the following:

A (@) For the given pole of inversioR(X,Y) we have a
certain point P,, (X,x ,Y4x) On a line Y=a
+bX that is closest when we measure distance or-

thogonally:
A (X,Y) _bY+X-ab _ bY+Xx-ab
O(A4, B) N K = 1402 ' Yy =at+h 1402
“X*, YY) (b) The corresponding image point of
P.(X,,Y,) ’ Pex Xyox »Yyex) by using 171 is exactly
(@ /4 P** (X** ,Y**), the new diametrically opposite

in the circleC* to the P(X,Y):

]Vi(ui’ vi)

Fig. 2 Inversion of a circle when the pole lies on the circle. TActually | "*=1 (Ref. 8.
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Table 1 Data set for Example 1. T0p o -
X 1 2 5 7 9 3
y 6 8 7 5 7
N (x,k*2 —X)p? )
(Xk* _X) +(Y~k~k _Y) ’
YR~y (Yax _Y)pz

(Xk* _X)2+(Y~k* _Y)Zl
(c) The fitted circle is described by the coordinates of
the centelO* (A* ,B*) and the radiusR*:
X+ X** Y+ Y**
* B* =
2 2
R* =[(X—A*)2+(Y—B* 2|2,

3.1 Examples -2 0 2 4 6 8 10 12

3.1.1 Example 1: The data set of Gander, Golub, _ N , , . .
and Strebel” Fig. 3 Six points (*) from Example 1 with four fitted circles obtained

using best fitted circle’ (- -), Kasa method (-), and inversion method
Let us consider the pairs of points in Table 1. It is easy to (-) when P(0,1) (O) is inversion pole, and, respectively, (:) when
show that they can not be located on same circle. These?(9.5:4) and (+) is inversion pole.
points were fitted in Ref. 7 by circles using different meth-

ods.
Minimizing the algebraic distance: better results than with the Kasa method, if the pole of
inversion is proper selected. However, for a poor choice of
A=5.3794, B=7.2532, R=3.0370, MSE=10.8532. inversion pole, the results can be depreciated.
Minimizing the geometric distance: 3.1.2 Example 2: The pole of inversion and the

localization of the scattered points

The goal of this experiment is to show the manner in which
This last one was considered there by the authors as thdhe position of the pole of inversion and of the scattered

A=4.7398, B=2.9835, R=4.7142, MSE=1.2276.

best circle fit(Fig. 3). points affects the circle-fitted parameters. For this reason,
If someone would like to implement the Kasa method, W€ select the same parameters of inversion, but we rotate
the results are the scattered points around the inversion circle, keeping the
same geometric configuration for every trial. A random
A=4.7423, B=3.8351, R=4.1088, MSE-1.3983. 10,000 trials are generated and the results averaged.

The parameters of inversion transformation are

The differences can be explained by recalling that the Kasa i ) , i ) ,
method does not minimize in the mean square sense. In 1. The inversion circle has radil®&=1 and its center is
addition, the data are spread only on a third part of the best located atO(0,0).
circle fit and as we have already pointed out, the Kasa 2. The pole of inversion is fixed &(—1,0).
method gives biased estimates of the circle céfiter.

Parameters of the fitted circles by inversion method for
different inversion poles are also presented in Fig. 3:

3. The parameter of inversion is selecied 1.

The points are uniform distributed around the circle within
an anglen/8. Their coordinates o andy axes, respec-

tively, of the distances to the circle are uniform distributed
between+0.01. A random configuration is generated at the

X=0, Y=1 A=4.7020,B=2.6223, R=4.9740,

MSE=1.2481, beginning and it is rotated around the circle 100 times,
every time with an angle2100. For every case, we com-

X=9.5, Y=4: A=5.445,B=4.3129, R=4.0672, pute the new circle fitted with inversion transformation
method. The MSE in circle radius and, respectively, in cen-

MSE=2.7624. ter position are later saved corresponding to the angle of

rotation. Then another 9,999 trials are generated and the
The inversion constant has been selegtedl. We can con-  results averaged.

clude that the results depend on the choice of the inversion The outcome of such an experiment is presented in Fig.
pole P(X,Y) and with the inversion method, one can obtain 4, where plots of the MSE for circle radius and circle center
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GIRCLE RADIUS inversion method as traced by Brandon and Cowley fails in

such a situation. The following analysis gives more infor-
mation about the behavior of the inversion transformation
method and provides us with some tracks to follow to avoid
some of its inconveniencies.

