
The VLDB Journal (2006) 15:316–333
DOI 10.1007/s00778-006-0008-z

SPECIAL ISSUE PAPER

A secure distributed framework for achieving k-anonymity

Wei Jiang · Chris Clifton

Received: 30 September 2005 / Accepted: 25 May 2006 / Published online: 5 August 2006
© Springer-Verlag 2006

Abstract k-anonymity provides a measure of privacy
protection by preventing re-identification of data to
fewer than a group of k data items. While algorithms ex-
ist for producing k-anonymous data, the model has been
that of a single source wanting to publish data. Due to
privacy issues, it is common that data from different sites
cannot be shared directly. Therefore, this paper presents
a two-party framework along with an application that
generates k-anonymous data from two vertically parti-
tioned sources without disclosing data from one site to
the other. The framework is privacy preserving in the
sense that it satisfies the secure definition commonly
defined in the literature of Secure Multiparty Computa-
tion.

Keywords k-Anonymity · Privacy · Security

1 Introduction

Privacy is an important issue in our society and has
become vulnerable in these technologically advanced
times. Legislation has been proposed to protect individ-
ual privacy; a key component is the protection of indi-
vidually identifiable data. Many techniques have been
proposed to protect privacy, such as data perturbation
[2], query restriction [7], data swapping [21], Secure
Multi-party Computation (SMC) [11,35,36], etc. One

W. Jiang (B) · C. Clifton
Purdue University, 305 N. University St.,
W. Lafayette, IN 47907-2107, USA
e-mail: wjiang@cs.purdue.edu

C. Clifton
e-mail: clifton@cs.purdue.edu

challenge is relating such techniques to a privacy defi-
nition that meets legal and societal norms. Anonymous
data are generally considered to be exempt from pri-
vacy rules – but what does it mean for data to be anon-
ymous? Census agencies, which have long dealt with
private data, have generally found that as long as data
are aggregated over a group of individuals, release does
not violate privacy. k-anonymity provides a formal way
of generalizing this concept. As stated in [26,30,31],
a data record is k-anonymous if and only if it is indis-
tinguishable in its identifying information from at least
k specific records or entities. The key step in making
data anonymous is to generalize a specific value. For
example, the ages 18 and 21 could be generalized to an
interval [16–25]. Details of the concept of k-anonymity
and ways to generate k-anonymous data are provided in
Sect. 2.

Generalized data can be beneficial in many situations.
For instance, a car insurance company may want to build
a model to estimate claims for use in pricing policies
for new customers. To build this model, the company
may wish to use state-wide driver license records. Such
records, even with name and ID numbers removed, are
likely to contain sufficient information to link to an indi-
vidual. However, by generalizing data (e.g., replacing
a birth date with an age range [26–30]), it is possible
to prevent linking a record to an individual. The gen-
eralized age range is likely to be sufficient for build-
ing the claim estimation model. Similar applications
exist in many areas: medical research, education studies,
targeted marketing, etc.

Due to vast improvements in networking and rapid
increase of storage capacity, the full data about an
individual are typically partitioned into several sub-data
sets (credit history, medical records, earnings, ...), each

A secure distributed framework for achieving k-anonymity 317

stored at an independent site.1 The distributed setting is
likely to remain, partially because of performance and
accessibility, but more importantly because of auton-
omy of the independent sites. This autonomy provides
a measure of protection for the individual data. For in-
stance, if two attributes in combination reveal private
information (e.g., airline and train travel records indi-
cating likely attendance at political rallies), but the attri-
butes are stored at different sites, a lack of cooperation
between the sites ensures that neither is able to violate
privacy.

In this paper, data are assumed to be vertically par-
titioned and stored at two sites, and the original data
could be reconstructed by a one-to-one join on a com-
mon key. The goal is to build a k-anonymous join of
the datasets, so that candidate keys in the joined dataset
(including conjunction of items from different sites) are
k-anonymized to prevent re-identification.

1.1 What is a secure distributed protocol?

The word “secure” under the context of this paper is re-
lated to the security definition of SMC. We also assume
that parties are semi-honest in that they follow the exe-
cution requirement of the protocol but may use what
they see during the execution to compute more than
they need to know. (While the semi-honest model is a
limitation, there are situations where a party will want to
avoid knowing private data, to avoid the liability of pro-
tecting it – for such situations a semi-honest approach
is appropriate.) Details of the security definitions and
underlying models can be found in [12].

Definition 1 Let Ti be the input of party i,
∏

i(f) be the
party i’s execution image of the protocol f and s be the
result computed from f . f is secure if

∏
i(f) can be simu-

lated from 〈Ti, s〉 and distribution of the simulated image
is computationally indistinguishable from

∏
i(f).

While it has been shown that for any polynomial
time algorithm, there exists a polynomial time secure
protocol that achieves the same functionality, generic
solutions presented in [11,36] require representing a
problem as a boolean circuit. On a large dataset, it is
computationally impractical to adopt the pure circuit-
based generic solution. Therefore, the key challenge
in designing a secure and efficient protocol is to avoid
using large circuits, instead the generic approach must
be used only for small circuits (i.e., simple functionalities
with compact inputs).

1 In the context of this paper, assume data are represented by
a relational table, where each row indicates an individual data
record and each column represents an attribute of data records.

E2(Data from P2) E1(E2(17)) E1(Data from P1)E2(E1(17))

P1 P2

Fig. 1 Join on a global identifier without disclosing the identifier

1.2 Our contribution

There are two problems to be solved in constructing a
k-anonymous dataset. The simple one is joining the data.
At first glance, it may appear that each site could first
k-anonymize its own dataset, then join on the
(k-anonymous) candidate keys. However, this could lead
to unintended consequences; for starters, a factor of k
explosion in database size. More important, the resulting
data could lead to wrong conclusions. Suppose that we
k-anonymized a university employee dataset in this fash-
ion, where one of the sites provided education level and
other provided income (assume for the sake of the exam-
ple that these are not deemed to be identifying informa-
tion). Assume that the job classification was deemed to
be identifying, and was anonymized so that work-study
students and faculty were both anonymized to “univer-
sity staff”. In joining on the quasi-identifiers, the income
of faculty would be joined to both the correct faculty and
to students, leading to the (hopefully incorrect) conclu-
sion that income is independent of education level.

A better solution is to join on a true global unique
identifier, but without revealing that identifier (we as-
sume the existence of such an identifier for this work).
Commutative cryptography makes this feasible. A sim-
ple solution (based on [27]) is for each party to en-
crypt each record with its secret key, except for the
global identifier. The global identifier is encrypted with
its own key for the commutative encryption. The records
are then given to the other party, which encrypts the
(encrypted) global identifier with its commutative
encryption key. Each party now has the (encrypted)
records of the other party. Because of the commuta-
tivity of the encryption, the data can be joined on the
(encrypted) global keys. Figure 1 shows how a record
with key 17 would look at this stage; neither party knows
what the key is or what the data is, but if the data are
given to one party it can correctly join the records, as
the keys are the same. However, since it knows only its
own key, it is unable to learn the global identifier or the
data from the other party.

