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ABSTRACT

With the proliferation of cameras in handheld devices that allows users to capture still images and videos,
providing users with software tools to efficiently manage multimedia content has become essential. In many
cases users desire to organize their personal media content using high-level semantic labels. In this paper we
will describe low-complexity algorithms that can be used to derive semantic labels, such as “indoor/outdoor,”
“face/not face,” and “motion/not motion” for mobile video sequences. We will also describe a method for
summarizing mobile video sequences. We demonstrate the classification performance of the methods and their
computational complexity using a typical processor used in many mobile terminals.

1. INTRODUCTION

The capabilities of handheld devices have grown tremendously with their popularity in the recent times. Most
of the handheld devices today feature a digital camera capable of capturing still images at a resolution of 1MP
and video sequences of QCIF resolution or less. It is common for users to store images and video sequences in
handheld devices in the order of hundreds, if not thousands, and it is a non-trivial issue organizing the data.
Personal multimedia content of users on mobile device is currently organized in a non-intuitive way using file
name, time or maybe even location, if the device is equipped with a GPS sensor. But, in many cases users
desire to cluster the multimedia data in a way that exploits the actual content of the data. For example, users
may want to view video sequences that were taken outside or video sequences that contain familiar faces. Such
functionality requires the availability of features describing the content of the video sequences, i.e., semantic
features. A media browsing system that would support this functionality will have three components: low-level
feature extraction, classification to derive the semantic labels, and presentation to user via a graphical interface.
The first two components will be the focus of this paper.

High-level semantic labels such as “young girl running” and “park scene” characterizes a video based on its
content. Ideally, such semantic labels might provide the most useful descriptions for indexing and searching
visual content. Currently, however, automatic extraction of truly semantic features is a challenging task. Most
approaches in content-based retrieval rely on either low-level models such as color and edges, or domain-specific
models like anchor shot models in news video sequences. While low-level features are easy to derive, they do not
yield adequate results for many applications. Pseudo-semantic labeling bridges the gap between low-level and
truly semantic labels.

In order to achieve such semantic classifications it is not reasonable to expect the user to devote offline
computation or time to derive semantic labels for video sequences that are stored in a mobile terminal. Hence
the labels have to be derived on the mobile terminal and it has to be a low computational task, since processing
power is limited on the mobile terminal. In [1], we examined semantic labels “face/not face,” “indoor/ outdoor”
that can be used for images. In this paper we describe three low-complexity techniques for pseudo-semantic
labeling for mobile 3gpp video sequences based on its contents and describe a set of experiments performed on
our test video database. We will also describe the implementation of these techniques on a processor used in
many mobile terminals.
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2. INDOOR/OUTDOOR CLASSIFICATION

2.1. Previous Work

Some of the earliest work in the area of indoor/outdoor scene detection was performed by Picard [2]. In this
scheme, color histograms and texture features were used to classify the images. Using 32-bin histograms in
the Ohta color space [3] and the nearest neighbor classification rule, a 73.2% image classification performance
was reported. Using a combination of multi-resolution simultaneous autoregressive model (MSAR) for texture
features and the color histograms they achieve an overall classification rate of 90.3%.

Another technique reported in [4] uses a two-stage classifier using two features. Using a support vector
machine (SVM) classifier [5], the algorithm independently classifies image sub-partitions according to color in
the LST color space and texture features using wavelet coefficients. The classified sub-partitions are then used by
the second stage SVM classifier to determine a final indoor/outdoor decision. This algorithm achieves an overall
classification rate of 90.2% on a database of 1200 images. The above techniques are computationally complex
and in some cases require multiple passes through the image. These are not suitable for our goal of being able
to do the classification on the mobile device.

2.2. Detection Method

In [1], we derived labels “indoor/outdoor” for still images, considering an image with sky as “outdoor.” Our
“indoor/outdoor” label attempts to detect the presence of blue sky in upper portion of image. We examined the
red, green and blue components (RGB) in images, and determined that they do not show any obvious separation
making them unsuitable for “indoor/ outdoor” classification. We then examined the Y CrCb space. A scatterplot
of the mean values of Cr and Cb color components for the images in our database is shown in Figure 1A. These
color features will form the basis of our “indoor/outdoor” label derivation.

Based on this clustering, the problem of two-dimensional linear classification is reduced to a one-dimensional
linear classification problem using a single chrominance component, as shown in Figure 1B.
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A. Scatter plot of Cr and Cb color components. B. Indoor/Outdoor Classification

Figure 1.

