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Abstract. After a review of the circle fitting issue, we recall a rela-
tively unknown method derived from a classical geometric result.
We propose an improvement of this technique by reweighting the
data, iterating the procedure, and choosing at every step as the new
inversion point the one diametrically opposite to the previous inver-
sion point. © 2003 SPIE and IS&T. [DOI: 10.1117/1.1525792]

1 Introduction

Fitting a circle to a set of noisy data points is an old pro
lem that has motivated a large amount of—oft
duplicated—literature in various fields.1 In many situations,
what is perceived is not the complete locus of a circle,
a sample of points, where the noise is scattered about a
of a circle.2 It was suggested that the larger the angle,
better the precision of the estimated circle parameters,
also the variances become infinitely high when the
angle approaches zero.3 The presence of noise means al
that an approximate way for fitting circles is required.4 One
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of the oldest robust methods used in the recognition
extraction of circles from a digital image is the Houg
transform. Unfortunately the Hough transform is suitab
for problems having enough correct data to support the
pected solution.5 The orthogonal distance regression~ODR!
method determines the curve that minimizes the sum
square of distances from each data point to the closest p
on the curve. The ODR is well known to be computatio
ally difficult. Another major drawback related to the ge
eral use of least squares is that they are sensitive
outliers.6 If we enlarge the family addressed to the class
conics, then essentially two types of methods have b
implemented for fitting.7 The first one has been referred
as algebraic fitting, where the implicit form is used and t
residual is minimized; the other is geometric fitting, whe
the goal is to minimize the sum of the squares of the d
tances between the scattered points and the conic. In
following, we shall understand by geometric approach
those techniques obtained by using some classical g
metrical results. Thus their outcomes may finally belo
from both either algebraic or geometric distance metho

The goals of this paper are to briefly review a know
method derived from a classical geometrical result and

2;
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Rusu et al.
present a new technique based on this method. The
posed technique enables us to deal with and to fit a circl
a convenient form for scattered points when they are s
metrically and/or asymmetrically distributed around the c
cumference of the circle. The approach proposed is ba
on the property of an inversion transformation to map
circle into a straight line, if the circle passes through t
pole of the inversion.8 The idea was originally traced b
Brandon and Cowley,9 but it is relatively unknown. Our
contribution consists of modifying the algorithm by weigh
ing the data, iterating the procedure, and choosing at e
step as the new inversion point the one diametrically op
site to the previous inversion point. The paper is organi
as follows. Section 2 presents the previous geometrical
proaches. Section 3 describes and analyses the inve
transformation method. Section 4 introduces the propo
weighting iterative method and provides the necessary
formation for implementing the procedure.

2 Previous Geometrical Approaches

In circle fitting, simple chord theorems for circles can
used,9 as every circle is completely determined by thr
noncolinear points. From an algebraic point of view, t
resulting matrix equation will be poorly conditioned if th
matrix is singular or near singular, and this will happen
the data points are spread around a short arc. A le
squares error criterion for circle fitting results in minimi
ing the mean square error~MSE! sum

MSE5(
i 51

N

~Ri2R!2, ~1!

where Ri5@(xi2A)21(yi2B)2#1/2. In this formula,
(xi ,yi) represent the~x, y! coordinates of thei’th data
point, N>3 is the number of data points,~A, B! are the
coordinates of the circle center, andR is the radius of the
circle.

It is quite easy to realize that the error criterion defin
by Eq. ~1! is difficult to handle analytically and one rathe
prefers to look for some other properties of the circle tha
some way show how far is a certain point from the giv
circle. Indeed, if we consider minimizing the sum,

(
i 51

N

~Ri
22R2!2, ~2!

then we can easily get the formulas for the center and
radius of the circle~Fig. 1!. This is the elegant geometri
approach known as the Kasa method.10 It has the following
properties:

1. It is more advantageous to minimize not the me
squares@Eq. ~1!#, but R2, whose contribution to Eq
~2! is more important.11 This leads to a superfluou
sensitivity to any small errors in measurements.

2. The Kasa procedure gives biased estimates of
circle center unless the data are symmetrically d
tributed around the circumference of the circle.

3. The bias is small and tends to 0 as the number of d
points approaches infinity, i.e., the estimation is co
180 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
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sistent. The accuracy obtained is related to the
length and to the noise present in the data.

4. Arcs with larger radii fit more closely to the data tha
those with smaller radii.2

The case in which the data result in ambiguous circle a
the circle fit must be rejected was considered in Ref. 12

3 Inversion Method of Brandon and Cowley

In their method,9 the authors recalled a well-known prop
erty of conformal mappings, precisely that circles throu
the origin map to straight lines under inversion. Thus if t
data pointsMi(xi ,yi) lie approximately on a circle, thei
imagesNi(ui ,v i) will lie approximately on a straight line
after inversion~Fig. 2!. Therefore we can use a standa
straight line fit formula~total least squares13! in the (u,v)
coordinates. Taking the inverse of the fitted straight li
using the same pole of inversion~also called inversion
point or pivot point! P(X,Y) we retrieve the fitted circle.
Thus the algorithm that estimates a circle using this inv
sion transformation method9 can be written as follows:
~I-1! Given

N5number of points
Mi(xi ,yi)5data to be fitted by circle
r5parameter of the inversion transformationI
P(X,Y)5pole of inversion transformationI

~I-2! Compute the dataNi(ui ,v i) in the uv plane with:

ui5X1
~xi2X!r2

~xi2X!21~yi2Y!2 ,

~3!

v i5Y1
~yi2Y!r2

~xi2X!21~yi2Y!2 .