3.2 Inversion Method Analysis
Consider now the Cartesian motfebf the given points

Mi(Xi,Y;):
Xj=A+Rcosf,+¢€, y,=B+Rsing+5, (6)
—80 1 1 1
ROTATION ANGLE wheree;, §;, i=1,2,...N, are independent random errors
with common variance, and; are either fixed or random
angles.

CIROLE GENTRE ! In a similar way we have for the pole of inversion:

X=A+Rcosf, Y=B+Rsing, (7)

whered is its corresponding angle. We can easily find now
the coordinates oP* (X*,Y*) andP, (X, ,Y,), the sym-
metric of the pole of inversion and its image under inver-
sion:

X*=A+Rcos(7+ 0)=A—Rcos0,

. tS)
; : : Y*=A+Rsin(7+ 0)=B—Rsiné,
) = * i =
ROTATION ANGLE (X* —X)p? p?
Fig. 4 MSE in decibels of the circle-fitted parameters (the radius Ky =X+ (X* = X)Z+(Y* —Y)2 =A+Rcoso— ﬁCOS@,
and the center of the circles) for different scattered point rotation
angles. " 2 2 )
Y=Y+ (V" =¥ —B+Rsin0—p—sin0
are provided. It is easy to see that for both of the mentioned * ~ ~ " (X* —X)2+(Y*—Y)2 2R™T

parameters, the errors increase dramatically when the angle
of rotation approaches, i.e., when the scattered points are Now we focus on the computation of the last terms of Egs.
close to the pole of inversion. We can conclude that the (3) using Egs.(6) and(7). The outcomes are

(x;— X)p? B (Rcos#,—Rcosf+ e) p?
(xi—X)2+(y;—Y)? (Rcosé,—Rcosé+ €)°+(Rsind,—Rsin+ 5,)°

p? cos#; —cosf+ € /R

" 2R 1—coq 6,— 0)+ € /R(cosf;—cos) + 5, /R(sin 6, —sin 0) + (e2+ 62)/ (2R?)’

(yi—Y)p? B (Rsin6,—Rsin 6+ €) p?
(x;—X)?+(y;—Y)? (Rcosé,—Rcosb+ ¢)’+ (Rsing;—Rsing+ 8,)?
p? sing,—sin6+ & /R

" 2R 1—coq 6,— 0)+ € /R(cosf,—cos) + 5, /R(sin 6,—sin 0) + (e2+ 62)/ (2R%)
It follows from Eg. (3) that we have

(x—X)p?
(X —X)?+(yi—Y)?
2 cos#;, —cosh+ € /R

p
=A+R +— - - , 1
cosd 2R 1—cog 6;— 0) + €; IR(cos; —cosh) + & /R(sin §;—sin 0)+(ei2+ (Siz)/2R2 (10

Ui:X+
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(Yi—=Y)p?
vi=Y+
' (X =X)*+(y;—Y)?
_Birsings P p? sing;—sin6+ & /R 1
= sin
2R 1—cog 6;— 6) + € /R(cos6; — cosh) + &, /R(sin 6, —sin 6) + (e’ + 67)/ (2R?) (D
|
When noise is absenk(= 6,=0), we get line A, the image of the inversion circle through the inver-
sion transform, which passes through pdmt, orthogonal
At Reosos P p? cosf,—cosh to PP, .
cos 2R 1—cog6,— 6) = Uio» Now we consider that noise is present in the data, but it
is small in comparison with the radius of the circe;]
CBiRsings P p? sind,—sing <R, |8,|<R. For the last terms of Eq$10) and (11) we
sin 2R 1—cog 6;— 6) ~Vio- can develop the linearized model given by first terms in the

Taylor series and this suggests the following approxima-
In this situation, all the pointsuy,v;g) lie on the straight  tions:

p2 cosé;—cosé

u;~A+Rcoséd SR1- o4 6,— 0)