The optimum thresholds that separate the “indoor” and “outdoor” images were obtained using leave-one-out
cross-validation. The mean value of Cr component in the top 35% of the image was empirically determined to
be the optimal for a training database of 400 still images. To classify a video sequence, frames are extracted
from the 3gpp video sequence by examining one frame per second. Each of these frames are processed for
“indoor/outdoor” detection. The mean value of the top 35% of each frame, which corresponds to the sky region,
is obtained. The mean is compared with a pre-determined threshold of the chrominance Cr to determine if the
frame is “indoor” or “outdoor” frame. If the number of “outdoor” frames is greater than the number of “indoor”
frames, then the video sequence is classified as “outdoor” video, else it is classified as “outdoor” video. The
schematic diagram for the proposed algorithm is shown in Figure 2.
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Figure 2. Proposed algorithm for “indoor/outdoor” classification

3. FACE DETECTION

3.1. Previous Work

The work presented in [6,7] uses a Gaussian mixture model to detect skin, perform unsupervised segmentation,
and iteratively merges “skin-like” regions to detect faces. Recursive steps, involving histogram analysis, are
used to extract skin-color distribution in [8]. Skin patches are detected based on color information, and face
candidates are generated based on the spatial arrangement of the skin patches in [9]. The face detection work
in [10] determined “skin-like” pixels to be highly correlated in the Cr and Cb components and less dependent
upon the Y component. They proposed a skin color model which is not dependent upon illumination or relative
lightness/darkness of skin-tone. This clustering in the Cr and Cb components is illustrated in Figure 3.

Figure 3. “Skin-like” pixels are highly correlated in the Cr/Cb color space.

3.2. Proposed Method

We use the framework presented in [1], and extend it to a 3gpp video sequence. Similar to “indoor/outdoor”
classification, frames are extracted from the 3gpp video sequence at a rate of one frame per second, and each
frames is processed for face detection. The final video classification decision is based on the number of frames
of “face/not face.” If the number of “face” frames are larger than the number of “not face” frames, then video
sequence is classified as “face” video. We attempt to detect the presence of full frontal face with a minimum size
of 24 × 24 pixels. The steps involved in classifying an individual frame are given below.
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3.2.1. Skin Detection

The first step in our face detection approach is to create a binary mask of the current frame for “skin-like”
pixels. Our method for detecting “skin-like” pixels is similar to the method described in [10], where thresholds
are determined empirically for finding skin pixels in the HSV and Y CrCb color spaces. Similar performance was
reported for both color spaces, but our results show slightly better performance for the Y CrCb color space.

In order to create the binary mask, first the original frame in RGB color space is converted to the Y CrCb

color space. The CrCb components of the pixel values are then thresholded and a pixel is considered to be
“skin-like” if it satisfies the following constraints:

Cr ≥ −2(Cb + 24), (1)
Cr ≥ −4(Cb + 32),
Cr ≥ −(Cb + 17),
Cr ≥ 2.5(Cb + θ1),
Cr ≥ θ3,

Cr ≥ 0.5(θ4 − Cb),

Cr ≤ 220 − Cb

6
,

Cr ≤ 4
3
(θ2 − Cb),

where the constants θ1, θ2, θ3, θ4 are given by

for Y > 128 (2)

θ1 = −2 +
2 − Y

16
,

θ2 = 20 − 256 − Y

16
,

θ3 = 6,

θ4 = −8,

for Y ≤ 128
θ1 = 6,

θ2 = 12,

θ3 = 2 +
Y

32
,

θ4 = −16
Y

16
.

3.2.2. Block Level Processing

For faster processing, the binary mask after skin detection is sub-sampled into 8×8 blocks. Since we are interested
in regions containing “skin-like” pixels with a 3 × 3 minimum block size, this downscaling of the binary image
does not affect our overall results. A 3 × 3 median filter is used on the binary mask image to remove noise.

3.2.3. Face Template Matching

Our algorithm attempts to match a “typical face” using a pre-defined template, similar to the method described
in [11]. We define a typical face as a region of skin pixels with the left, top, and right sides consisting of non-skin
pixels. For example, a face in a frame would be surrounded by non-skin pixels, such as hair or background. This
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Figure 4. Template used to find faces in individual frames. A face is assumed to be a skin region surrounded by a
non-skin region.

is illustrated in Figure 4. In this figure, the face, which consists of skin-pixels, is represented by the non-shaded
area. The shaded area surrounding the face represents non-skin pixels.