Once the (encrypted) records are joined, the
(encrypted) identifiers can be removed. Each party then
decrypts their portion of the anonymous data, giving
the anonymized dataset. Assuming semi-honest parties

318 W. Jiang, C. Clifton

(neither wants the responsibility of knowing the other’s
data), this protocol securely computes the join.2

Note that we have assumed that the records are anon-
ymized before joining (except for the encrypted/removed
key). This is not trivial. k-Anonymizing each dataset
independently before joining does not guarantee a
k-anonymous join. For example, Professor X may have
“academic rank” as identifying information in one data-
base, and “address” in the other. Rank may generalize
to “faculty” and address to “third street”. While there
may be k faculty, and k university employees on third
street, there may be only one faculty on third street, so
the joined dataset is no longer k-anonymous.

The contribution of this paper is exactly the prob-
lem described above: How do we locally anonymize so
that the joined dataset will be k-anonymous, without
revealing anything in the process? We combine
techniques from the cryptography community and
k-anonymity to further enhance privacy in a distributed
environment. This paper presents a two-party secure dis-
tributed framework that can be easily adopted to design
a secure protocol to compute k-anonymous data from
two vertically partitioned sources such that the protocol
does not violate k-anonymity of either site’s data. The
framework is proven to reveal nothing to either party
that cannot be derived from the k-anonymous dataset
and the party’s own data.

The key idea is that each party performs a local gener-
alization as suggested by a regular k-anonymizing heu-
ristic. The parties then test to see if the resulting join will
be k-anonymous, without revealing anything except if
the data are sufficiently anonymized. If not, each party
then generalizes further. This continues until the data
are sufficiently anonymized, at which point the process
described above could be used to join the datasets.

We first introduce the fundamental concepts of k-ano-
nymity. Section 3 gives a secure set intersection protocol
that we will use as a subroutine in our framework; this
also serves as a refresher on SMC. Section 4 presents
the secure distributed framework, with proof of its cor-
rectness, privacy-preservation property, and a discussion
of the computational and communication complexity.
Section 5 presents an application of such framework
where we show how to utilize it to produce a secure dis-
tributed k-anonymization protocol. Section 6 provides
empirical results that demonstrates the effectiveness of
the proposed framework in creating a secure distrib-
uted k-anonymization protocol. The paper concludes
with some insights gained from the framework and its

2 Since we do not claim this is an original contribution, we leave
the rather straightforward proof as an exercise to the reader.

application and future research directions on achieving
k-anonymity in a distributed environment.

2 Related work and background

Several centralized algorithms have been proposed to
generate k-anonymous data, such as those proposed
in [3,15,19,28,30]. Two distributed protocols were pro-
posed in [37], one of which is to extract k-anonymous
portion of the data and other is the secure version of the
protocol presented in [20]. Both protocols assume the
data is horizontally partitioned. The targeted problem of
this paper is similar to the problem addressed in [18]. The
previous protocol, however, does not satisfy the security
definition commonly adopted in the literature of SMC.
Although the approach in [18] was shown to maintain
k-anonymity among the participating parties, it poten-
tially reveals alternate k-anonymous datasets that give
the parties more information than in the final dataset.
In contrast, the protocol proposed in this paper meets
definitions from SMC, thus ensuring nothing is revealed
except the final k-anonymous dataset.

2.1 k-Anonymity

We now give key background on k-anonymity, includ-
ing definitions, a single-site algorithm, and a relevant
theorem, from [26,29,31]. The following notations are
crucial for understanding the rest of the paper:

• Quasi-identifier (QI): a set of attributes that can be
used with certain external information to identify a
specific individual.

• T, T[QI]: T is the original dataset represented in a
relational form, T[QI] is the projection of T to the
set of attributes contained in QI.

• Tk[QI]: k-anonymous data generated from T with
respect to the attributes in the Quasi-identifier QI.

Definition 2 Tk[QI] satisfies k-anonymity if and only if
each record in it appears at least k times.

Let T be Table 1, Tk be Table 2 and QI = {AREA,
POSITION, SALARY}. According to Definition 2,
Tk[QI] satisfies 3-anonymity. (Note that the SSN field is
unique, but since it is not a part of QI, this does not vio-
late the definition of k-anonymity. In operational terms,
we are assuming that an adversary does not know or
care about the value of SSN, so disclosing it does not
enable reidentification or otherwise pose a privacy risk.
In practice, a global identifier such as SSN would be used
and removed in the join process described on Page 2. For

A secure distributed framework for achieving k-anonymity 319

clarity, in the examples, we will use the ID in column 1
rather than SSN as a global identifier.)

Datafly [28,30] is a simple and effective algorithm,
so for demonstration of our protocol, Datafly is used to
make local data k-anonymous. Algorithm 1 presents the
key steps in Datafly. The main step in most k-anonymity
protocols is to substitute a specific value with a more gen-
eral value. For instance, Fig. 2a contains a value general-
ization hierarchy (VGH) for attribute AREA, in which
Database Systems is a more general value than Data
Mining. Similarly, Fig. 2b, c presents VGHs for attributes
POSITION and SALARY contained in QI. Contin-
uing from the previous example, Tk[QI] of Table 2
satisfies 3-anonymity. According to the three VGHs and
the original data represented by T, it is easily veri-
fied that Datafly could generate Tk[QI] by generalizing
the data on SALARY, then on AREA and then on
SALARY again. Next, we present a useful theorem
about k-anonymity.

Theorem 1 If Tk[QI] is k-anonymous, then Tk[QI′] is
also k-anonymous, where QI′ ⊆QI [30].

Proof Assume Tk[QI] is k-anonymous and Tk[QI′]does
not satisfy k-anonymity. Then there exists a record t(QI′)
that appears in Tk[QI′] less than k times. It is trivial
to observe that t(QI) also appears less than k times in
Tk[QI]. That contradicts the assumption. Therefore, if
Tk[QI] satisfies k-anonymity, so does Tk[QI′]. ��

3 Secure set intersection

We now present a secure two-party protocol SSIt for
computing the cardinality of set intersection that takes
a random bit as part of input from one party and returns
another random bit to the other party; the XOR of the
two bits indicates whether or not the size of the intersec-
tion size is smaller or greater than a threshold t. SSIt will
be used to test if the join of two local k-anonymous data-
sets creates a global k-anonymization, and this test plays

an important role in the design of our secure distributed
k-anonymity framework. We provide a concrete con-
struction of SSIt here, and the construction also serves
as an introduction to basic concepts (e.g., proof of secu-
rity) in the literature of SMC.

Most existing secure set intersection protocols, such
as those proposed in [1,9,33], disclose the size of each
party’s dataset (or a bound on that size). For certain
applications, this disclosure is acceptable. In our appli-
cation, such a disclosure would prevent a protocol from
meeting the definitions of SMC, causing a leak with un-
known implications (this is discussed further in Sect. 4).
Although the protocols proposed in [10] and [34] meet
the above requirement, they do not satisfy the require-
ment that the results be randomly split between parties.
As we shall see, we need to learn not the size of single set
intersection, but if the sizes of all exceed the threshold
k. The SSIt protocol presented below utilizes the same
structure as the ones presented in [10] and [34], except
that the SSIt protocol also adopts an additional circuit
to produce two random bits.

SSIt merely discloses the domain size, and accord-
ing to the k-anonymity application investigated in this
paper, the domain size is bounded by the size of data-
base. Therefore, the domain size is generally much
smaller than the key size adopted in an encryption
scheme. For better understanding and completeness, we
provide detailed description of SSIt in the rest of this
section.