. p? 9 COS6; — COSO+ X €
2R x| 1—cog 6;,— 6) +x(cosé; — cosh) + y(sin 6, — sin 6) + (xZ+y?)/2 X:Oy:OE
. p? 9 coS6;, — cosf+ X 5;
2R dy | 1—cog 6, — ) + x(cosh;— cosh) + y(sin 6, —sin ) + (x> +y?)/2 Xzoy:OR’
p? sing—sing p2 9 sing,—sinf+y €
~B+Rsinf+ —=——++-——=— ; ; 2.2 =)
2R 1—cog6,— 6) 2R x| 1—cog 6;— 0)+x(cosf;—cosh) +y(sinf;—sin ) + (x+y)/2 X=Oy=0R
. p? sing;—sing+y 5;
2R dy | 1—cog 6;— 0) +x(cosé, — cosh) + y(sin §; —sin ) + (x> + y?)/2 x:Oy:OE.
[
Thus we get € O;
Ui~Ujg+ U=+ Us=,
5 b — cosd i i0 i R |5R
U~A+Rcosg+ Lo 020088
2R 1—cog6,—0) €; S
~p.~tv..—+U: —,
. p? 1 (cosé,—cosh)? ] € ViTlioTVieg THisR
2R|1-cod6,-6) [1-cos6- 017 R
cog6;—0) [1l—cog6,—0)]° R where

p? [ (cos#;—cosb)(sin 6, —sin b)
2R [1—cod 6;—6)]? R’ p_z( 1 (cosai—cose)zj

u. f—
' 2R|1—cog6,—60) [1—cog6;—0)]?
p? sing,—sing

B+Rsm6l+2R—1 cos 6, 0)

(cos@;— cosh)(sin ;—sin 0)}
Ujs= — f

ﬁ[ [1-coq6,—6)]?

(sin6;—sin #)(cosH;, —cosh)| e
2R [1-cog6,—0)]? R

(sing;—sin#)(cos; — cosa)]

N 1 (sing,—sin®)? | & ”‘f:_ﬁ{ [1—cos 60— 0)]
2R|1-cog6,—6) [1—cod6,—6)]° _ ,
p° 1 (sin#;—sin #)?
We can now write: VisT2R|1—cog6,—6) [1—cod6,—0)]2
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In the following, we shall compute the distance between (u,,— X, )(vi—vip) — (vig— Y4 )(Uj—Ujo)
the point {; ,v;) and straight lineA. Because both points [(X, —Uig)2+ (Y, —0,0)2]? '
(X, ,Y,) and (Ug,vi) lie on A, we have the following x o x 7o
relationship for the distance between the point,¢;) and

straight lineA: which gives us
|
C0s#; —cosé € S sing;—sin 6 ) € i
ercose (vieEJrva — ersme (UiEEJFUmE)
cos6, — cosé 2 [ sing—singe |27 ’
{ m+ + ersma ]
and consequently
sin(6;,— #)sin o € S sin( 6;— #)cosH € S
T1—cod6,—0) ("iEE+ wﬁ)‘ m( Uieg * wﬁ) 5

=5in6| Vit +0; 5 | — cOSO| Uy + U, ﬁ)
Sin(6,— 6)sin 4] Vieg TVioR iR THIOR

1—cogq 6,— 0)

sin( 6;— #)cosH
1-cog6,—0)

|

2} 172

We introduce now the couple$i(,0;), which are the clos- ferent weightsw; with given observation point/1; and

est points on the lin& for a particular data pointy; ,v;). after that to slightly modify the inversion method. But be-
This results that the sum of square distances of the datdfore we shall briefly follow® to recall the solution for
points to the straight liné is weighted total least squares.

