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ABSTRACT

Robust watermarks are evaluated in terms of image fidelity and robustness. We extend this framework and apply
reliability testing to robust watermark evaluation. Reliability is the probability that a watermarking algorithm
will correctly detect or decode a watermark for a specified fidelity requirement under a given set of attacks
and images. In reliability testing, a system is evaluated in terms of quality, load, capacity and performance.
To measure quality that corresponds to image fidelity, we compensate for attacks to measure the fidelity of
attacked watermarked images. We use the conditional mean of pixel values to compensate for valumetric attacks
such as gamma correction and histogram equalization. To compensate for geometrical attacks, we use error
concealment and perfect motion estimation assumption. We define capacity to be the maximum embedding
strength parameter and the maximum data payload. Load is then defined to be the actual embedding strength
and data payload of a watermark. To measure performance, we use bit error rate (BER) and receiver operating
characteristics (ROC) and area under the curve (AUC) of the ROC curve of a watermarking algorithm for
different attacks and images. We evaluate robust watermarks for various quality, loads, attacks, and images.

Keywords: Digital Watermarking, Robust Still Image Watermark Evaluation, Compensated Mean Square
Error, Reliability Testing

1. INTRODUCTION

Robust image watermarks are image watermarks designed to survive attacks that include signal processing and
spatial transformations [1–3]. As recognized in [4], we need fair watermark evaluation methods and benchmarks
to facilitate the advancement of robust digital watermarking. Because of this need, various evaluation methods
and benchmarks have been developed [4–14]. A block diagram of a typical robust watermarking model [15] is
shown in Figure 1. Important properties of robust watermarks are fidelity and performance of the watermark
against different attacks [1]. Fidelity is the perceptual similarity between the original and watermarked image.
Performance is the ability to detect/decode the watermark. Attacks are important part of watermark evaluation
and various attacks are implemented as part of benchmarks [6–8]. We use StirMark 4.0 [6, 7] attacks in this
paper. There is a trade off between performance and fidelity [4] and we control this trade off by using the
embedding strength α shown in Figure 1. The most popular fidelity measure for images is the mean square
error (MSE) [16] and PSNR which is a logarithmic scaled MSE [16]. Because PSNR [16] does not correlate too
well with the human visual system (HVS), other more sophisticated objective fidelity metrics have been used
for watermark evaluation [4, 5, 8, 12, 14]. For performance measures, receiver operating characteristic (ROC),
bit error rate (BER), and message error rate are generally used [1, 4, 17]. To display evaluation results, the
use of “BER versus visual quality,” “BER versus attack,” “attack versus visual quality” for a fixed BER, was
proposed in [4]. In watermark evaluation, it is important to summarize the results to facilitate the comparison
of algorithms. For BER, the results are summarized using message error rate or average bit error rate [4]. For
fidelity metric summarization, some iterate the embedding strength for each image to meet a fidelity requirement
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Figure 1. A Block Diagram of a Watermarking System [15]

threshold [4,5,11,12]. To summarize ROC, area under the curve (AUC), equal error rate, false negative rate for
a fixed false positive probability are used [4, 11].

Many of the watermark evaluation methods fit into the reliability testing framework [18]. We define reliability
as the probability that a watermarking algorithm will correctly detect or decode a watermark for a specified
fidelity requirement under a given set of attacks and images. In reliability testing, a system is evaluated in terms
of quality, load, capacity, and performance. To measure quality that corresponds to image fidelity, we need to
measure the fidelity of the attacked image as well as the watermarked image. PSNR, as it is, cannot be used to
measure fidelity for valumetric attacks [1, 19] such as gamma correction or amplitude scaling, pixel loss attacks
such as cropping or random row column removal [4, 6, 7], geometrical attacks such as image shifting or aspect
ratio change. In this paper, we will measure fidelity of these attacks by compensating the attacks [12]. Using this
new measure, we will evaluate watermark algorithms in a reliability testing framework by varying embedding
strength, payload and measure the performance and fidelity. This paper is organized as follows: In section 2,
we describe a technique to measure fidelity in terms of mean square error for valumetric attacks, pixel loss
attacks, and geometrical attacks. In section 3, we define quality, load, capacity, and performance and evaluate
watermarking algorithms by varying quality and load. The conclusion and future work is given in section 4.