~I-3! Compute the parametersa andb of their fitted straight
line v5a1bu using total least squares method13:

a5 v̄2bū,
~4!

b5
2~Suu2Svv!1@~Suu2Svv!214Suv

2 #1/2

2Suv
,

where

ū5
1

N (
i 51

N

ui , v̄5
1

N (
i 51

N

v i ,

Suu5(
i 51

N

~ui2ū!2, Suv5(
i 51

N

~ui2ū!~v i2 v̄ !, ~5!

Svv5(
i 51

N

~v i2 v̄ !2.



Classical geometrical approach . . .
Fig. 1 Circle center (A, B) and radius R with the Kasa method.
d

or-

f

~I-4! Find the fitted circleC* that corresponds to the fitte

Fig. 2 Inversion of a circle when the pole lies on the circle.
straight line. For this aim we shall useI 21 the inverse of
inversion transformation.† The steps are the following:

~a! For the given pole of inversionP(X,Y) we have a
certain point P** (X** ,Y** ) on a line Y5a
1bX that is closest when we measure distance
thogonally:

X** 5
bY1X2ab

11b2 , Y** 5a1b
bY1X2ab

11b2 .

~b! The corresponding image point o
P** (X** ,Y** ) by using I 21 is exactly
P** (X** ,Y** ), the new diametrically opposite
in the circleC* to theP(X,Y):

†Actually I 215I ~Ref. 8!.
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 181



of

to
es
h-

th

d,

as
. I
es
sa

for

sio
in

of
of

ich
ed
on,
tate
the
m

in

ed
he
es,
-
n
n-
of

the

ig.
ter

Rusu et al.
X** 5X1
~X** 2X!r2

~X** 2X!21~Y** 2Y!2
,

Y** 5Y1
~Y** 2Y!r2

~X** 2X!21~Y** 2Y!2
.

~c! The fitted circle is described by the coordinates
the centerO* (A* ,B* ) and the radiusR* :

A*5
X1X**

2
, B*5

Y1Y**

2
,

R*5@~X2A* !21~Y2B* !2#1/2.

3.1 Examples

3.1.1 Example 1: The data set of Gander, Golub,
and Strebel7

Let us consider the pairs of points in Table 1. It is easy
show that they can not be located on same circle. Th
points were fitted in Ref. 7 by circles using different met
ods.

Minimizing the algebraic distance:

A55.3794, B57.2532, R53.0370, MSE510.8532.

Minimizing the geometric distance:

A54.7398, B52.9835, R54.7142, MSE51.2276.

This last one was considered there by the authors as
best circle fit~Fig. 3!.

If someone would like to implement the Kasa metho
the results are

A54.7423, B53.8351, R54.1088, MSE51.3983.

The differences can be explained by recalling that the K
method does not minimize in the mean square sense
addition, the data are spread only on a third part of the b
circle fit and as we have already pointed out, the Ka
method gives biased estimates of the circle center.14

Parameters of the fitted circles by inversion method
different inversion poles are also presented in Fig. 3:

X50, Y51 A54.7020, B52.6223, R54.9740,

MSE51.2481,

X59.5, Y54: A55.445, B54.3129, R54.0672,

MSE52.7624.

The inversion constant has been selectedr51. We can con-
clude that the results depend on the choice of the inver
poleP(X,Y) and with the inversion method, one can obta

Table 1 Data set for Example 1.

x 1 2 5 7 9 3

y 7 6 8 7 5 7
182 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
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better results than with the Kasa method, if the pole
inversion is proper selected. However, for a poor choice
inversion pole, the results can be depreciated.

3.1.2 Example 2: The pole of inversion and the
localization of the scattered points

The goal of this experiment is to show the manner in wh
the position of the pole of inversion and of the scatter
points affects the circle-fitted parameters. For this reas
we select the same parameters of inversion, but we ro
the scattered points around the inversion circle, keeping
same geometric configuration for every trial. A rando
10,000 trials are generated and the results averaged.

The parameters of inversion transformation are

1. The inversion circle has radiusR51 and its center is
located atO(0,0).

2. The pole of inversion is fixed atP(21,0).

3. The parameter of inversion is selectedr51.

The points are uniform distributed around the circle with
an anglep/8. Their coordinates onx and y axes, respec-
tively, of the distances to the circle are uniform distribut
between60.01. A random configuration is generated at t
beginning and it is rotated around the circle 100 tim
every time with an angle 2p/100. For every case, we com
pute the new circle fitted with inversion transformatio
method. The MSE in circle radius and, respectively, in ce
ter position are later saved corresponding to the angle
rotation. Then another 9,999 trials are generated and
results averaged.