N

D LU= 0)2+(v;—0)?] 4.1 Weighted Total Least Squares

Now our aim is to minimize, over al andb, the quantity

. € Si s\
sing viéﬁ+vmﬁ —cosé U'ER +u|5ﬁ

€; 5i)2

N
J(am,b>=21 Wil (u;—0) %+ (v =) 2],
N i=
n2 0|:21 (vieﬁl"_viﬁﬁ

wherew; are certain weights. As before the poifit (0,) is
the closest point on a line=a+bu for a particular data

2
+cos€2 (UIER lﬁg) point (u; ,v;). Its coordinates are
5 s . bvjtui—ab +bbvi+ui—ab
" € X u.:—z, vi=a —_—
—25m0c0502 (U'ER "SR) U'ER '5EI>' ' 1+b ' 1+b
We have

The weightsu;., Ujs, vi., andv;s show how the noise

contribute to the distances of the inversion poinis,¢;) to N

the straight lineA. Ordinary plots of these weights with J(a,b)= Z wil (ui—0)%+ (v;—0;)?]
respect to angl®, for §=0 are shown in Fig. 5. We can

conclude that when the scattered point is close to the pole N
of inversion, the influence of noise is destructive in bath 2
andv coordinates, for any nonzerg or ;. This can be =
easily justify if we take into consideration the fact that all

the parameters;,, U;s, vi., anduv;s goes to infinity when X[v;—(a+ bui)]z]
6,— 6 as (0;— 6) ?

b2
1Tbr)2[l)| (a+bu)] +(1Tb272-

N
_ _ \12
4 Proposed lterative Weighted Inversion Method _Zfl Wi(1+ bZ)Z[Ui (a+bu)] (12

Based on previous observations it becomes clear that the
points have to be treated differently and according with For fixed b, the term in front of the sum is constant, thus
their distances to the pole. A possibility is to associate dif- the minimizing choice of in the sum is

Journal of Electronic Imaging / January 2003/ Vol. 12(1) /185
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150

100 |

dB

50

'
OSGiSZﬂ:

Fig. 5 Parameters u,., U5, V., and v;s as functions of variable 6; for 6=0.

N N
A ZisWivi 2 gWil;
- N N ’
2 W, ZioqWi

ora=v*—bu*, where

N
2= Wil

N
Ei:]_WiUi
SN N ..

2 Wi

u* ¥ = . (13
EiNz Wi

which will give the minimun? for

_ (S S0) F[(SuuS,,)*+ 48,2

o 25.,

In this way, to find the estimated straight line we can use
the same formula of Ed4), but where Eq(5) is modified

to Egs.(13) and(15).

Substituting back into the sum of EqL2), the weighted

total least-squares solution is the one that minimizes, ove

all b:

1 N
T3 o2 2, Wil(i=oT) —b(ui =) 12

(14

Now we define the following weighted sum of squares and

cross-products by

(15

Expanding the square and summing shows that (E4)
becomes

Sy, —2bS,, +b*Syy
1+b? ’

186 / Journal of Electronic Imaging / January 2003/ Vol. 12(1)

‘4.2 Weighted Inversion Method

Now we can present the algorithm which fits to a circle
some scattered points using the weighted inverg\th)
transformation method:

(WI-1)=(I-1),

(WI-2)=(1-2),

(WI-3) Compute the parameteis and b of their fitted
straight line using Eq94), (13), and(15),

(WI-4)=(I-4),

where (I-1), (I-2), and (I-4) are the corresponding steps
from the inversion transformation method. The weight
has to be related t6;— # and should satisfy the following
requirement.w; goes to zero whem;,— 6 at least as ¢
—6)¢, with a=2.

This condition tries to minimize the noise effect through
the parametersi;., U5, vi., andv;s. The distance be-
tween the data point and the inversion pdle;—X)?
+(y;—Y)?] is somehow related to the differenge— 6,
thusw; might be selected one of the monotonic increasing
functions of distance.



Classical geometrical approach . . .

4.2.1 Example 3: Example 2 revisited. which justifies the remark.

We reconsider Example 2 with the same framework and With respect to Fig: 7, let us consider the following points:
simulation parameters. We only modify the st@g8) to  Mi(xi,yi) =data points

(WI-3) and we select Ni(uj,v;) =image under inversion dff;
N;(0;,0;) = orthogonal projection oN; on straight lineA
wi=[ (= X)?+(y; = Y)?T", M;(%; ,¥;) =the point where the®N meets the circle with

centerO(A,B) and radiusk.

We designate also bx& the perpendicular t\ on Ni.
According to Ref. 16, we have:

where the exponent is changed during tests for different

experiments from @no weighting at ajl to 0.5, 1, 1.5, 2,

2.5, 3, and 3.5weighting with the different first to seventh

power of the distange The outcomes are presented in Fig. .