If the fraction of pixels in the face area, that are skin, exceeds the threshold TFA and if fraction of pixels in
the face border area, that are non-skin, exceeds the threshold TFB then the area is a candidate face region.

An aspect ratio of 1.75 is used for the rectangles of the face template similar to [11]. The smallest size face
that we attempt to detect is 24 × 24 pixels (3 × 3) blocks and the maximum size is the size of the image. The
face template is moved across the image, and if the thresholds TFA and TFB are satisfied, the region bounded
by the template is a candidate face region. These thresholds can be easily determined by counting the number
of ones in the binary mask image, and hence it is a low complexity procedure.

3.2.4. Face/Not Face Decision

The final “face/not face” classification decision for the current frame is based on the number of candidate face
regions present in the image. This approach is motivated by the observation that “face” frames contained a large
number of candidate face regions and “not face” frames contained few candidate face regions. If frame contains
a face, many candidate face regions exist depending on the size and position of the candidate face region. The
face detection algorithm is outlined in Figure 5 with an example face.

Input Image Skin Detection Macroblocks

Median FilterFace Regions

Face /Face /
No FaceNo Face

Output Decision

Figure 5. Outline of our proposed face detection method for a single frame.
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4. MOTION DETECTION

Motion is an essential feature of video data, and it is an important feature to be considered for video classification.
The goal here is to classify the given video sequence as “motion” or “not motion” based on the amount of motion
or activity. These labels can be used to derive higher level labels such as “action” or “sports.” In [12] Deng uses
motion vector histograms to represent motion, for content based search of video. In [13] Ardizzone splits a video
sequence into sequence of shots, and extract representative frames and use the representative frames to derive
motion information.

4.1. Motion Detection

Our algorithm uses the motion vectors in a 3gpp video sequence. A 3gpp video is encoded as a sequence of frames,
with I (intra) frames and P (predicted) frames. I-frames are the reference frames, and each P-frame is predicted
with reference to the I-frame. Each frame is subdivided in to 16 × 16 pixels known as macroblocks. During
encoding, motion estimation is done for each macroblocks with respect to the I-frame, and the displacement of
each macroblock is stored as a motion vector. In our approach we extract motion vector from each macroblock
of each P frame.

A sequence of frames of the pattern IPPPPPPP, of a video sequence with “motion” label is shown in Figure
6A. The first frame is an I-frame, and the subsequent frames are P-frames. For each macroblock in the P-
frame, its corresponding displacement with respect to the I-frame is shown by the motion vector denoted by the
arrow. A similar sequence of a typical video sequence with “not motion” label is shown in Figure 6B. Here, the
macroblocks are not displaced with respect to the I-frame.

I−Frame P−Frame 2 P−Frame 3

P−Frame 4 P−Frame 5 P−Frame 6 P−Frame 7

P−Frame 1 I−frame P−Frame 1 P−Frame 2 P−Frame 3

P−Frame 4 P−Frame 5 P−Frame 6 P−Frame 7

A. “Motion” video B. “Not Motion” video

Figure 6. Motion vectors with respect to I-frames for “motion” and “not motion” video sequences

For each video sequence we determine the average macroblock displacement per P-frame. If there are N P-
frames in a video sequence, M macroblocks in each P-frame, and dij represents the motion vector of macroblock
j of frame i, with respect to the current I-frame , the average macroblock motion vector D per P-frame is given
by,

D =
1

NM

N∑

i=1

M∑

j=1

|dij | (3)

D represents the average number of pixels each macroblock moves in a given video sequence. We used a video
database that contained 51 video sequences to determine optimum threshold DTH that separates “motion” and
“not motion” sequences. The optimum threshold DTH was determined to be 1.2 pixels/macroblock/P-frame. If
D is greater than DTH the sequence is classified as “motion,” else it is classified as “not motion.”
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5. VIDEO SUMMARIZATION

Summaries in terms of “key frames” of the video sequence enable users to skim through the video content
rapidly without actually viewing the sequence. The main problem with video sequences created using mobile
telephones, is that the sequences do not have clear shot boundaries. Lienhart in [14] proposed a method for video
summarization. The method is based on segmenting the “time and date” feature from the video sequence, and
using text recognition algorithms, to cluster shots. The clustered shots are shortened using the audio information.
However, video sequences obtained using mobile telephones do not have “time and date” information displayed
in each frame. The audio signal in mobile video is of low quality and is reliable. Hence the only available
information to summarize a video sequence is the visual content. The approach we take is to use simple low-level
features to derive a dissimilarity metric between frames, and extract representative frames using the dissimilarity
metric. Our goal with respect to video summarization is to represent a given video sequence with a minimum
number of frames.