The outcome of such an experiment is presented in F
4, where plots of the MSE for circle radius and circle cen

Fig. 3 Six points (* ) from Example 1 with four fitted circles obtained
using best fitted circle7 (- -), Kasa method (•), and inversion method
(–) when P(0,1) (s) is inversion pole, and, respectively, (:) when
P(9.5,4) and (!) is inversion pole.
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Classical geometrical approach . . .
are provided. It is easy to see that for both of the mentio
parameters, the errors increase dramatically when the a
of rotation approachesp, i.e., when the scattered points a
close to the pole of inversion. We can conclude that

Fig. 4 MSE in decibels of the circle-fitted parameters (the radius
and the center of the circles) for different scattered point rotation
angles.
le

inversion method as traced by Brandon and Cowley fails
such a situation. The following analysis gives more info
mation about the behavior of the inversion transformat
method and provides us with some tracks to follow to av
some of its inconveniencies.

3.2 Inversion Method Analysis

Consider now the Cartesian model15 of the given points
Mi(xi ,yi):

xi5A1R cosu i1e i , yi5B1R sinu i1d i , ~6!

wheree i , d i , i 51,2,...,N, are independent random erro
with common variance, andu i are either fixed or random
angles.

In a similar way we have for the pole of inversion:

X5A1R cosu, Y5B1R sinu, ~7!

whereu is its corresponding angle. We can easily find no
the coordinates ofP* (X* ,Y* ) andP* (X* ,Y* ), the sym-
metric of the pole of inversion and its image under inve
sion:

X* 5A1R cos~p1u!5A2R cosu,
~8!

Y* 5A1R sin~p1u!5B2R sinu,

X* 5X1
~X* 2X!r2

~X* 2X!21~Y* 2Y!2 5A1R cosu2
r2

2R
cosu,

~9!

Y* 5Y1
~Y* 2Y!r2

~X* 2X!21~Y* 2Y!2 5B1R sinu2
r2

2R
sinu.

Now we focus on the computation of the last terms of E
~3! using Eqs.~6! and ~7!. The outcomes are
~xi2X!r2

~xi2X!21~yi2Y!2 5
~R cosu i2R cosu1e i !r

2

~R cosu i2R cosu1e i !
21~R sinu i2R sinu1d i !

2

5
r2

2R

cosu i2cosu1e i /R

12cos~u i2u!1e i /R~cosu i2cosu!1d i /R~sinu i2sinu!1~e i
21d i

2!/~2R2!
,

~yi2Y!r2

~xi2X!21~yi2Y!2 5
~R sinu i2R sinu1e i !r

2

~R cosu i2R cosu1e i !
21~R sinu i2R sinu1d i !

2

5
r2

2R

sinu i2sinu1d i /R

12cos~u i2u!1e i /R~cosu i2cosu!1d i /R~sinu i2sinu!1~e i
21d i

2!/~2R2!
.

It follows from Eq. ~3! that we have

ui5X1
~xi2X!r2

~xi2X!21~yi2Y!2

5A1R cosu1
r2

2R

cosu i2cosu1e i /R

12cos~u i2u!1e i /R~cosu i2cosu!1d i /R~sinu i2sinu!1~e i
21d i

2!/2R2 , ~10!
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 183



Rusu et al.
v i5Y1
~yi2Y!r2

~xi2X!21~yi2Y!2

5B1R sinu1
r2

2R

sinu i2sinu1d i /R

12cos~u i2u!1e i /R~cosu i2cosu!1d i /R~sinu i2sinu!1~e i
21d i

2!/~2R2!
. ~11!
r-

t it

the
a-
When noise is absent (e i5d i50), we get

ui5A1R cosu1
r2

2R

cosu i2cosu

12cos~u i2u!
[ui0 ,

v i5B1R sinu1
r2

2R

sinu i2sinu

12cos~u i2u!
[v i0 .

In this situation, all the points (ui0 ,v i0) lie on the straight
184 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
line D, the image of the inversion circle through the inve
sion transform, which passes through pointP* , orthogonal
to PP* .

Now we consider that noise is present in the data, bu
is small in comparison with the radius of the circle:ue i u
!R, ud i u!R. For the last terms of Eqs.~10! and ~11! we
can develop the linearized model given by first terms in
Taylor series and this suggests the following approxim
tions:
ui'A1R cosu1
r2

2R

cosu i2cosu

12cos~u i2u!

1
r2

2R

]

]x F cosu i2cosu1x

12cos~u i2u!1x~cosu i2cosu!1y~sinu i2sinu!1~x21y2!/2GU
x50,y50

e i

R

1
r2

2R

]

]y F cosu i2cosu1x

12cos~u i2u!1x~cosu i2cosu!1y~sinu i2sinu!1~x21y2!/2GU
x50,y50

d i

R
,

v i'B1R sinu1
r2

2R

sinu i2sinu

12cos~u i2u!
1

r2

2R

]

]x F sinu i2sinu1y

12cos~u i2u!1x~cosu i2cosu!1y~sinu i2sinu!1~x21y2!/2GU
x50,y50

e i

R

1
r2

2R

]

]y F sinu i2sinu1y

12cos~u i2u!1x~cosu i2cosu!1y~sinu i2sinu!1~x21y2!/2GU
x50,y50

d i

R
.

Thus we get

ui'A1R cosu1
r2

2R

cosu i2cosu

12cos~u i2u!