3.1 SSIt

Let D1, D2 be the datasets (containing integer values)
of parties P1 and P2, respectively. Let M be maximum
value in the domain from which the elements of the two
datasets are drawn. Then we generate the correspond-
ing representations s1, s2 of D1, D2, where s1, s2 are in
forms of bit strings. Let sj[i] (j = 1 or 2) indicates the ith
bit of sj, and the sj has the property that:

|sj| = M (the length of the bit string sj); sj[i] = 1 if
i ∈ Dj, otherwise sj[i] = 0.

Formally, define SSIt ((s1, t), (s2, t, b2)) → (b1,⊥),
where t is publicly known threshold, b1, b2 are two ran-
dom bits (without loss of generality, assume b2 is pro-
vided as part of input from P2), (s1, t) is P1’s input and
(s2, t, b2) is P2’s input. After the execution of SSIt, P1
receives a random bit b1, and P2 receives an empty string
indicated by the symbol⊥. If |D1∩D2| < t, b1⊕b2 = 1;
otherwise b1 ⊕ b2 = 0.

SSIt is an extension of the Boolean dot
product protocol described in [32]. The bit strings s1, s2

320 W. Jiang, C. Clifton

Table 1 Original dataset
before partitioning

ID Area Position Salary SSN

1 Data mining Associate professor $90,000 708-79-1698
2 Intrusion detection Assistant professor $91,000 606-67-6789
3 Data warehousing Associate professor $95,000 626-23-1459
4 Intrusion detection Assistant professor $78,000 373-55-7788
5 Digital forensics Professor $150,000 626-87-6503
6 Distributed systems Research assistant $15,000 708-66-1552
7 Handhold systems Research assistant $17,000 810-74-1079
8 Handhold systems Research assistant $15,500 606-37-7706
9 Query processing Associate professor $100,000 373-79-1698

10 Digital forensics Assistant professor $78,000 999-03-7892
11 Digital forensics Professor $135,000 708-90-1976
12 Intrusion detection Professor $145,000 606-17-6512

Table 2 Generalized data
with k = 3

ID Area Position Salary SSN

1 Database systems Associate professor [61k, 120k] 708-79-1698
2 Information security Assistant professor [61k, 120k] 606-67-6789
3 Database systems Associate professor [61k, 120k] 626-23-1459
4 Information security Assistant professor [61k, 120k] 373-55-7788
5 Information security Professor [121k, 180k] 626-87-6503
6 Operating systems Research assistant [11k, 30k] 708-66-1552
7 Operating systems Research assistant [11k, 30k] 810-74-1079
8 Operation systems Research assistant [11k, 30k] 606-37-7706
9 Database systems Associate professor [61k, 120k] 373-79-1698

10 Information security Assistant professor [61k, 120k] 999-03-7892
11 Information security Professor [121k, 180k] 708-90-1976
12 Information security Professor [121k, 180k] 606-17-6512

Database Systems (DB) Information Security (IS) Operating Systems (OS)

Computer Science

Handheld Systems (HS)
Distributed Systems (DS)

Query Processing (QP)
Data Warehousing (DW)
Data Mining (DM)

Digital Forensics (DF)
Intrusion Detection (ID)

(a) VGH of AREA

Assistant Professor (AsP)
Associate Professor (AoP)
Professor (Prof)

Teaching Assistant
Research Assistant

Faculty

Professors Assistants

(b) VGH of POSITION

 [11k, 180k]

[11k, 60k] [61k, 120k] [121k, 180]

$135,000
$145,000
$150,000$100,000

 $91,000
 $95,000

$78,000
$78,000
$90,000

$17,000
$15,500

$15,000

[11k, 30k] [31k, 60k] [61k, 90k] [91k, 120k] [121k, 150k] [151k, 180k]

(c) VGH of SALARY

Fig. 2 Value generalization hierarchies

A secure distributed framework for achieving k-anonymity 321

can be represented as Boolean vectors whose entries
contain either 0 or 1. Since the dot product of two
Boolean vectors results the summation (sum) of 1’s
remaining after bit-wise multiplication of the two vec-
tors, sum = |D1 ∩D2|. Let sum denote the intersection
size of two datasets for the rest of the section.

SSIt is a generic protocol in that any homomorphic
probabilistic public key encryption systems, such as those
proposed in [4,22,24], can be adopted in its implemen-
tation. Let E : R × X → Y be a probabilistic public
key encryption scheme, where R, X and Y are finite
domains identified with an initial subset of integers and
D : Y → X be a private decryption algorithm, such
that ∀(r, x) ∈ R×X, D(E(r, x)) = x. Furthermore, these
encryption systems have the following properties:

• The encryption function is injective with respect to
the second parameter, i.e., ∀(r1, x1), (r2, x2) ∈ R×X,
E(r1, x1) = E(r2, x2)⇒ x1 = x2.

• The encryption function is additive homomorphic,
i.e., ∀(r1, x1), (r2, x2) ∈ R×X,

∏
(E(r1, x2), E(r2, x2))

= E(r3, x1 + x2), where r3 can be computed from r1,
r2, x1 and x2 in polynomial time. (

∏
is the function

to “add” two encrypted values; multiplication in the
systems listed above.)

• The encryption function has semantic security as de-
fined in [14]. Informally speaking, a set of ciphertexts
does not provide additional information about the
plaintext to an adversary with polynomial-bounded
computing power.

• The domain and the range of the encryption system
are suitable.

Key steps of the SSIt protocol are highlighted in Algo-
rithm 2. At step 2(a), the symbol

∏
indicates that the

encrypted s1[i] values are combined to produce their
encrypted sum; the common characteristics among all
these values is that their corresponding s2[i] values must
be 1. At step 2(b), an encrypted sum-share is computed
for P1. The symbol SH−1

P2 at step 4(a) represents the
inverse of SHP2 so that SHP1 + SH−1

P2 = sum+ SHP2 +
SH−1

P2 = sum. At step 4, the two parties engage in a
simple secure circuit evaluation process.

The circuit Secure_COM is defined in Algorithm 3.
Secure_COM takes a random SHP1 from P1 and a ran-
dom share SH−1

P2 and random bit b2 from P2. It returns
a random bit b1 to P1 such that if b1 ⊕ b2 = 1, then
SHP1 + SH−1

P2 < t (t is a publicly known threshold);
otherwise, SHP1+SH−1

P2 ≥ t. Note that at step 1 of Algo-
rithm 3, ADD indicates an addition circuit that takes two
integers (in the same group or field with modulo opera-
tion over the size of the group or field) as input, and at

−

−

−

−

−

−

−

step 2, COMPARE(s, t) indicates a comparison circuit
that takes two integers as input and returns 1 if s < t
and 0 otherwise. For succinctness and clarity, we pres-
ent this Secure_COM circuit as two sub-circuits: ADD
and COMPARE. However, we securely evaluate them
as a whole via the approach presented in [12]. There-
fore, the intermediate results computed by ADD and
COMPARE are not shared.

As stated previously, except for this additional circuit
Secure_COM, SSIt has the same underlying structure as
those protocols proposed in [10] and [34]. In addition,
SSIt (Algorithm 2) has been optimized at step 2(a): mul-
tiplications are required only when s2[i] = 1.

A similar protocol PMt has been proposed in [9]. PMt

cannot be used directly because it discloses the sizes of
the datasets. Moreover, in addition to the secure root
finding polynomial evaluations, a circuit is also required
in PMt to sequentially compare elements in each dataset.
Although the SSIt protocol requires a circuit to return
two random bits, the complexity of this circuit is sim-
ilar to a simple circuit comparing two numbers. As a
result, the circuit used in SSIt is much simpler than that
in PMt.