Histogram analysis and standard deviation based metrics for shot boundary detection have been used ex-
tensively for shot boundary detection [15]. We use the generalized trace based on two features: histogram and
standard deviation similar to [16]. Given a video sequence, V , composed of N frames. Let {fi}, �xi = [x1ix2i]T ,
be a feature vector of length two extracted from the pair of frames {fi, fi+1}. The generalized trace, d, for V is
defined as

di = ‖�xi − �xi+1‖2. (4)

The first feature dissimilarity measure based on histogram intersection given by the following equation,

x1i =
1

2T

K∑

j=1

|hi(j) − hi+1(j)| (5)

where hi and hi+1 are the luminance histograms for frame fi and fi+1, respectively, K is the number of bins
used, T is the number of pixels in a frame.

The second feature used is the absolute value of the difference of standard deviations of the luminance
component of the frames fi and fi+1. It is given as:

x2i = |σi − σi+1|, (6)

where,

σ2
i =

1
T − 1

∑

i

∑

j

(Yi(i, j) − µ)2. (7)

To detect scene changes using a dissimilarity metric, several approaches have been proposed based on sliding
window and other techniques [15,17]. In [16], Taskiran considers the shot boundary detection as an one dimen-
sional edge detection problem. But for our goal of choosing representative frames for video sequence of duration
less than 180 seconds, these methods are too complicated. Hence we normalize the generalized trace and detect
scene boundaries based on a global threshold. The global threshold was heuristically chosen to be 0.2. Hence,
we declare a new scene sj , starting at frame fi, if the difference metric di is greater than 20% of the maximum
of the difference metric. In order to reduce the false positives, new scenes detected that are less than F frames
apart are not taken in to account. We used a value of 15 for F for this work.

After determining the scene change boundaries we select one representative frame for each scene sj . The
representative frame fr for the scene sj is selected such that, di is minimum for i ∈ sj .
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6. EXPERIMENTAL RESULTS

6.1. Video Database
A database of approximately 200 minutes of 3gpp mobile video was created using Motorola A780, Nokia 6630,
Nokia 6681 mobile telephones and Sony digital handycam. The database consists of several short video sequences
with a minimum duration of 15 seconds and a maximum duration of 180 seconds. There are a total of 324 video
sequences. The specification of the video sequences in the database is given in Table 1.

Resolution QCIF 176 × 144 or less
Frame rate 15 FPS or less
Data rate 192 kbps or less

Table 1. Specification of 3gpp video sequences used

The sequence obtained using the Sony digital handycam were converted to 3gpp format with the above
specifications using the FFmpeg Multimedia System [18]. Frames from a few of the sequences are shown in
Figure 7.

Figure 7. Snapshot from video sequences in database

6.2. Indoor/Outdoor Classification
The test database of 324 video sequences was classified as 174 “outdoor” video and 150 “indoor” video. Each video
sequence was manually labeled as “indoor” or “outdoor” by a human subject and the label was independently
verified by another human subject. The content of the sequences varies widely. The presence of sky is mixed in
the video sequences. For sequences with mixed content, i.e., part of the sequence having “indoor” frames and
part of the sequence having “outdoor” frames, if the number of “indoor” frames is greater than the number of
“outdoor” frames, then the video sequence is classified as “indoor” video, else it is classified as “outdoor” video.

We were able to achieve a classification rate of 75%. The incorrectly classified “outdoor” sequences were
the ones that did not have any sky regions. The top portion of the frames of the incorrectly classified “indoor”
sequences have the same color characteristics as an “outdoor” sky region.

6.3. Face Detection
The test database was classified as 63 “face” sequences and 261 “not face” sequences. Only sequences with full
frontal face, and of size greater than 24 × 24 pixels were considered for “face” sequences. Each of the sequence
was manually labeled by a human subject and verified by another human subject. For sequences with mixed
content, i.e., part of the sequence having “face” frames and part of the sequence having “not face” frames, if the
number of “face” frames is greater than the number of “not face” frames then the video sequence is classified as
“face” video, else it is classified as “not face” video.
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We were able to achieve a classification rate of 71%. A correct “face” classification is shown in Figure 8A.
Here skin detection labels the “skin like” pixels. The face template labels the candidate face regions and the
result is a correct face classification. A correct “not face” classification is shown in Figure 8B. In this frame
few false “skin like” pixels are detected. But the “face template” does not label any of the detected “skin like”
regions as face and the result is a correct “not face” classification.