1
r2

2R H 1

12cos~u i2u!
2

~cosu i2cosu!2

@12cos~u i2u!#2J e i

R

2
r2

2R H ~cosu i2cosu!~sinu i2sinu!

@12cos~u i2u!#2 J d i

R
,

v i'B1R sinu1
r2

2R

sinu i2sinu

12cos~u i2u!

2
r2

2R H ~sinu i2sinu!~cosu i2cosu!

@12cos~u i2u!#2 J e i

R

1
r2

2R H 1

12cos~u i2u!
2

~sinu i2sinu!2

@12cos~u i2u!#2J d i

R
.

We can now write:
ui'ui01ui e

e i

R
1uid

d i

R
,

v i'v i01v i e

e i

R
1uid

d i

R
,

where

ui e5
r2

2R H 1

12cos~u i2u!
2

~cosu i2cosu!2

@12cos~u i2u!#2J ,

uid52
r

2R H ~cosu i2cosu!~sinu i2sinu!

@12cos~u i2u!#2 J ,

v i e52
r2

2R H ~sinu i2sinu!~cosu i2cosu!

@12cos~u i2u!#2 J ,

v id5
r2

2R H 1

12cos~u i2u!
2

~sinu i2sinu!2

@12cos~u i2u!#2J .
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In the following, we shall compute the distance betwe
the point (ui ,v i) and straight lineD. Because both points
(X* ,Y* ) and (ui0 ,v i0) lie on D, we have the following
relationship for the distance between the point (ui ,v i) and
straight lineD:
dat

h
n
ol

all

th
ith
if-
~ui02X* !~v i2v i0!2~v i02Y* !~ui2ui0!

@~X* 2ui0!21~Y* 2v i0!2#1/2 ,

which gives us
F cosu i2cosu

12cos~u i2u!
1cosuG S v i e

e i

R
1v id

d i

R D2F sinu i2sinu

12cos~u i2u!
1sinuG S ui e

e i

R
1uid

d i

R D
H F cosu i2cosu

12cos~u i2u!
1cosuG2

1F sinu i2sinu

12cos~u i2u!
1sinuG2J 1/2 ,

and consequently

Fsin~u i2u!sinu

12cos~u i2u! G S v i e

e i

R
1v id

d i

R D2Fsin~u i2u!cosu

12cos~u i2u! G S ui e

e i

R
1uid

d i

R D
H Fsin~u i2u!sinu

12cos~u i2u! G2

1Fsin~u i2u!cosu

12cos~u i2u! G2J 1/2 5sinuS v i e

e i

R
1v id

d i

R D2cosuS ui e

e i

R
1uid

d i

R D .
e-

s

We introduce now the couples (ûi ,v̂ i), which are the clos-
est points on the lineD for a particular data point (ui ,v i).
This results that the sum of square distances of the
points to the straight lineD is

(
i 51

N

@~ui2ûi !
21~v i2 v̂ i !

2#

5(
i 51

N FsinuS v i e

e i

R
1v id

d i

R D2cosuS ui e

e i

R
1uid

d i

R D G2

5sin2 u(
i 51

N S v i e

e i

R
1v id

d i

R D 2

1cosu(
i 51

N S ui e

e i

R
1uid

d i

R D 2

22 sinu cosu(
i 51

N S v i e

e i

R
1v id

d i

R D S ui e

e i

R
1uid

d i

R D .

The weightsui e , uid , v i e , and v id show how the noise
contribute to the distances of the inversion points (ui ,v i) to
the straight lineD. Ordinary plots of these weights wit
respect to angleu i for u50 are shown in Fig. 5. We ca
conclude that when the scattered point is close to the p
of inversion, the influence of noise is destructive in bothu
and v coordinates, for any nonzeroe i or d i . This can be
easily justify if we take into consideration the fact that
the parametersui e , uid , v i e , andv id goes to infinity when
u i→u as (u i2u)22.

4 Proposed Iterative Weighted Inversion Method

Based on previous observations it becomes clear that
points have to be treated differently and according w
their distances to the pole. A possibility is to associate d
a

e

e

ferent weightswi with given observation pointsMi and
after that to slightly modify the inversion method. But b
fore we shall briefly follow13 to recall the solution for
weighted total least squares.

4.1 Weighted Total Least Squares

Now our aim is to minimize, over alla andb, the quantity

J~a,b!5(
i 51

N

wi@~ui2ûi !
21~v i2 v̂ i !

2#,

wherewi are certain weights. As before the point (ûi ,v̂ i) is
the closest point on a linev5a1bu for a particular data
point (ui ,v i). Its coordinates are

ûi5
bv i1ui2ab

11b2 , v̂ i5a1b
bv i1ui2ab

11b2 .

We have

J~a,b!5(
i 51

N

wi@~ui2ûi !
21~v i2 v̂ i !

2#

5(
i 51

N

wi H b2

~11b2!2 @v i2~a1bui !#
21

1

~11b2!2

3@v i2~a1bui !#
2J

5(
i 51

N

wi

1

~11b2!2 @v i2~a1bui !#
2. ~12!