6 and Table 2. We can see that the best choice is to weightN N p*M;M;
| I ~ "

with the fourth power of the distance. PM, PRI

Remark 1. This result is consistent with the requirement ) ) o

on weightw; and the fact that the square of distance is NOW let us consider the expression used in first sum from

proportional with @ — 6)>. Eqg. (16) with the fourth power of distance. We can con-

~ 2 ~ 2 .
Indeed we have the following expression for the clude thatactuallyw[(ui—0;)+(vi—0;)7] is
weighted total least squares: - P -
WiNiNF=PM{N;Nf~p*M; M7,
N
2 Wil (U= 092+ (v, — ;)] if M; is very close to the given circleO(A,B);R]. Thus
i=1 when we minimize the proposed weighted least-squares, in

N . 5 fact we minimized the sum dfl;M?.
:2 w;| sin g(vieﬁ'ﬂ)iﬁﬁ') IE remains to justify the significantie of the distance
=1 M;M; . It is easy to see that botl; andM; will lie on the

5i”2 same circle which passes througtand is the image under

—Ccosé

€i
Uieg TUisg inversion ofA. But because\ andA are orthogonal, their
N , corresponding circles will be also orthogonalhis means
_siP oS Wi<vieﬂ+vi5ﬁ) that the di§tancMil\7li is nothing else that the length of the
=1 R R arc (M;~M;) from the pointM; to the inversion circle
N 2 measured along the orthogonal circle to the inversion circle
+co2 02 Wi( Uieﬁﬂli(sﬁ) that passes througMi. It follows that the cost fun_ction _
i=1 R R that can be associated to the proposed weighted inversion
N method is different from both least squares and Kasa cost
. €i o functions. Howevet,
—25sinfcosh, w, vieg TUisg
= 1. When the pointM; is opposed to the pole of inver-
€ S sion, the given distance approaches the geometric
Uieg TUisg |- (16) distance to the circle and we get ordinary least-
squares cost function.

On the other hand, the distance between the data point and 2. When the poini; is close to the pole of inversion,

the inversion pole can be written as the given distance is rather equal with the length of
the tangent and we retrieve a new cost function simi-
lar with the Kasa cost function, the only difference

X

€i

(x,—X)?+(y;—Y)?=1—cog 6,— 0) + R (cOSti— cosb) consists in that the Kasa cost function uses the fourth
power of the tangent, and here we have only the sec-
5, (sin6—sing) €+ 52 ond power.
+ = (sinf,—sin@) + —=»,
R ' 2R When the noise is absefite., when the data points lie on

the same circl€O(A,B);R]}, the new cost function will be

and we have zero, as any distance from the data points to the circle is
zero. It follows that for such a configuration and when the
wi=[(x—X)2+(y; = Y)?]" inversion pole lie on the same circle, by applying the
. s 24 2 weighted inversion transformation method we recover the
=[1-cog6,—0)+ ﬁ'(cosei—cosf))-s- E'(sin 6,—sin 6) + I2R2I }
. — L — . N . . r -
2" sinf b ® sin b 07 isin oi+o + ic030'+ 0 0;~0, *Note that the new cost function is proportional to the square of the dis-
~ 2 2 R 2 R 2 - ) . .
tance M;M; only when the data points are close to the given circle,
[1-coq6,— )] otherwise, otherwise the new cost function becomes more complicated.
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Fig. 6 MSE in decibels of the circle fitted radius for different rotation angles of scattered points and
weight exponents.

initial circle. Thus the fitted procedure is exact. This fact if p<R. The minimum ofJ(a,b) is obtained forY—a
we have verified also by simulations. However, when the —pX=0, i.e., the pole of inversion will be on the fitted
inversion pole does not belong to the same circle as thestraight line. In this case, the weighted inversion method
data points, we have a different situation. will also collapse.