Since SSIt is merely related to values of individual
bits under the context of this paper, it can be directly

322 W. Jiang, C. Clifton

implemented by circuits. We provide such a circuit in the
Appendix. The circuit presented in Algorithm 8 may not
be the most efficient one, but it is simple and presents
an appropriate upper bound on any purely circuit-based
implementation of the SSIt protocol. In this paper, we
prefer homomorphic encryption based implementation
of SSIt, in part because homomorphic encryption is easy
to implement and in part because secure circuit evalua-
tion is a complex process. Although the implementation
of SSIt presented in this section requires a comparison
circuit, it is much smaller comparing to the one illus-
trated in Algorithm 8. Also, the two different imple-
mentations of SSIt have similar complexity.

3.2 Proof of correctness

Theorem 2 After each execution of the SSIt protocol de-
fined in Algorithm 2, P1 and P2 have two random bits b1
and b2, such that if sum = |D1 ∩ D2| < t, b1 ⊕ b2 = 1;
otherwise, b1 ⊕ b2 = 0, where D1 and D2 are datasets
(containing only integer values) of P1 and P2.

Proof Because the multiplication of bit 0 with any other
bit does not contribute to the total sum, P2 only uses xi’s
whose corresponding s2[i] values are 1. Thus, step 2(a)
of Algorithm 2 computes the encrypted sum: Enc_Sum =∏
∀i∧s2[i]=1 xi = E(r,

∑
∀i∧s2[i]=1 s1[i]) = E(r′,

∑
i=1,...,M s1[i]·

s2[i]), for some random numbers r, r′.
When Secure_COM is securely evaluated, SHP1 and

SH−1
P2 are the actual parameters. In other words, dur-

ing the evaluation of Secure_COM, sh1 = SHP1 and
sh2 = SH−1

P2 . As explained in the previous section,
s = sh1+ sh2 = SHP1+SH−1

P2 = sum. As a result, s con-
tains the exact value of the intersection size. In addition,
in part because COMPARE(s, t) returns 1 if s < t and 0
otherwise and in party because b1 = COMPARE(s, t)⊕
b2, b1 ⊕ b2 = COMPARE(s, t) which presents the pre-
cise comparison results between the intersection size
and the threshold. This concludes that Algorithm 2 cor-
rectly implements the SSIt protocol. ��

3.3 Proof of security

Theorem 3 The SSIt protocol defined in Algorithm 2 is
secure under the semi-honest definition of SMC.

Proof The proof is based on simulation. We must
define a simulator that can take as input one party’s data
and the final result, and generate a stream of messages
that are computationally indistinguishable from those
the party would receive in an actual run of the pro-
tocol. Indistinguishable means the distribution of mes-
sages across multiple runs with the same input and final

result; since (randomly chosen) encryption keys may
lead to different actual values, the messages may not
be exactly the same. However, the distributions are the
same: every message stream produced by the simula-
tor is equally likely to be the one actually seen in the
protocol (for details see [12]).

At step 4 of Algorithm 2, P1 and P2 collaboratively
evaluate the circuit Secure_COM. The circuit can be
evaluated securely based on the method defined in [11,
12]. Based on the composition theorem of [12], it is suffi-
cient to define a simulator for the messages received by
each party in steps 1 – 3 of Algorithm 2.

Simulator for P1: P1 only receives MP1 = E(r, SHP1).
Since P1 obtains SHP1 after the decryption, P1 can gen-
erate a M′P1 = E(r′, SHP1). The encryption scheme is
semantically secure, so MP1 and M′P1 are computation-
ally indistinguishable.

Simulator for P2: The public key E received by P2
can be simulated by randomly select a key from the key
space. Because x1, . . . , xM are encrypted values of 0 or
1, P2 can simulate each xi value as follows: first P2 ran-
domly selects an encryption key, a number r and a bit
(0 or 1), and then P2 computes x′i = E(r, bit). The seman-
tic security of the encryption scheme guarantees that
xi and x′i are computationally indistinguishable. Similar
proofs can be found in [32]; a definition of computational
indistinguishability can be found in [13]. ��

3.4 Complexity of SSIt

We now show the communication and encryption costs
of SSIt. The costs are in terms of M, the domain size
that bounds the size of the dataset, and N, the domain
size from which private–public key pairs are drawn (i.e.,
log M or log N is the maximum number of bits needed
to represent a value from its corresponding domain).

Theorem 4 The number of encryptions and the commu-
nication complexity of the SSIt protocol are bounded by
O(M) and O(M log N), respectively.

Proof Since the length of each bit string si is M, the
number of encryption for P1 is M at step 1 of Algorithm
2. At step 2(b), P2 needs to perform 1 encryption and at
most M + 1 multiplications (assuming a homomorphic
encryption scheme where multiplying encrypted values
is used to add the underlying values). In addition, P1
performs 1 decryption at step 3. Thus, because the size
of an encrypted value is log N in number of bits, the
number of encryptions and communication complexity
from steps 1 to 3 of Algorithm 2 are bounded by O(M)

and O(M log N) (in bits), respectively.
The complexity of the Secure_COM protocol is deter-

mined by both ADD and COMPARE circuits. Assume

A secure distributed framework for achieving k-anonymity 323

Table 3 P1 and P2 ’s
generalized data (left and
right, respectively)

ID Area1 Position0 Area1 Position1 ID Salary1 Salary2

1 DB AoP DB Professors 1 [61k, 90k] [61k, 120k]
2 IS AsP IS Professors 2 [91k, 120k] [61k, 120k]
3 DB AoP DB Professors 3 [91k, 120k] [61k, 120k]
4 IS AsP IS Professors 4 [61k, 90k] [61k, 120k]
5 IS Prof IS Professors 5 [121k, 150k] [121k, 180k]
6 OS RA OS Assistant 6 [11k, 30k] [11k, 30k]
7 OS RA OS Assistant 7 [11k, 30k] [11k, 30k]
8 OS RA OS Assistant 8 [11k, 30k] [11k, 30k]
9 DB AoP DB Professors 9 [91k, 120k] [61k, 120k]

10 IS AsP IS Professors 10 [61k, 90k] [61k, 120k]
11 IS Prof IS Professors 11 [121k, 150k] [121k, 180k]
12 IS Prof IS Professors 12 [121k, 150k] [121k, 180k]

ADD is a sequential adder. The number of gates for
such adder is generally bounded by O(log N) since the
value of each random share is bounded by N. Also, the
number of gates for the comparison circuit is bounded
by O(log M) (a linear circuit in number of bits). There-
fore, the circuit Secure_COM requires O(log N) gates
(assuming N > M). Based on the secure circuit eval-
uation approach stated in [11], the number of encryp-
tions to encrypt Secure_COM is bounded by its size:
O(log N). As a consequence, the communication com-
plexity of Secure_COM is bounded by O(log N log N)

(in bits), where log N is the size of the encryption and
decryption keys.

According to the above analysis and assuming
M � log N, the number of encryptions and the commu-
nication complexity of the SSIt protocol are bounded by
O(M) and O(M log N), respectively. ��

4 The framework: DkA

We now present a secure distributed framework DkA
(Distributed k-Anonymity) for generating a global
k-anonymization between two parties. DkA cannot be
directly used to compute a global k-anonymous dataset
since it is a framework and does not specify how to anon-
ymize data. On the other hand, it can be easily adopted
to construct a secure protocol to achieve global k-anon-
ymization between two parties. In Sect. 5, we present an
application that shows how to incorporate one of exist-
ing k-anonymization algorithms into this framework.