For fixed b, the term in front of the sum is constant, thu
the minimizing choice ofa in the sum is
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 185
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186 / Journal of Ele
Fig. 5 Parameters uie , uid , vie , and vid as functions of variable u i for u50.
ve

nd

se
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h

ing
a5
( i 51

N wiv i

( i 51
N wi

2b
( i 51

N wiui

( i 51
N wi

,

or a5 v̄* 2bū* , where

ū* 5
( i 51

N wiui

( i 51
N wi

, v̄* 5
( i 51

N wiv i

( i 51
N wi

. ~13!

Substituting back into the sum of Eq.~12!, the weighted
total least-squares solution is the one that minimizes, o
all b:

1

11b2 (
i 51

N

wi@~v i2 v̄ i* !2b~ui2ūi* !#2. ~14!

Now we define the following weighted sum of squares a
cross-products by

Suu5(
i 51

N

wi~ui2ū* !2, Suu5(
i 51

N

wi~ui2ū* !~v i2 v̄* !,

~15!

Svv5(
i 51

N

wi~v i2 v̄* !2.

Expanding the square and summing shows that Eq.~14!
becomes

Svv22bSuv1b2Suu

11b2 ,
ctronic Imaging / January 2003 / Vol. 12(1)
r

which will give the minimum13 for

b5
2~Suu2Svv!1@~Suu2Svv!214Suv

2 #1/2

2Suv
.

In this way, to find the estimated straight line we can u
the same formula of Eq.~4!, but where Eq.~5! is modified
to Eqs.~13! and ~15!.

4.2 Weighted Inversion Method

Now we can present the algorithm which fits to a circ
some scattered points using the weighted inversion~WI!
transformation method:
(WI-1)[(I-1),
(WI-2)[(I-2),
~WI-3! Compute the parametersa and b of their fitted
straight line using Eqs.~4!, ~13!, and~15!,
(WI-4)[(I-4),
where ~I-1!, ~I-2!, and ~I-4! are the corresponding step
from the inversion transformation method. The weightwi

has to be related tou i2u and should satisfy the following
requirement:wi goes to zero whenu i→u at least as (u i

2u)a, with a>2.
This condition tries to minimize the noise effect throug

the parametersui e , uid , v i e , and v id . The distance be-
tween the data point and the inversion pole@(xi2X)2

1(yi2Y)2# is somehow related to the differenceu i2u,
thuswi might be selected one of the monotonic increas
functions of distance.
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Classical geometrical approach . . .
4.2.1 Example 3: Example 2 revisited.

We reconsider Example 2 with the same framework a
simulation parameters. We only modify the step~I-3! to
~WI-3! and we select

wi5@~xi2X!21~yi2Y!2# r ,

where the exponentr is changed during tests for differen
experiments from 0~no weighting at all! to 0.5, 1, 1.5, 2,
2.5, 3, and 3.5~weighting with the different first to sevent
power of the distance!. The outcomes are presented in F
6 and Table 2. We can see that the best choice is to we
with the fourth power of the distance.

Remark 1. This result is consistent with the requireme
on weight wi and the fact that the square of distance
proportional with (u i2u)2.

Indeed we have the following expression for t
weighted total least squares:

(
i 51

N

wi@~ui2ûi !
21~v i2 v̂ i !

2#

5(
i 51

N

wiFsinuS v i e

e i

R
1v id

d i

R D
2cosuS ui e

e i

R
1uid

d i

R D G2

5sin2 u(
i 51

N

wi S v i e

e i

R
1v id

d i

R D 2

1cos2 u(
i 51

N

wi S ui e

e i

R
1uid

d i

R D 2

22 sinu cosu(
i 51

N

wi S v i e

e i

R
1v id

d i

R D
3S ui e

e i

R
1uid

d i

R D . ~16!

On the other hand, the distance between the data point
the inversion pole can be written as

~xi2X!21~yi2Y!2512cos~u i2u!1
e i

R
~cosu i2cosu!

1
d i

R
~sinu i2sinu!1

e i
21d i

2

2R2 ,

and we have

wi5@~xi2X!21~yi2Y!2# r

5F12cos~u i2u!1
e i

R
~cosu i2cosu!1

d i

R
~sinu i2sinu!1

e i
21d i

2

2R2 G r

'H 2r sinr
u i2u

2 Fsin
u i2u

2
2

e i

R
sin

u i1u

2
1

d i

R
cos

u i1u

2 G r

u i'u,

@12cos~u i2u!# r otherwise
t

d

which justifies the remark.
With respect to Fig. 7, let us consider the following poin
Mi(xi ,yi)5data points
Ni(ui ,v i)5 image under inversion ofMi

N̂i(ûi ,v̂ i)5orthogonal projection ofNi on straight lineD

M̂ i( x̂i ,ŷi)5the point where thePN̂ meets the circle with
centerO(A,B) and radiusR.

We designate also byD̂ the perpendicular toD on N̂i .
According to Ref. 16, we have:

NiN̂i5
r2MiM̂ i

PMi PM̂i

.