Original Image Skin Mask Filtered Macroblock Candidate face regions

A. Correct “face” classification

Original Image Skin Mask Filtered Macroblock Candidate face regions

B. Correct “Not face” classification

Figure 8. Face detection examples.

6.4. Motion/Not motion

Only the sequences that were obtained using the Motorola A780, Nokia 3360 and Nokia 6681 mobile telephones
were considered. There were a total of 197 video sequences with 142 “motion” sequences, and 55 “not motion”
sequences. Each video sequence was manually labeled as “motion” or “not motion” by a human subject and
the label was independently verified by another human subject. For the manual classification, sequences with
continuous camera movement for at least half the duration, were considered to be “motion” sequence, and the
rest were classified as “not motion” sequence.

Considering the average macroblock displacement D per P-frame given by equation 3, the optimal threshold
DTH was determined to be 1.2 pixels/macroblock/P-frame for a training database of about 51 video sequences.
We were able to achieve a classification result of 87%, using this method. Most of the incorrect “not motion”
videos were because of high of camera shake.

6.5. Video summarization

The generalized trace based on the histogram and standard deviation of luminance for two sequences in our
database is shown in Figure 9A and 9B.

There are two scenes in video2: scene one from frame 1 to frame 66: s1 = {1, 2, . . . , 66}, scene two from frame
68 to the last frame 152: s2 = {68, 69, . . . , 152}. Based on the method described in section 5, the scene boundary
was detected as 67. Two representative frames were determined: frame 38 from s1 and frame 89 from s2. They
are shown in Figure 10. We are currently investigating additional features that can be used to determine the
dissimilarity metric.

The classification results for “indoor/outdoor,” “face/not face,” “motion/not motion” labels are summarized
in Table 2.

7. TARGET PLATFORM

The goal of this work was to achieve a reasonable classification rate and also be able to label the sequences on
mobile devices without any offline computing. The target platform we used to test our algorithms was a Compaq
iPAQ H3970 handheld PDA. The metric we chose to evaluate the complexity of our algorithms was execution
time on a handheld PDA. This was motivated by the fact that execution time directly relates to the power
consumption of the mobile device. The target handheld has an Intel XScale PXA250 processor, running at 400
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Figure 9. The generalized trace examples

Frame 37 Frame 89

Figure 10. Representative frames determined for video2

Label Individual Classification Result (%) Overall classifcation(%)
Indoor 67

Outdoor 83 75
Face 69

Not Face 74 71
Motion 83

Not Motion 91 87

Table 2. Classification results for “indoor/outdoor”, “face/not face”, “motion/not motion” labels.

MHz, which is based on the ARM architecture [19], and lacks floating point hardware. For memory, it has 32
MB of flash-ROM and 64 MB of SDRAM. The original Microsoft PocketPC operating system was removed and
Familiar Linux v0.72 [20] was installed. This is a Linux distribution targeted for the iPAQ series of PDAs. The
FFmpeg Multimedia System [18] was used to decode the 3gpp sequences.

The execution time for “indoor/outdoor,” “face/not face,” “motion/not motion” labels and video summa-
rization on the Compaq iPAQ H3970 is shown in Table 3. These include the time for decoding the 3gpp video,
extracting label information and making a classification decision.
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ExecutionLabel Input
Time (s)

Indoor/Outdoor 30 second 3gpp video sequence 5
Face/Not Face 30 second 3gpp video sequence 20

Motion/Not Motion 30 second 3gpp video sequence 7
Video Summarization 30 second 3gpp video sequence 8

Table 3. Execution time on Compaq iPAQ H3970 handheld PDA.

8. CONCLUSIONS

In this paper, we examined three different semantic classification problems: “indoor/outdoor,” “face/not face,”
and “motion/not motion” for 3gpp mobile video sequences. We developed lightweight algorithms to perform
the labeling with relatively good performance on a database of approximately 200 minutes of 3gpp video. We
presented a simple method for summarizing short video sequences. We are currently refining our methods with
respect to classification performance and computational complexity.
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