The rest of the section is organized as the follow-
ing: The framework is presented in Sect. 4.1. Section 4.2
proves the correctness of the framework (the
result is guaranteed to be k-anonymous), and Section
4.3 proves the framework satisfies the security defini-
tion in the SMC literature.

The following symbols are used extensively in this
section: γ i

c , θ i
c and ωi

c, where the superscript i ∈ {1, 2}
indicates whether the symbol represents information
from P1 or from P2, and the subscript c ∈ Integer indi-
cates the protocol round generating the information. For
instance, γ 1

1 and γ 1
2 represent values that P1 has during

rounds 1 and 2. The meaning of the symbols is defined
as the framework is introduced.

4.1 DkA

We will present the framework using the example given
earlier. The framework is executed between two par-
ties: P1 and P2. For illustration purpose, assume both
parties agree on a k-anonymization algorithm that they
use to produce locally k-anonymous datasets. Let T refer
to Table 1 and QI = {AREA, POSITION, SALARY}.
T is vertically partitioned into T1[ID, AREA,
POSITION] and T2[ID, SALARY, SSN] stored at P1
and P2, respectively. Also, assume P1 and P2 are semi-
honest in that they follow the execution of the frame-
work but may later use the information seen to try to
violate privacy.

The key idea of the framework is based on Theorem 1.
Initially, each party Pi k-anonymizes its local data (for
simplicity, Datafly is used for illustration). Based on this
locally k-anonymous data, a set γ i

c is produced contain-
ing IDs partitioned into subsets. Let γ i

c[p] indicates the
pth subset in γ i

c , then all records of Pi whose keys are
contained in γ i

c[p] have the same value with respect to
QI. ∀γ i

c , the following properties hold:

• γ i
c[p] ∩ γ i

c[q] = ∅, ∀p, q s.t. 1 ≤ p, q ≤ |γ i
c| and p �= q

• ⋃
1≤p≤|γ i

c | γ
i
c[p] is the same across all c values

(Note that although each element γ i
c[p] ∈ γ i

c contains
record keys, it does make sense to say that γ i

c[p]

324 W. Jiang, C. Clifton

contains a subset of records or data tuples because each
key is related to a single tuple). Define Tiγ i

c to be the
generalized or anonymous data at Pi based on which γ i

c
is computed. For an example, refer to Table 3. The col-
umns [AREAp, POSITIONq] indicate the generalized
data of T1[AREA, POSITION], where p + q indicates
the number of times T1[AREA, POSITION] has been
generalized (by Datafly). Also, the last generalization of
T1[AREA, POSITION] was performed on the attribute
whose superscript was incremented.

T2[SALARY] can be interpreted similarly. Accord-
ing to Table 3, we have:

γ 1
1 = {{1, 3, 9}, {2, 4, 10}, {5, 11, 12}, {6, 7, 8}} ,

γ 2
1 = {{1, 4, 10}, {2, 3, 9}, {5, 11, 12}, {6, 7, 8}} .

The two parties then compare γ 1
1 and γ 2

1 . If they
are anonymized (this notion of being anonymized will
be defined shortly), joining data T1

γ 1
1

and T2γ 2
1

cre-

ates globally k-anonymous data. If γ 1
1 and γ 2

1 are not-
anonymized, each party generalizes its local data one
step further (assume they know how to do this) and
creates a new γ i

c . Repeat the above steps until the two
parties find a pair anonymized γ i

cs. We now define the
notion of being anonymized between any two γ i

cs.

Definition 3 (Anonymized) If γ 1
c ≡ γ 2

c , then there are
no p, q such that 0 < |γ 1

c [p] ∩ γ 2
c [q]| < k. (γ 1

c ≡ γ 2
c indi-

cates γ 1
c and γ 2

c are anonymized, and γ 1
c �= γ 2

c indicates
the opposite: not-anonymized)

According to the above definition, γ 1
1 �= γ 2

1 because
|{1, 3, 9} ∈ γ 1

1 ∩{2, 3, 9} ∈ γ 2
1 | = 2 < k(=3). Thus, P1 and

P2 generalize their data one step further and compute
two new γ i

cs:

γ 1
2 = {{1, 3, 9}, {2, 4, 5, 10, 11, 12}, {6, 7, 8}} ,

γ 2
2 = {{1, 2, 3, 4, 9, 10}, {5, 11, 12}, {6, 7, 8}} .

Since γ 1
2 ≡ γ 2

2 , the join of T1
γ 1

2
(columns [AREA1,

POSI-TION1] in Table 3) and T2γ 2
2

(column [SALARY2]
in Table 3) satisfies 3-anonymity.

The idea is to check if each identifier j is part of a
k-anonymous set in the joined database; the intersec-
tion of sets containing j is exactly the set of items with
quasi-identifiers equal to those of j. To prevent infor-
mation leakage, the comparison or the anonymity test
between any two γ i

cs is not performed directly. Instead,
the comparison process merely enables the two parties
to know the result of the anonymity test, but not the
specific subsets of γ i

cs for which the anonymity test fails.
Before detailing the secure anonymity test between γ i

cs,
let tj indicate a record or tuple in the database whose ID
attribute has value j. Assume S is a set. Let Clonez(S)

indicate the set S is copied z times, and assume M is
the size of the domain (or the maximum value in the
domain) of the dataset. Based on the value of γ i

cs, each
party Pi computes a θ i

c = {∀γ i
c[j] ∈ γ i

c , Clone|γ i
c[j]|(γ

i
c[j])},

where the cardinality of θ i
c is M. Call θ i

c the “by identi-
fier” subset list.

Elements in each θ i
c are sorted according to value j of

tj or the ID values. In other words, the jth subset in θ i
c

must contain the ID value j. For example, according to
γ 1

1 , γ 2
1 , P1 and P2 compute θ1

1 , θ2
1 :

θ1
1 = ({1, 3, 9}, {2, 4, 10}, {1, 3, 9}, {2, 4, 10}, {5, 11, 12},
{6, 7, 8}, {6, 7, 8}, {6, 7, 8}, {1, 3, 9}, {2, 4, 10},
{5, 11, 12}, {5, 11, 12}),

θ2
1 = ({1, 4, 10}, {2, 3, 9}, {2, 3, 9}, {1, 4, 10}, {5, 11, 12},
{6, 7, 8}, {6, 7, 8}, {6, 7, 8}, {2, 3, 9}, {1, 4, 10},
{5, 11, 12}, {5, 11, 12}).

Next, P1 and P2 compute the required parameters
for the SSIt protocol described in Sect. 3 before apply-
ing SSIt to each pair θ1

1 [j], θ2
1 [j]. Note that the thresh-

old parameter to SSIt is always k (where k = 3 in our
example). In addition, P2 is responsible for supplying a
randomly chosen bit b2 for each execution of SSIt, and
each execution of SSIt returns a bit b1 to P1. Because
of the construction of θ i

c, 0 < |θ1
c [j] ∩ θ2

c [j]| for 1 ≤
j ≤ M; therefore, the following holds: if b1 ⊕ b2 = 1,
0 < |θ1

c [j] ∩ θ2
c [j]| < k; otherwise, |θ1

c [j] ∩ θ2
c [j]| ≥ k.