Now let us consider the expression used in first sum fr
Eq. ~16! with the fourth power of distance. We can co
clude that actuallywi@(ui2ûi)

21(v i2 v̂ i)
2# is

wiNiN̂i
25PMi

4NiN̂i
2'r4MiM̂ i

2,

if Mi is very close to the given circle@O(A,B);R#. Thus
when we minimize the proposed weighted least-squares
fact we minimized the sum ofMiM̂ i

2.
It remains to justify the significance of the distan

MiM̂ i . It is easy to see that bothMi andM̂ i will lie on the
same circle which passes throughP and is the image unde
inversion ofD̂. But becauseD and D̂ are orthogonal, their
corresponding circles will be also orthogonal.17 This means
that the distanceMiM̂ i is nothing else that the length of th

arc (Mi'M̂ i) from the point Mi to the inversion circle
measured along the orthogonal circle to the inversion cir
that passes throughMi . It follows that the cost function
that can be associated to the proposed weighted inver
method is different from both least squares and Kasa c
functions. However,‡

1. When the pointMi is opposed to the pole of inver
sion, the given distance approaches the geome
distance to the circle and we get ordinary lea
squares cost function.

2. When the pointMi is close to the pole of inversion
the given distance is rather equal with the length
the tangent and we retrieve a new cost function sim
lar with the Kasa cost function, the only differenc
consists in that the Kasa cost function uses the fou
power of the tangent, and here we have only the s
ond power.

When the noise is absent$i.e., when the data points lie o
the same circle@O(A,B);R#%, the new cost function will be
zero, as any distance from the data points to the circle
zero. It follows that for such a configuration and when t
inversion pole lie on the same circle, by applying t
weighted inversion transformation method we recover

‡Note that the new cost function is proportional to the square of the

tance MiM̂ i only when the data points are close to the given circ
otherwise the new cost function becomes more complica
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 187
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Fig. 6 MSE in decibels of the circle fitted radius for different rotation angles of scattered points and
weight exponents.
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initial circle. Thus the fitted procedure is exact. This fa
we have verified also by simulations. However, when
inversion pole does not belong to the same circle as
data points, we have a different situation.

Let us consider now the pairs of points in Table 3. W
can easily see that they are invariant to the inversion tra
formation with parameterr and pole of inversion~0,0!. But
when we want to compute the corresponding straight
for either least-squares or weighted least-squares met
we get a singularity issue. Such an inconvenient appe
every time when the configuration is symmetric after inv
sion transformation and thus it provides us a straight l
that passes through the pole of inversion. In this case, b
inversion transformation and weighted transformat
methods fail.

Another critical situation might appear when the para
eter of inversion is very small. For that let us consider
expression used in last sum from Eq.~12! with the fourth
power of distance. Using Eq.~3! we get

J~a,b!

5(
i 51

N
$~Y2a2bX!@~xi2X!21~yi2Y!2#1@~yi2Y!2b~xi2X!#r2%2

~11b2!2 ,

and it can be approximated as follows:

J~a,b!'
~Y2a2bX!2

~11b2!2 (
i 51

N

@~xi2X!21~yi2Y!2#2,
ectronic Imaging / January 2003 / Vol. 12(1)
e

-

s
s

h

if r!R. The minimum ofJ(a,b) is obtained forY2a
2bX50, i.e., the pole of inversion will be on the fitte
straight line. In this case, the weighted inversion meth
will also collapse.

4.3 Iterative Weighted Inversion Method

To reduce the influence given by the choice of invers
pole and to release the constrain that circle should p
through one given point, we propose an iterative algorit
by changing at every step the pole of inversion. Howev
this modification should not alter a ‘‘good’’ fitted circle if i
has been already found. Thus our guess is to choose a
next pole of inversion the point that is diametrically opp
site to the previous one.

Table 2 The maximum MSE in decibels of the circle fitted param-
eters (the radius and the center of the circles) for different error
exponents.

r MSE of Radius MSE of Center

0 43.0491 43.0496

0.5 39.2911 39.2935

1 46.3189 46.3198

1.5 218.0409 217.9724

2 220.1099 220.0624

2.5 218.9739 218.9263

3 216.7982 216.7506

3.5 213.9914 213.9455
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The algorithm which estimates a circle using the ite
tive weighted inversion transformation method can be w
ten as follows:
~IWI-O! Given

N5number of points
Mi(xi ,yi)5data to be fitted by circle
r5parameter of the inversion transformation
k51
P(1)@X(1),Y(1)#5first pole of inversion transforma

tion
~IWI-k! while ~stopping criterion.e) do:

~a! Compute the dataNi
(k)@ui

(k) ,v i
(k)# in the uv plane

with:

ui
~k!5X~k!1

@xi2X~k!#r2

@xi2X~k!#21@yi2Y~k!#2 ,

vi
~k!5Y~k!1

@yi2Y~k!#r2

@xi2X~k!#21@yi2Y~k!#2 .

~b! Compute the weightswi :

wi5$@xi2X~k!#21@yi2Y~k!#2%2.

~c! Compute the parametersa and b of their fitted
straight linev5a1bu using
a5v̄2bū,

b5
2~Suu2Svv!1@~Suu2Svv!

214Suv
2 #1/2

2Suv
,

where

Fig. 7 Geometrical interpretation of the weighted inversion method.

Table 3 Pairs of points.

x r 0 2r 0

y 0 r 0 2r
ū5
(i51

N wiui
~k!

(i51
N wi

, v̄5
(i51

N wivi
~k!