Let us consider now the pairs of points in Table 3. We
can easily see that they are invariant to the inversion trans4.3 Iterative Weighted Inversion Method

formation with parametes and pole of inversiori0,0.. But 14 yeqyce the influence given by the choice of inversion
when we want to compute the corresponding straight line 16 anq o release the constrain that circle should pass
for either least-squares or weighted least-squares methodg, ,,4h one given point, we propose an iterative algorithm
we get a singularity ISSUE. Su_ch an inconvenient a_ppear%y changing at every st7ep the pole of inversion. However,
every time when the configuration is symmetric after inver- ¢ ification should not alter a “good” fitted circle if it

sion transformation and thus it provides us a straight line has been already found. Thus our guess is to choose as the

that passes through the pole of inversion. In this case, both, oy hole of inversion the point that is diametrically oppo-
inversion transformation and weighted transformation site to the previous one

methods fail.

Another critical situation might appear when the param-
eter of inversion is very small. For that let us consider the Table 2 The maximum MSE in decibels of the circle fitted param-
expression used in last sum from EG2) with the fourth eters (the radius and the center of the circles) for different error

power of distance. Using E@3) we get exponents.

J(a,b) r MSE of Radius MSE of Center

0 43.0491 43.0496

o {(Y=a- DXL —X)%+ (v~ V)] [y~ Y) ~b(x —X) ]p?}2 05 392011 39.2935

= Zl (1+D02)2 ' 1 46.3189 46.3198

15 —18.0409 -17.9724

and it can be approximated as follows: 2 —20.1099 —20.0624

2.5 -18.9739 —18.9263

(Y—a—bx)2 3 —16.7982 —16.7506

J(a'b)%(lJr—bz)zizl [(x;—X)2+(y;—Y)?]2, 35 —13.9914 —13.9455
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P(X.,Y.)

Ni(ui, ’Ui)

Fig. 7 Geometrical interpretation of the weighted inversion method.

The algorithm which estimates a circle using the itera-
tive weighted inversion transformation method can be writ-
ten as follows:

(IWI-0O) Given

N=number of points

M;(x;,y;)=data to be fitted by circle

p=parameter of the inversion transformation

k=1

POIXM Y] =first pole of inversion transforma-
tion
(IWI-Kk) while (stopping criteriob> €) do:

(@ Compute the datdl®[u® ,»®7 in the uv plane
with:

[ —X]p?
D3 =X P+ [y — YO

[yi—Y*]p?
DXy YO

Ul =x®+

vW=y®+

(b)

Compute the weighte; :
={—XOP+[y— YN,
(©

Compute the parameters and b of their fitted
straight linev =a+bu using
a=v—bu,

—(Su—S) +[(Su—S,)?+4S, 112
2S,, ’

b:

where

Table 3 Pairs of points.

N
Su= 2 wilu*—uF,
N
=2 WUt ],
z W|[v(k)_ﬂ2-

(d) Find the fitted circleC(k) that corresponds to the

fitted straight line. The steps are the following:

(i) For the given pole of inversion
PIIX® Y] we have a certain point
PR XX Y7 on alineY=a+bX that is
closest when we measure distance orthogo-
nally:

bYW +XK—ab

1+b?>

bYW +XK—ab

1+b?

® _
*

Y¥ =a+b

*%*

(i) The  corresponding of

image  point
k k k . o
()[Xiﬁ Y®7 by using 171 is exactly
(k) [X(k) , (k)] the new diametrically op-
posite in the circle C(k) to the

PO XK, y(7]:
(X —X1p?

0 X BT X YE Y
\ [V —Y?
0 =Y B P v Ve

(i) The fitted circle is described by the coordi-
nates of the centdrA*1) B*1)] and the

radiusR(k*l)'

X<

R(k+ 1) :{[X(k) _A(k+ 1)]2+ [Y(k) _ B(k+ 1)]2}1/2_

A (k+1)— B(k+ 1)_

k) *
Yo+ v
2

(e

The new inversion pole i@+ xKk+1) yk+1)]
where

[X(k+l Y(k+l)] [ (k) , ]
(f) k=k+1.
(9) Compute the stopping criterion: {{ X1

— YD [k Dy (k=D 12,

In our experiments we useg=10"3.

4.4  Experimental Results

The evaluation of the proposed approach of circle fitting
has been performed on the artificial data sets shown in
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Table 4 The coordinates of the points included into the experimental data sets.