2. COMPENSATED MEAN SQUARE ERROR
Measuring fidelity of the attacked images is important as well as measuring the fidelity of the watermarked
image. In [12], fidelity evaluation for geometrical attacks are given. In [14], conditional entropy is used to
evaluate valumetric attacks including histogram equalization, and amplitude scaling. In the following, we will
extend MSE by compensating for valumetric attacks, geometrical attacks, and pixel loss attacks. A distortion
function we will use is given below and similar to the one given in [20].

d(s,y) = min
θ∈Θ

‖s − Tθy‖2

, where Θ is the set of compensating functions. We develop Tθ for geometrical attacks, valumetric attacks and
pixel loss attacks and combine them to measure in terms of MSE. For test images, we will use the images shown
in Figure 2.

2.1. Compensation for Valumetric Attacks
Valumetric Attacks or point operations are zero memory operations where a function f(s) maps a pixel value s to
f(y) [16,19]. Valumetric attacks include contrast stretching, digital negative, range compression, and histogram
equalization. These point operation functions are either monotonically increasing or decreasing. We assume that
these operations work because HVS determines the content not by the exact value of a pixel but the rank of the
pixel values. This is analogous to changing keys in music.

Let ŝ(y) be a function that maps the attacked image pixel values to other pixel values. This function is
defined only for values y such that p(y) > 0. We can write MSE for the image produced by the mapping ŝ(y)
using the joint probability as follows:

MSE(s, y) =
∑

s

∑

y,p(y)>0

(s − ŝ(y))2p(s, y).
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(a) fcc-door(440x324) (b) 0115(600x400) (c) grid-16-16(600x400)

Figure 2. Test Images.

It is well known that ŝmmse(y) (p(y) > 0), which minimizes MSE, is the conditional mean,

ŝmmse(y) =
∑

s

sp(s|y).

Theorem 2.1. Let y = f(s) be a monotonically increasing function. Then ŝmmse(y) is an increasing function
for values of y s.t. p(y) > 0.

Proof.

We can rewrite ŝmmse(y) as follows:

ŝmmse(y) =
∑

s,p(s)>0,f(s)=y

sp(s|y).

Because
∑

s p(s|y) = 1, ŝmmse(y) is an weighted average of s’s for f(s) = y. By the definition of f , if s1 and s2

exists s.t. f(s1) > f(s2) then s1 > s2. This implies that if y1 > y2, then ŝmmse(y1) > ŝmmse(y2) for any y1 and
y2 s.t. p(y1) > 0 and p(y2) > 0. This means ŝmmse(y) is an increasing function for values of y s.t. p(y) > 0.

Since the conditional mean preserves the rank of the attacked image pixel values, we use the conditional
mean to evaluate images that go through a point operation. From the histogram h(s, y) of pixel values, we can
approximate the conditional mean as follows:

ŝmmse(s) =
∑

s

sp(s|y)

≈
∑

s sh(s, y)∑
s h(s, y)

.

2.2. Compensating for Pixel Loss Attacks

We define pixel loss attacks as attacks that lose the value of a pixel. Pixel loss attacks include cropping,
random column and row removal. Pixel loss attacks can be seen as a packet loss due the error occurring in the
channel [21–23]. Although we could use conditional mean for the lost pixels by mapping the lost pixels to an
arbitrary pixel value (e.g. -1 or 256), we are ignoring the correlation between adjacent pixels in an image. The
human visual system can estimate the values of lost pixels by the pixels close to the lost pixel. For pixel loss
attacks, there are error concealment methods already developed [24]. Here we use the neighborhood mean for
error concealment to estimate the lost pixel values as shown in Figure 3.
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Figure 3. Neighborhood mean.

2.3. Compensation for Geometrical Attacks

A geometric attack is defined by a spatial transformation [25]. It can be expressed as

[x, y] = [X(u, v)Y (u, v)]

or
[u, v] = [U(x, y)V (x, y)]

where [u,v] is the input image coordinates and [x,y] is the output image coordinates of the spatial transformation.
X and Y are the forward mapping and U and V are the inverse mapping. Inverse mapping is more common than
the forward mapping in spatial transformation implementations [25] and is used in StirMark 4.0. Currently, two
methods exist to evaluate geometrically attacked images [12]. One is to do a subjective evaluation. The other is
to use a registration technique to match the host image and the attacked image geometrically.

As mentioned above, we take the approach of compensating the attacked image and measure fidelity in terms
of MSE. For all geometric attacks in StirMark 4.0, we can obtain the exact expression for forward mapping
except the local random bending attack. This eliminates the image registration step. The reason that there is
no exact expression for the forward mapping in local random bending is that there are random components in
the inverse mapping. For interpolation of pixels, we use the biquadratic interpolation used in StirMark 4.0. Its
speed and interpolation quality is between bilinear interpolation and bicubic interpolation [26].