(
i51

N

wi

,

Suu5(
i51

N

wi@ui
~k!2ū#2,

Suv5(
i51

N

wi@ui
~k!2ū#@vi

~k!2v̄#,

Suv5(
i51

N

wi@vi
~k!2v̄#2.

~d! Find the fitted circleC(k) that corresponds to the
fitted straight line. The steps are the following:

~i! For the given pole of inversion
P(k)@X(k),Y(k)# we have a certain poin
P

**
(k) @X

**
(k) ,Y

**
(k) # on a lineY5a1bX that is

closest when we measure distance ortho
nally:

X
**
~k! 5

bY~k!1X~k!2ab

11b2 ,

Y
**
~k! 5a1b

bY~k!1X~k!2ab

11b2 .

~ii ! The corresponding image point o
P

**
(k) @X

**
(k) ,Y

**
(k) # by using I 21 is exactly

P(k)** @X(k)** ,Y(k)** #, the new diametrically op-
posite in the circle C(k) to the
P(k)@X(k),Y(k)#:

X~k!
** 5X~k!1

@X
**
~k! 2X~k!#r2

@X
**
~k! 2X~k!#21@Y

**
~k! 2Y~k!#2 ,

Y~k!
** 5Y~k!1

@Y
**
~k! 2Y~k!#r2

@X
**
~k! 2X~k!#21@Y

**
~k! 2Y~k!#2 .

~iii ! The fitted circle is described by the coord
nates of the center@A(k11),B(k11)# and the
radiusR(k11):

A~k11!5
X~k!1X~k!

**

2
, B~k11!5

Y~k!1Y~k!
**

2
,

R~k11!5$@X~k!2A~k11!#21@Y~k!2B~k11!#2%1/2.

~e! The new inversion pole isP(k11)@X(k11),Y(k11)#,
where
@X~k11!,Y~k11!#[@X~k!

** ,Y~k!
** #.

~f! k5k11.

~g! Compute the stopping criterion: $@X(k11)

2Y(k21)#21@Y(k11)2Y(k21)#2%1/2.

In our experiments we usede51023.

4.4 Experimental Results

The evaluation of the proposed approach of circle fitti
has been performed on the artificial data sets shown
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 189
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Table 4 The coordinates of the points included into the experimental data sets.

Point

A B C
x y x y x y

1 20.7783 21.4885 1.0000 7.0000 0.2655 0.7680
2 14.6672 6.7159 2.0000 6.0000 0.4002 0.9630
3 28.3475 213.7310 5.0000 8.0000 0.8819 0.6398
4 26.8840 214.5970 7.0000 7.0000 1.0567 0.1867
5 13.4167 27.7091 9.0000 5.0000 0.1744 1.0433
6 216.0429 9.2865 3.0000 7.0000 0.6058 0.8006
7 224.1829 20.8947 6.0000 2.0000 - -
8 8.9161 218.3074 8.0000 4.0000 - -
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Table 4. The data setsA andB have been adopted from th
paper18 by Ganderet al. The points included in these tw
data sets are distributed over almost the entire circum
ence of certain generating circles. On the other hand,
six points in the setC have been randomly selected in th
neighborhood of the unity circle (A5B50,R51) such that
to cover only a quarter of the circumference.

The parameters of the circles determined for the th
data sets using different circle fitting approaches are sh
in Table 5. These results reveal that our method conve
to a solution close to the solution offered by ODR alg
rithm. In addition, we may note that for the setC, both
algorithms found solutions that represent good approxim
tions of the actual circle used to generate the observa
points. Visual comparisons between the circles determi
by different methods are shown in Figs. 8 and 9. From F
9 we can note that both the algebraic method and K
method fail to determine a good approximation of the un
circle used to generate the points in setC.

Another set of experiments was conducted to evalu
the efficiency of our algorithm in comparison with th
ODR algorithm. The efficiency was expressed by the nu
ber of iterations as well as by the number of floating po
operations~flops! performed by both algorithms to estima
the circles that fit each one of the three experimental d
sets. The algebraic circle has been used in our experim
to provide the initial parameters of ODR algorithm, and t
initial inversion pole required by our algorithm was chos
as one of the observed points. The results obtained
shown in Table 6. From these results, we can note that
all three data sets our method overcomes in efficiency
ODR algorithm regardless of the point selected as the
tial inversion pole.

The selection of the initial inversion pole is not r
stricted to the points in the given set. We determined
ctronic Imaging / January 2003 / Vol. 12(1)
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number of iterations required for different positions of t
initial inversion pole in a restricted domain around the o
served points. The results are shown in Fig. 10 for the d
setsA andB. We can note that the number of iterations f
the data setsA andB does not exceed 10 and 21, respe
tively, if the initial pole is selected in the neighborhood
the given points. As expected an ideal position for the i
tial pole would be onto the circle that follows to be es
mated. On the other hand, note that an unfavorable reg
for the initial pole occurs close to the centroid of the giv
set of points.

Note that the proposed algorithm does not converge
any position of the initial inversion pole. This is reflecte
by the plots shown in Fig. 11, where the initial pole w
chosen at relative large distances from the given se
points.