A B C

Point X y X y X y
1 —0.7783 21.4885 1.0000 7.0000 0.2655 0.7680
2 14.6672 6.7159 2.0000 6.0000 0.4002 0.9630
3 —8.3475 —13.7310 5.0000 8.0000 0.8819 0.6398
4 —6.8840 —14.5970 7.0000 7.0000 1.0567 0.1867
5 13.4167 —7.7091 9.0000 5.0000 0.1744 1.0433
6 —16.0429 9.2865 3.0000 7.0000 0.6058 0.8006
7 —24.1829 —0.8947 6.0000 2.0000 - -
8 8.9161 —18.3074 8.0000 4.0000

Table 4. The data setd and B3 have been adopted from the number of iterations required for different positions of the
papel® by Ganderet al. The points included in these two initial inversion pole in a restricted domain around the ob-
data sets are distributed over almost the entire circumfer-served points. The results are shown in Fig. 10 for the data
ence of certain generating circles. On the other hand, thesets.A and 3. We can note that the number of iterations for
six points in the set have been randomly selected in the the data setsd and B does not exceed 10 and 21, respec-
neighborhood of the unity circleA=B=0,R=1) such that tively, if the initial pole is selected in the neighborhood of
to cover only a quarter of the circumference. the given points. As expected an ideal position for the ini-
The parameters of the circles determined for the threetial pole would be onto the circle that follows to be esti-
data sets using different circle fitting approaches are shownmated. On the other hand, note that an unfavorable region
in Table 5. These results reveal that our method convergedor the initial pole occurs close to the centroid of the given
to a solution close to the solution offered by ODR algo- set of points.
rithm. In addition, we may note that for the s€t both Note that the proposed algorithm does not converge for
algorithms found solutions that represent good approxima-any position of the initial inversion pole. This is reflected
tions of the actual circle used to generate the observatiorby the plots shown in Fig. 11, where the initial pole was
points. Visual comparisons between the circles determinedchosen at relative large distances from the given set of
by different methods are shown in Figs. 8 and 9. From Fig. points.
9 we can note that both the algebraic method and Kasa We now try to explain this behavior. After a certain
method fail to determine a good approximation of the unity number of iterations the pole of inversion can be in the
circle used to generate the points in et middle of the cloud generated by the scattered points. In
Another set of experiments was conducted to evaluatethis case, we can retrieve a situation similar to that men-
the efficiency of our algorithm in comparison with the tioned at the end of Sec. 4.1, i.e., by applying the inversion
ODR algorithm. The efficiency was expressed by the num-transform we get a configuration where the fitted straight
ber of iterations as well as by the number of floating point line passes through the pole of inversion or in its very close
operationgflops) performed by both algorithms to estimate neighborhood. The weighted inversion method can reduce
the circles that fit each one of the three experimental datathe effect using different weights for different points, but
sets. The algebraic circle has been used in our experiments/hen all the points are very close to the pole of inversion or
to provide the initial parameters of ODR algorithm, and the identically, it fails. However, when the starting pole of in-
initial inversion pole required by our algorithm was chosen version is one of the scattered points, usually there is
as one of the observed points. The results obtained areenough place for other further points to trace a good start-
shown in Table 6. From these results, we can note that foring circle, and in this case, the procedure converges to the
all three data sets our method overcomes in efficiency thefitted circle. Unfortunately this is not always possible, at
ODR algorithm regardless of the point selected as the ini-least when the pole of inversion is far away from the scat-
tial inversion pole. tered points, which returns on the next iteration a new pole
The selection of the initial inversion pole is not re- of inversion quite in the middle of the data points. We
stricted to the points in the given set. We determined theperformed simulations for different initialization data and

Table 5 The parameters of the circles determined with different approaches given the observed points
in the three data sets.