After performing the SSIt protocol on each pair θ1
1 [j],

θ2
1 [j], P2 has a string ω2

1 of random bits (each bit is ran-
domly generated by P2). P1 obtains a string ω1

1 of bits
that from P1’s point of view are indistinguishable from
random. For instance, based on θ1

1 , θ2
1 and supposing P2

randomly generates ω2
1 = 100111011110, then after col-

laboratively executing the SSIt protocol on the M pair
θ1

1 [j], θ2
1 [j]s, P1 get ω1

1 = 011011010010. (M = 12 in this
example.)

P1 and P2 then securely compare ω1
1 and ω2

1. If the
two bit strings are equal, the two corresponding γ 1

1 and
γ 2

1 are anonymized (according to Definition 3). We will
formally prove this claim in Sect. 4.2. Since ω1

1 and ω2
1

are not equal in the current example, P1 and P2 compute
θ1

2 , θ2
2 based on γ 1

2 , γ 2
2 :

θ1
2 = ({1, 3, 9}, {2, 4, 5, 10, 11, 12}, {1, 3, 9},

{2, 4, 5, 10, 11, 12}, {2, 4, 5, 10, 11, 12},
{6, 7, 8}, {6, 7, 8}, {6, 7, 8}, {1, 3, 9},
{2, 4, 5, 10, 11, 12}, {2, 4, 5, 10, 11, 12},
{2, 4, 5, 10, 11, 12}),

A secure distributed framework for achieving k-anonymity 325

−

θ2
2 = ({1, 2, 3, 4, 9, 10}, {1, 2, 3, 4, 9, 10},

{1, 2, 3, 4, 9, 10}, {1, 2, 3, 4, 9, 10}, {5, 11, 12},
{6, 7, 8}, {6, 7, 8}, {6, 7, 8}, {1, 2, 3, 4, 9, 10},
{1, 2, 3, 4, 9, 10}, {5, 11, 12}, {5, 11, 12}).

Suppose P2 generates another random bit string ω2
2 =

010011010110, then by sequentially executing SSIt on
each pair θ1

2 [j], θ2
2 [j], P1 obtains the corresponding ran-

dom bit string ω1
2 = 010011010110. After performing

a secure equality test that confirms ω1
2 = ω2

2, the two
parties can conclude γ 1

2 ≡ γ 2
2 , and as stated previously,

the join of T1
γ 1

2
and T2γ 2

2
creates a globally 3-anony-

mous dataset.
The key steps in our framework are highlighted in

Algorithm 4. The algorithm is written as executed by
P1. Note that synchronization is needed for the counter
c. When the loop is executed more than once, the algo-
rithm requires local data to be generalized one step fur-
ther before computing the next γ 1

c at Step 5. Also, the
equality test between ω1

c and ω2
c at step 8 is performed

securely. This equality test can be implemented in vari-
ous ways. The generic secure circuit evaluation approach
can be used, or secure comparison protocols proposed
in [6,8,16] can be applied. At step 9, the symbol �� rep-
resents the one-to-one join operator on the ID attribute
(not part of the quasi-identifier, although it can be used
in the join but dropped from the k-anonymous dataset
as in [27]).

4.2 Proof of correctness

In this section, we prove Algorithm 4 achieves global
k-anonymity. Referring to notations adopted in Sect. 4.1,
let γ 1

c , γ 2
c be synchronously computed from P1 and P2’s

locally k-anonymous data, and use the operators ≡, �=

defined in Definition 3. Define T1γ 1
c

and T2γ 2
c

as the

locally k-anonymous data related to γ 1
c and γ 2

c , respec-
tively.

Theorem 5 If γ 1
c ≡ γ 2

c , then Tk[QI] ← T1γ 1
c
�� T2γ 2

c
satisfies global k-anonymity, where T1γ 1

c
�� T2γ 2

c
indi-

cates creating global dataset through one-to-one join on
two locally k-anonymous datasets.

Proof We prove the above theorem by contrapositive.
In other words, we prove the following statement: If
Tk[QI] does not satisfy global k-anonymity, then γ 1

c �=
γ 2

c . Suppose Tk[QI] is not k-anonymous, then there
exists a subset of identical records S = {t1, . . . , tj} ⊂
Tk[QI] such that 0 < |S| < k or 0 < j < k. Let
tj[γ 1

c] denote the portion of the record tj related to γ 1
c

stored at P1 and tj[γ 2
c] denote the portion of the record

related to γ 2
c stored at P2. Then, {t1[γ 1

c], . . . , tj[γ 1
c]}must

be contained in some subset γ 1
c [p], and {t1[γ 2

c], . . . , tj[γ 2
c]}

must be contained in some subset γ 2
c [q]; as a result,

0 < |γ 1
c [p] ∩ γ 2

c [q]| < k. According to Definition 3,
γ 1

c and γ 2
c are not-anonymized (γ 1

c �= γ 2
c). Thus, the

contrapositive statement is true, so Theorem 5 holds. ��
Theorem 6 The executions of the SSIt protocol on each
pair θ1

c [j], θ2
c [j] are sufficient; in other words, they cover

all the necessary anonymity tests to justify that γ 1
c ≡ γ 2

c .

Proof Suppose the above statement is not true, then
there must exist a pair γ 1

c [p], γ 2
c [q], for some p, q, whose

intersection size has not been compared with k and could
potentially cause γ 1

c �= γ 2
c . In other words, this pair

does not match any pair θ1
c [j], θ2

c [j], where 1 ≤ j ≤ M.
If |γ 1

c [p] ∩ γ 2
c [q]| = 0 and according to Definition

3, the pair is useless to justify whether or not γ 1
c and

γ 2
c are anonymized. Otherwise, ∃id ∈ γ 1

c [p] ∩ γ 2
c [q].

Based on the construction of θ i
c, the pair γ 1

c [p], γ 2
c [q]

must match the pair θ1
c [id], θ2

c [id]. That means the size
of γ 1

c [p] ∩ γ 2
c [q] was already examined against k before

concluding whether or not γ 1
c ≡ γ 2

c . This contradicts the
assumption. ��
Theorem 7 γ 1

c ≡ γ 2
c if and only if ω1

c = ω2
c .

Proof ⇒: If γ 1
c ≡ γ 2

c , as described in Sect. 4.1, it holds
that |θ1

c [j] ∩ θ2
c [j]| ≥ k. Then according to the definition

of the SSIt protocol, the execution of SSIt on any pair
θ1

c [j], θ2
c [j] against k always returns 0 (= b1⊕ b2). Based

on the XOR operator, if the random bit generated by P2
is 1 during any execution of the SSIt protocol, P1 must
receive bit 1 during the same execution. On the other
hand, if the random bit generated by P2 is 0, P1 must
receive bit 0. Therefore, ω1

c = ω2
c .

⇐: If ω1
c = ω2

c , due to the characteristics of the XOR
operator, the execution of SSIt on every pair θ1

c [j], θ2
c [j]

326 W. Jiang, C. Clifton

must be 0. In other words, |θ1
c [j] ∩ θ2

c [j]| ≥ k for 1 ≤
j ≤M. Based on Theorem 6 and Definition 3, every pair
γ 1

c [p], γ 2
c [q] needed to justify if γ 1

c and γ 2
c are anony-

mized has been considered, and none of the pairs vio-
lates the condition of being anonymized. Therefore, it
must be true that γ 1

c ≡ γ 2
c . ��

We also need to note that the DkA framework adopts
an iterative process, and its convergence depends on
the local k-anonymization algorithm. As long as the
local algorithm converges, the framework will eventu-
ally terminates due to the fact that each step causes a
local change in the direction of convergence; eventu-
ally each local algorithm will converge leading to global
termination.