2.3.1. Forward Mapping for the Affine Transform

For an affine transform inverse mapping

u = a1x + a2y + a3

v = a4x + a5y + a6

, the forward mapping is

x =
a5(u − a3) − a2(v − a6)

a1a5 − a2a4

y =
−a4(u − a3) + a1(v − a6)

a1a5 − a2a4
.

2.3.2. Inverse Mapping Approximation using the Bilinear Transform

We approximate the inverse mapping for the local bending attack as a piecewise bilinear transform [25] by
dividing the output image into square grids.

Given four points on a square grid (x0, y0), (x0 + 1, y + 1), (x0 + 1, y0 + 1), and its corresponding bilinear
transformed points (u1, v1), (u2, v2), (u3, v3), and (u4, v4), we can obtain the bilinear transform as follows:

u = a1(x − x0) + a2(y − y0) + a3(x − x0)(y − y0) + u1

v = a5(x − x0) + a6(y − y0) + a7(x − x0)(y − y0) + v1.
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a1 = u2 − u1

a5 = v2 − v1

a2 = u3 − u1

a6 = v3 − v1

a3 = u4 − a1 − a2 − u1

a7 = v4 − a5 − a6 − v1

A property of the bilinear transform is that it maps horizontal or vertical lines to straight lines in the
transformed coordinates [25]. This means that a grid square in the output image coordinates is mapped to a
quadrangle in the input image coordinates.

2.3.3. Forward Mapping using the Inverse Mapping Approximation

We approximate the forward mapping given the piecewise bilinear transform using a minimization algorithm [27]
to find the inverse with the following cost function and its gradient:

f(x, y) = (U(x, y) − u)2 + (V (x, y) − v)2

∇f(x, y) = 2
[

(U(x, y) − u)(a1 + a3(y − y0)) + (V (x, y) − v)(a2 + a3(x − x0))
(U(x, y) − u)(a5 + a7(y − y0)) + (V (x, y) − v)(a6 + a7(x − x0))

]

We used the Broyden-Fletcher-Goldfarb-Shanno (BFGS) variable metric algorithm from the gnu gsl library [28]
as our minimization algorithm.

To use the BFGS algorithm, we need to choose an initial point (xo, yo). We make an array aij that stores all
the initial points for the input grid points. aij has the same size as the input image. For each point (u, v) in the
input image, we choose the initial point as a�u��v� and based on the value of the initial point we can determine
f(x,y), and ∇f(x, y). For each output image grid square, we draw a bilinear transformed quadrangle on the
vector array aij . We use the same bilinear transform used in the inverse mapping. Quadrangles are drawn using
the midpoint line algorithm [29]. The values of the quadrangle we draw with are the center point of the output
image grid square which is a vector not a scalar value. To fill inside the quadrangle, we use the neighborhood
mean shown in Figure 3. Using the neighborhood mean, we also fill aij ’s that are not inside any quadrangle
generated by the output image grid squares.

2.4. Experimental Results
The histogram equalization image and its conditional mean image are shown in Figure 4. The amplitude scaled
image and its conditional mean image are shown in Figure 5. The difference image is the difference between the
attacked image and the conditional mean image. As we can see from the test images, the conditional mean did
not considerably change the PSNR values for attacks that are not valumetric attacks. This may be due to the
fact that the three attacks locally preserve DC values. We can see that for attacks other than valumetric attacks,
conditional mean image show artifacts in the image. This is because the conditional mean does not consider the
relationship between adjacent pixels or the frequency response of the human visual system.

PSNR values using conditional mean or error concealment is shown in Figure 6 and Figure 7 for cropping
and row and column removal (jitter attack). We can see that the PSNR for the conditional mean images are
similar for the two attacks. This is because we are losing similar amount of pixels. From comparing the two
images, error concealment works better for the “0115” test image. If we compare cropping and jitter attack,
jitter attack has better PSNR because interpolation is more accurate than extrapolation. If we compare the two
images for the cropping attack, PSNR for the conditional mean image is better than the error concealment image
for the “fcc-door” test image. This is due to the frame around the “fcc-door” test image. Results for 45 degree
is shown in Figure 8. Results for a local random bending attack is shown in Figure 9. We can see that local
random bending attack includes pixel loss attack due to cropping. Because of iteration in the forward mapping
approximation, compensating local random bending attack takes about 5 seconds on a Xeon 3.6 GHz computer
for a 600x400 image.
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4

PSNR 17.5dB PSNR 54.7dB
(a) Attacked image (b) Conditional mean

Figure 4. Histogram Equalization.