Data set A Data set B Data set C
Method A B R A B R A B R
Our method —-2.19 1.32 19.17 4.77 4,77 3.54 0.09 —0.03 1.00
ODR -1.93 1.53 18.73 4.84 4.80 3.39 0.10 —0.05 1.00
Kasa method -2.21 1.19 18.82 4.82 4,90 3.41 0.41 0.36 0.59

Algebraic circle -2.01 1.38 19.52 5.12 5.43 3.24 0.78 0.79 0.48
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-30 -20 -10 0 10 20 Fig. 9 Circles determined using our method (continuous line), the
ODR algorithm (dashed line), the Kasa method (dash-dotted line),
(a) and the algebraic circle (dotted line) for the observation points (x) in
the data set C.
9 L
8 L
21 the results suggest that the region that is not convenient to
start the iterative weighted inversion procedure is beside
6f the centroid rather than its symmetric to the center of the
5l generating circle, when they are different each other. If the
scattered points are not symmetrically distributed, then the
a4t curvature of the generating circle and of the inversion circle
should not be opposed.
3r Finally, we conducted a set of experiments to evaluate
ol the behavior of the proposed approach in the presence of
outliers. The experimental data sets used in these fitting
ir experiments were created as follows. First 100 points were

Fig. 8 Circles determined using our method (continuous line) and
the ODR algorithm (dashed line) for the observation points (x) in-

cluded in the data set A (a), and in the data set B (b).

generated on a circle of radius 1 centered at the origin. Next
the points were deviated from the circle by means ofGaus-
sian noise with zero mean and standard deviation 0.1. Then
a number ofK outliers were randomly selected in the
square[ — S,S] X[ —S,S]. For each value oK and S we
applied the proposed circle fitting algorithm on 1000 differ-
ent experimental data sets generated in accordance to the

Table 6 The number of iterations and the number of floating point operations (flops) performed by
both our method and ODR algorithm.

Data Set A

Data Set B Data Set C

Initial Pole Iterations

flops/1000

Iterations flops/1000 Iterations flops/1000

Our Method (the initial inversion pole is one of the points in the given set)

First point 5 6 4 5 4 3

Second point 6 7 3 3 7 6

Third point 6 7 9 11 12 10
Fourth point 6 7 9 11 5

Fifth point 5 6 5 6 3 2

Sixth point 5 6 4 5 13 11
Seventh point 6 7 6 7 — —
Eighth point 6 7 3 3 — —

ODR algorithm (the initial parameters are provided by the algebraic circle)
— 41 83 27 53 178 313
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Fig. 11 Positions (black) of the initial inversion pole for which the
algorithm does not converge.

Fig. 10 Number of iterations as a function of the location selected
for the initial inversion pole.

&rocedgre fll(rjeadytdescrlbted. Thg ?r\]’ erage d'StancelIbew‘t’ﬁeé]ymmetrically and asymmetrically distributed data around

€ estimated center position and the origin, as well as &yq oircymference of the circle. Thus the iterative weighted
average.dls'placement betvyeen the estimated radius gnd tr\ﬁversion method can be successfully applied when the
true radius(i.e., R=1) for differentk andSare shown in 355 method fails. In addition, the experimental results

Table 7. We conclude that the proposed method might beshay that our method overcomes in efficiency the ODR
improved with approaches characteristic to robust Sta“St'CSalgorithm.

to achieve better results in the presence of outlier points.
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We have proposed a new circle-fitting procedure based on the first author thanks Prof. Visa Koivunen and his group
classical geometric result. First, we recalled the main ap- J\?;r:]tl—:(e;lfgpekrzcgglversny of Technology for providing rel-

proaches to circle fitting by emphasizing the inversion
transformation method as it was first proposed by Brandon

and COWIey‘ The weaknesses of this method was Sh_own_ byl'able 7 The average displacements of the estimated center posi-
examples and they have been proved by mathematical justion (a) and the estimated radius (b), from the true circle, in the
tifications. Then we have derived the weighted inversion presents of outliers, where the parameters of the true circle are A
transformation method that overcomes the inconvenience=B8=0 and R=1.

of inversion method being able to find a fitted circle when
one point of the circle is given. To release the last constrain, (a) and (b) K=0 K=5 K=10 K=15
an iterative procedure is finally proposed by changing the
pole of inversion at every step. Our guess was to choose as S=15  (0.09,0.01) (0.03,0.03) (0.04,0.05) (0.05,0.07)
the next pole of inversion the point that is diametrically s=2.0 (0.09,0.01) (0.09,0.10) (0.12,0.16) (0.13, 0.21)
opposite to the previous one. The experimental results s=25 (0.09, 0.01) (0.20, 0.20) (0.23,0.34) (0.31, 0.42)
showed that the proposed technique can be applied to botk
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