4.3 Proof of security

Theorem 8 Algorithm 4 is secure under the semi-honest
definition of SMC.

Proof To prove the framework is secure, we only need
to show that the execution image of the framework can
be simulated given the final outcome (the k-anonymous
dataset). Algorithm 5 provides such a simulator for the
framework DkA. Note that the simulators for both P1
and P2 are the same. The simulator is written from P1’s
point of view. The main point of the simulator is that
the number of times P1 needs to generalize its private
data locally can be found by simply comparing the cur-
rent generalized local data with Tk[QIP1]. If they are
not equal, P1 knows that it needs to further generalize
its local dataset.

Let �S be the view produced from the simulator, then
according to Algorithm 5, �S = (T1, k, QIP1, c, γ̂ 1

c , θ̂1
c ,

ω̂1
c , ê), where ê is an implicit parameter in the simulator

indicating the simulated equality test result between ω1
c

and ω2
c . Let �R be the view during the real execution

of the DkA framework, then according to Algorithm
4, �R = (T1, k, QIP1, c, γ 1

c , θ1
c , ω1

c , e), where e is the real

equality test result between ω1
c and ω2

c . According to the
comparison between T1γ̂ 1

c
and Tk[QIP1], the simulator

can simulate the exact equality test result between ω1
c

and ω2
c . As a result, ê = e, and it can be easily verified that

γ̂ 1
c = γ 1

c and θ̂1
c = θ1

c . Since both ω̂1
c and ω1

c are strings of
random bits with the same length, the distributions of ω̂1

c
and ω1

c are computationally indistinguishable. Thus, the
distributions of the two views �S, �R are computation-
ally indistinguishable. Since we are able to simulate the
result of SSIt and the subroutine protocols are secure,
the composition theorem of [12] enables us to conclude
that the overall algorithm is secure. This concludes that
the DkA framework is secure under the semi-honest
model in the context of SMC. ��

4.4 Complexity analysis

Since the number of times the global generalization
(steps 4–7) needs to be executed depends on the struc-
ture of each value generalization hierarchy and the spe-
cific algorithm used to compute locally k-anonymous
dataset, it is not possible to provide precise complexity
analysis for overall execution of the DkA framework.
On the other hand, we do give a precise complexity
analysis for each round of global generalization.

Theorem 9 The number of encryptions and communi-
cation complexity of each round of global generalization
are bounded by O(M2) and O(M2 log N) respectively.

Proof Most encryption and communication for each
round of global generalization occurs at step 7 of Algo-
rithm 4, so the complexity of each global generaliza-
tion is bounded by the complexity of step 7. At step
7, the two parties collaboratively execute the SSIt pro-
tocol on each pair θ1

c [j], θ2
c [j]. Because the number of

such pairs is M (the size of the dataset or the num-
ber of records in the dataset) and the domain size of
every element in θ i

c[j] is M, then according to Theorem
4, step 7 requires O(M)×M number of encryptions and
O(M log N)×M communication (in bits). Consequently,
the number of encryptions and communication com-
plexity of each global generalization step are bounded
by O(M2) and O(M2 log N). ��

As stated previously, DkA is a framework and cannot
be directly used to achieve global k-anonymization.
However, the proof of correctness and the complexity
analysis are applied to any secure distributed
k-anonymization protocol that utilizes this framework.
Even though the proof of security presented above is
merely related to DkA, it provides a general road map
for constructing a security proof of a concrete protocol.

A secure distributed framework for achieving k-anonymity 327

Details of constructing such protocol using the frame-
work are presented next.

5 A case study: DkA-Datafly

We now show how to use the DkA framework to
transform the centralized Datafly into a secure two-
party distributed k-anonymization protocol. We refer
to this new protocol as DkA-Datafly. In order to have a
successful transformation, the following three require-
ments should be met:

• Secure: DkA-Datafly is secure under the SMC
definitions.

• k-Anonymization: DkA-Datafly accomplishes global
k-anonymization.

• Preciseness: The results produced from DkA-Datafly
are as close as possible to the centralized Datafly.

Datafly is an attribute-based generalization algorithm,
so the modification to the DkA framework is minor.
Steps 2–5 of the Datafly algorithm presented in Algo-
rithm 1 implies a constraint: data tuples or records that
are already k-anonymous will not be generalized
further.3 Thus, in order to satisfy the preciseness require-
ment, k-anonymous portion of the dataset should be
removed before the next iteration of DkA-Datafly. We
make this point clear in Sect. 5.1.

5.1 DkA-Datafly

Key steps of the DkA-Datafly protocol are highlighted
in Algorithm 6. The structure of DkA-Datafly is the
same as the framework DkA presented in Algorithm
4, except for steps 9–12 where two additional functions
have been employed:

1. Gen_Further(T, u): this function takes a dataset T
and returns T ′, where T ′ has been generalized fur-
ther from T according to a specific generalization
rule specified by u. Rule u is flexible in that it can be
any generalization rule as long as it is agreed upon
by both parties. Here is an example of rule u that we
will adopt in Sect. 6: First find the attribute having
the most number of distinct values. Then, generalize
the most specific values related to that attribute one
step up in their value generalization hierarchies. In
order to satisfy the preciseness requirement, the rule

3 For illustration purpose, the generalized data (Table 3) given
in Sect. 4 did not follow this constraint. This does not affect any
analysis regarding the DkA framework.

−

−

u presented above employs a similar heuristic as the
Datafly algorithm.

2. Extract_Kanon(T, χc): this function returns a subset
Sk of T that is already globally k-anonymous and
updates T by removing Sk from T. χc has the follow-
ing properties:
• It is a bit string resulting from the bit-wise XOR

of two bit strings: ω1
c , ω2

c (the same strings gener-
ated at step 7 of Algorithm 4).

• It is used to identify the globally k-anonymous
subset: Sk =⋃

j∧χc[j]=0
(
θ1

c [j] ∩ θ2
c [j]

)
, where θ i

c[j]
denotes the jth element in θ i

c, and χc[j] denotes
the value of its jth bit.4

Next we present an example showing how Sk is com-
puted from P1’s point of view. Let T1 be the local dataset
of P1 and θ1

1 , θ2
1 , ω1

1, ω2
1 be the same values computed in

Sect. 4. P1, with the help of P2, gets χ1 = ω1
1

⊕
ω2

1 =
111100001100. Then Sk = ⋃

j∧χ1[j]=0

(
θ1

1 [j] ∩ θ2
1 [j]

)
=

{5, 6, 7, 8, 11, 12}. The data related to Sk are removed
before the next iteration of DkA-Datafly. (As we shall
see, we can determine the data removed at each step
from the final result.)

People may wonder if we could skip the computations
of ωi

c, χc and directly and securely compute the intersec-
tion between θ1

1 [j] and θ2
1 [j]. In order for DkA-Datafly

to guarantee the security requirement, the answer is neg-
ative since we should not learn the size of intersections
smaller than k.