PSNR 12.4dB PSNR 52.1dB
(a) Attacked image (b) Conditional mean

Figure 5. Amplitude Scaling with factor 9
16

.

PSNR 19.4dB PSNR 16.8dB

PSNR 22.4dB PSNR 32.6dB
(a) Attacked image (b) Conditional mean (c) Error concealment

Figure 6. Cropping with factor 0.9
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r r
PSNR 22.9dB PSNR 41.5dB

(a) Attacked image (b) Conditional mean (c) Error concealment

Figure 7. Remove every 10th row and column.

PSNR 32.1dB PSNR 32.1dB
(a) Attacked image (b) Conditional mean (c) Error concealment

Figure 8. Rotation 45 degree.

3. RELIABILITY TESTING

Most of the watermark evaluation methods [4,5,8,12,14] fit the reliability testing framework. We define reliability
as the probability that a watermarking algorithm will correctly detect or decode a watermark for a specified
fidelity requirement under a given set of attacks and images. In reliability testing, a system is evaluated in terms
of quality, load, capacity and performance [18]. We define quality as the fidelity of watermarked images produced
by an watermarking algorithm and attacks. In this paper, we will measure fidelity using the compensated MSE
described in section 2. We define capacity as the maximum data payload or minimum embedding strength that
satisfies a certain error criteria. Then, we define load to be the actual embedding strength and data payload of a
watermark. Because, capacity usually exceeds watermarking requirements, we will not consider capacity in this
paper. The environment we used in this paper is as follows. We use PSNR as our fidelity measure and ROC and
BER as our performance measure. We use the Taguchi loss function to summarize BER and PSNR results [13,14]
and AUC to summarize ROC results. AUC is an estimate of the probability that the detection statistic from an
watermarked image will be greater than the detection statistic from an unwatermarked image [30].

3.1. Watermark Evaluation Parameters

For our watermark evaluation parameters, we follow the evaluation parameters described in [14]. We selected
ASSW, ISSW, and MSSW described in [13,14] as our test algorithms. We modified the algorithms so that it only
embeds on the DCT coefficients shown in Figure 10 to reduce the visibility of watermarks [31, 32]. We set the
lower specification limit for PSNR′ [14] as 45dB. We chose the data payload to be 16 bits. This specification can
be used as a specification for “fingerprinting” applications [33, 34]. We tested 20 keys for no attacks and 2 keys
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UI
PSNR=7.4dB PSNR=23.6 dB PSNR=21.1dB

PSNR=24.8dB PSNR=30.9dB PSNR=41.2dB
(a) Attacked image (b) Conditional mean (c) Error concealment

Figure 9. StirMark attack

Figure 10. Watermarking in the DCT domain.
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Name No Attack Gaussian Filtering Sharpening
ASSW (45.0,45.0) (31.6,33.5) (21.9,22.8)
MSSW (45.0,∞) (31.6,33.5) (22.5,23.8)
ISSW (45.0,45.0) (31.6,33.5) (21.9,22.8)

Name JPEG Amplitude Scaling Histogram Equalization
ASSW (39.0,39.8) (12.4,13.3) (13.3,16.1)
MSSW (38.1,38.9) (12.4,13.3) (13.0,16.3)
ISSW (39.0,39.8) (12.4,13.3) (13.3,16.1)

Table 1. (PSNR′, Average(PSNR)) pair for different attacks

for other attacks for each image. For the image test set, we used the WET(watermark evaluation testbed) [13]
image database. It has 1301 images. We choose the attacks described in [14] which include blur, sharpening,
JPEG, amplitude scaling, histogram equalization. We use StirMark 4.0 [6, 7] implementation of these attacks
except histogram equalization which is an implementation of the algorithm described in [16]. We measure the
fidelity of the attacked image using compensated MSE instead of conditional entropy used in [14]. Similar to [4],
instead of fixing the payload and embedding strength as in [14], we varied the payload and embedding strength
to better characterize the watermarking algorithm. We also varied the JPEG quality from 10%, to 90% with
20% increments.