We now try to explain this behavior. After a certa
number of iterations the pole of inversion can be in t
middle of the cloud generated by the scattered points
this case, we can retrieve a situation similar to that m
tioned at the end of Sec. 4.1, i.e., by applying the invers
transform we get a configuration where the fitted strai
line passes through the pole of inversion or in its very clo
neighborhood. The weighted inversion method can red
the effect using different weights for different points, b
when all the points are very close to the pole of inversion
identically, it fails. However, when the starting pole of in
version is one of the scattered points, usually there
enough place for other further points to trace a good st
ing circle, and in this case, the procedure converges to
fitted circle. Unfortunately this is not always possible,
least when the pole of inversion is far away from the sc
tered points, which returns on the next iteration a new p
of inversion quite in the middle of the data points. W
performed simulations for different initialization data an
Table 5 The parameters of the circles determined with different approaches given the observed points
in the three data sets.

Method

Data set A Data set B Data set C

A B R A B R A B R

Our method 22.19 1.32 19.17 4.77 4.77 3.54 0.09 20.03 1.00

ODR 21.93 1.53 18.73 4.84 4.80 3.39 0.10 20.05 1.00

Kasa method 22.21 1.19 18.82 4.82 4.90 3.41 0.41 0.36 0.59

Algebraic circle 22.01 1.38 19.52 5.12 5.43 3.24 0.78 0.79 0.48
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Fig. 8 Circles determined using our method (continuous line) and
the ODR algorithm (dashed line) for the observation points (!) in-
cluded in the data set A (a), and in the data set B (b).
the results suggest that the region that is not convenien
start the iterative weighted inversion procedure is bes
the centroid rather than its symmetric to the center of
generating circle, when they are different each other. If
scattered points are not symmetrically distributed, then
curvature of the generating circle and of the inversion cir
should not be opposed.

Finally, we conducted a set of experiments to evalu
the behavior of the proposed approach in the presenc
outliers. The experimental data sets used in these fit
experiments were created as follows. First 100 points w
generated on a circle of radius 1 centered at the origin. N
the points were deviated from the circle by means ofGa
sian noise with zero mean and standard deviation 0.1. T
a number ofK outliers were randomly selected in th
square@2S,S#3@2S,S#. For each value ofK and S we
applied the proposed circle fitting algorithm on 1000 diffe
ent experimental data sets generated in accordance to

Fig. 9 Circles determined using our method (continuous line), the
ODR algorithm (dashed line), the Kasa method (dash-dotted line),
and the algebraic circle (dotted line) for the observation points (!) in
the data set C.
Table 6 The number of iterations and the number of floating point operations (flops) performed by
both our method and ODR algorithm.

Initial Pole

Data Set A Data Set B Data Set C

Iterations flops/1000 Iterations flops/1000 Iterations flops/1000

Our Method (the initial inversion pole is one of the points in the given set)

First point 5 6 4 5 4 3

Second point 6 7 3 3 7 6

Third point 6 7 9 11 12 10

Fourth point 6 7 9 11 5 4

Fifth point 5 6 5 6 3 2

Sixth point 5 6 4 5 13 11

Seventh point 6 7 6 7 — —

Eighth point 6 7 3 3 — —

ODR algorithm (the initial parameters are provided by the algebraic circle)

— 41 83 27 53 178 313
Journal of Electronic Imaging / January 2003 / Vol. 12(1) / 191
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Rusu et al.
procedure already described. The average distance bet
the estimated center position and the origin, as well as
average displacement between the estimated radius an
true radius~i.e., R51) for differentK andS are shown in
Table 7. We conclude that the proposed method might
improved with approaches characteristic to robust statis
to achieve better results in the presence of outlier poin

5 Conclusions

We have proposed a new circle-fitting procedure based
classical geometric result. First, we recalled the main
proaches to circle fitting by emphasizing the inversi
transformation method as it was first proposed by Bran
and Cowley. The weaknesses of this method was show
examples and they have been proved by mathematical
tifications. Then we have derived the weighted invers
transformation method that overcomes the inconvenie
of inversion method being able to find a fitted circle wh
one point of the circle is given. To release the last constr
an iterative procedure is finally proposed by changing
pole of inversion at every step. Our guess was to choos
the next pole of inversion the point that is diametrica
opposite to the previous one. The experimental res
showed that the proposed technique can be applied to

Fig. 10 Number of iterations as a function of the location selected
for the initial inversion pole.
192 / Journal of Electronic Imaging / January 2003 / Vol. 12(1)
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symmetrically and asymmetrically distributed data arou
the circumference of the circle. Thus the iterative weigh
inversion method can be successfully applied when
Kasa method fails. In addition, the experimental resu
show that our method overcomes in efficiency the OD
algorithm.
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Fig. 11 Positions (black) of the initial inversion pole for which the
algorithm does not converge.

Table 7 The average displacements of the estimated center posi-
tion (a) and the estimated radius (b), from the true circle, in the
presents of outliers, where the parameters of the true circle are A
5B50 and R51.

(a) and (b) K50 K55 K510 K515

S51.5 (0.09, 0.01) (0.03, 0.03) (0.04, 0.05) (0.05, 0.07)

S52.0 (0.09, 0.01) (0.09, 0.10) (0.12, 0.16) (0.13, 0.21)

S52.5 (0.09, 0.01) (0.20, 0.20) (0.23, 0.34) (0.31, 0.42)
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