3.2. Experimental Results

Table 1 shows the average PSNR, PSNR′ values. Table 2 shows results for the conditional mean image PSNR
(PSNRcm). For the histogram equalization and amplitude scaling, PSNRcm has a significantly larger value than
PSNR. Table 3 shows the BER results for different attacks. It shows that ISSW is always better than the ASSW
in terms of BER for the attacks selected except histogram equalization. MSSW is better than ISSW and ASSW
for the JPEG attack. It also shows that the sharpening attack lowered BER for all algorithms even though the
images are degraded more than other attacks. Table 4 shows the 1-AUC results. It shows that 1-AUC values for
ASSW and ISSW are similar and MSSW is better that the other two for JPEG and Gaussian filtering. Figure 11
shows the performance results for different payload and JPEG attack. As expected, the performance decreased
when payload increased. Figure 12 shows the results for different JPEG attacks. It shows that performance
of MSSW does not change as much compared to other two algorithms. Figure 13 shows the results for various
embedding strength. It shows that ASSW and ISSW can have better performance than MSSW by sacrificing
fidelity.

4. CONCLUSION AND FUTURE WORK

Evaluating fidelity of the attacked images is important for attack development and consequently watermark
development. We measured the fidelity for valumetric attacks using conditional mean, pixel loss attacks using
error concealment, and geometrical attacks by inverting the attacks. We also evaluated watermarks in a reliability
testing framework. We evaluated watermarks by varying the embedding strength, payload, and attacks. We used
the Taguchi loss function to summarize BER and PSNR results and AUC to summarize ROC results.

For future work, to measure fidelity for valumetric attacks, we could extend conditional mean by considering
the frequency component of the image or correlation between adjacent pixels. For error concealment, we could
use multiresolution error concealment techniques to improve PSNR values. For forward mapping of the bilinear
transform used to compensate StirMark attack, we need to improve speed of the mapping. We could use
information from previous pixels to improve speed. For the watermark evaluation results, we did not include
confidence level results. We need to devise a way to include confidence intervals into the evaluation results. Also,
we only used PSNR as our fidelity measure and we need to investigate other objective fidelity measures [12].
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Name No Attack Gaussian Filtering Sharpening
ASSW (45.5,∞) (32.6,34.1) (24.1,24.7)
MSSW (45.3,∞) (32.5,34.0) (24.7,25.6)
ISSW (45.5,∞) (32.6,34.1) (24.1,24.7)

Name JPEG Amplitude Scaling Histogram Equalization
ASSW (39.3,∞) (44.8,∞) (44.5,44.5)
MSSW (38.5,∞) (44.3,∞) (44.3,∞)
ISSW (39.3,∞) (44.8,∞) (44.5,44.5)

Table 2. (PSNR′
cm,Average(PSNRcm)) pair for different attacks

Name No Attack Gaussian Filtering Sharpening
ASSW (1.8e-2,1.4e-3) (4.9e-2,1.1-e2) (1.3e-2,4.8e-4)
MSSW (3.3e-2,4.3e-3) (9.6e-2,4.2e-2) (3.3e-2,4.4e-3)
ISSW (8.1e-3,2.8e-4) (3.9e-2,6.7e-3) (1.3e-2,4.6e-4)

Name JPEG Amplitude Scaling Histogram Equalization
ASSW (7.6e-2,2.4e-2) (2.2e-2,2.0e-3) (1.2e-3,2.4e-5)
MSSW (5.1e-2,1.2e-2) (3.3e-2,4.3e-3) (3.2e-2,3.3e-3)
ISSW (6.4e-2,1.7e-2) (1.1e-2,4.6e-4) (9.7e-2,4.6e-4)

Table 3. (BER′, Average(BER)) pair for different attacks

Name Different Key No Attack Gaussian Filtering Sharpening
ASSW 1.01e-3 1.09e-3 2.67e-2 1.33e-7
MSSW 3.19e-3 3.24e-3 6.24e-3 1.12e-3
ISSW 1.01e-3 1.11e-3 2.71e-2 4.28e-7

Name JPEG Amplitude Scaling Histogram Equalization
ASSW 5.90e-2 3.64e-3 2.82e-5
MSSW 8.44e-3 3.70e-3 6.47e-3
ISSW 6.06e-2 3.68e-3 2.96e-5

Table 4. 1-AUC for different attacks
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Figure 11. Performance evaluation for different payloads for JPEG attack(Q=70).
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Figure 12. Performance evaluation for different JPEG attacks.
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Figure 13. Performance evaluation for JPEG attack(Q=70) with different embedding strength.
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