4 Alternatively, we could compute Sk =⋃
χc[j]=0 j.

328 W. Jiang, C. Clifton

The correctness of DkA-Datafly follows from the fact
that during each iteration only globally k-anonymous
data become part of the final output. This can be vali-
dated from the description of the Extract_Kanon(T, χc)

function and the correctness proof of the DkA frame-
work. Since the complexity of Extract_Kanon(T, χc) is
less than the previous steps, the complexity of DkA-
Datafly remains unchanged compared to DkA. Never-
theless, we need to show DkA-Datafly is secure.

5.2 Proof of security

Theorem 10 Algorithm 6 is secure under the semi-honest
definition of SMC.

Proof The proof follows the same structure as the one
presented for Algorithm 4. Thus, we need to design an
algorithm that simulates the execution image of DkA-
datafly. Algorithm 7 provides such a simulator. Note
that the simulators for both P1 and P2 are the same. The
simulator is written from P1’s point of view.

Let IP1 be P1’s input (i.e., T1, k, Datafly, u, etc).
Let �R be the view during the real execution of DkA-
Datafly, then according to Algorithm 6, �R = (IP1, c, γ 1

c ,
θ1

c , ω1
c , Sk, χ1

c , T1
k, T1′, e), where e is an implicit parame-

ter in the protocol indicating the inequality test between
the size of T1′ and k, and Sk is an implicit parameter rep-
resenting the result computed from the Extract_Kanon
function. Let �S be the view produced from the simu-
lator, then according to Algorithm 7, �S = (IP1, c, γ̂ 1

c ,
θ̂1

c , ω̂1
c , Ŝk, χ̂c, T̂1

k, T̂1′, ê). Compare the two views starting
from the initial iteration:

• Before entering the loop, T1′ = T̂1′ because Datafly
is a part of the input of P1.

• Then it follows: γ 1
c = γ̂ 1

c and θ1
c = θ̂1

c , where c = 1.

• Since ω̂1
c is randomly generated and based on the

construction of ω1
c , the two bit strings are computa-

tionally indistinguishable.
• Sk is a subset of T1′, and it is globally k-anonymous

and a part of final output Tk, so Sk can be deduced
from T1′[QIP1]∩Tk[QIP1]. Similarly, Ŝk can be com-
puted from T̂1′[QIP1] ∩ Tk[QIP1]. Because T1′ =
T̂1′, according to the previous analysis, Sk = Ŝk.

From the fact that Sk = Ŝk, it can be easily verified
that χc = χ̂c, T1

k = T̂1
k, T1′ = T̂1′ and e = ê. Because of

these equalities, the indistinguishability between the two
views does not changed from one iteration to another.
Thus, the distributions of the two views �S, �R are com-
putationally indistinguishable. This concludes that the
DkA-Datafly protocol is secure under the semi-honest
model in the context of SMC. ��

Based on the previous analyses, DkA-Datafly satisfies
the first two requirements: security and k-anonymization.
Due to irregularities among data and value generaliza-
tion hierarchies, it is very difficult to present a formal
statement regarding the third requirement preciseness;
however, we will validate it via comprehensive empirical
results in Sect. 6.

6 Empirical analyses

Although the DkA-Datafly protocol adopts Datafly to
produce locally k-anonymous dataset, the outcome of
DkA-Datafly may not the same as that of Datafly when
Datafly is used in a centralized environment. This is
because each party performs a generalization at each
step. For example, if Datafly would first generalize all
the attributes held by P1, DkA-Datafly would instead
generalize some attributes at P1 and the same number
at P2, with the same method as Datafly used to indepen-
dently choose which attributes at each site. This would
presumably result in over-generalization.

To evaluate this effect, we compared DkA-Datafly
with its centralized counterpart. In [30], the precision
metric was used to evaluate the effectiveness of
Datafly. Therefore, for consistency and unbiased evalu-
ation, we utilize this metric to measure the quality of the
outcome generated from DkA-Datafly. Before defining
the metric, let make these notations clear:

• Let T denote a dataset, QI = [A1, . . . , Am] be the set
of QI of T and VGHAi be the value generalization
hierarchy (VGH) of attribute Ai.

A secure distributed framework for achieving k-anonymity 329

Partner−presentPartner−absent

Married Never−Married

ANY

Married−civ−spouse
Married−AF−spouse

Widowed
Separated
Married−spouse−absent
Divorced

Fig. 3 Value generalization hierarchy for the marital status
attribute

• Tk denotes the k-anonymous dataset with respect to
T and QI. Tk(i, j) denotes the value of Ai for the jth
record in Tk, and n = |Tk|.

• Let PL[Tk(i, j)] be the length of the path in VGHAi

from the root to the leaf containing the value T(i, j)
that Tk(i, j) was generalized from.

• Let Height[Tk(i, j)] be the number of generalizations
applied to get Tk(i, j); i.e., the height in VGHAi above
the most specific value T(i, j).

For example, let VGHAi refer to the hierarchy pre-
sented in Fig. 3, and assume all values in the hierar-
chy are contained in Tk. Then, PL[“Married”] = 3, PL
[“Never-Married”] = 1, Height[“Married”] = 2 and
Height[“Never-Married”] = 0. Formally, precision is
defined as follows:

Definition 4 (Precision Metric [30])

PREC(Tk) = 1−
∑m

i=1
∑n

j=1 Height[Tk(i, j)]
∑m

i=1
∑n

j=1 PL[Tk(i, j)] .

Informally, precision is a measure of distortion related
to the original dataset. If the precision is 1, the val-
ues contained in the produced k-anonymous dataset are
all original values. A precision of 0 indicates that each
attribute is generalized to the most general value in its
VGH.

6.1 Data description

We present results from k-anonymizing the Adults cen-
sus dataset from the UC Irvine Machine Learning Repos-
itory [5]. Following the methodology of [17], we selected
eight attributes which are good candidates for quasi-
identifiers. These eight attributes have substantial var-
iance among their VGHs and the number of distinct

Table 4 Experimental dataset description

Attribute Distinct values VGH height

Education 16 4
Marital status 7 3
Native country 41 3
Occupation 14 2
Race 5 2
Relationship 6 2
Sex 2 1
Workclass 7 4

base values, giving the opportunity for significant vari-
ance in precision for different choices of which attributes
to generalize. In particular, it leaves the possibility that
the differences caused by DkA could reduce precision.
Table 4 describes the attributes used. The dataset con-
tains 30,162 records with no missing values. The VGHs
that we adopted for these eight attribute are as used in
[17]; a sample is shown in Fig. 3.

6.2 Experimental setup

The centralized Datafly provides a baseline precision.
While DkA-Datafly is deterministic, the generalizations
performed are dependent on the partitioning of the data
between parties. To evaluate the potential loss of pre-
cision, we tried several different partitionings. We first
varied the number of attributes assigned to each party,
from a 1–7 split to an even 4–4 split. Within each split,
we randomly selected five partitionings of data. We then
ran the algorithm, and measured the precision. This was
repeated for k = 2, 5, 10, 20, 50, and 100. In summary,
we generate results as follows:

1. Compute PRECk (precision of centralized Datafly)
2. For each partition size i = 1−4, repeat the following

steps five times:
• Create two random vertical partitions: T1, T2

(i.e., i attributes are randomly assigned to T1,
and the remaining attributes are assigned to T2)

• Compute PRECDkA (precision of DkA-Datafly)
3. For each i across the five random executions, the

maximum, minimum and average values of PRECDkA
are recorded.

6.3 Experimental results

Figure 4 shows the results of these tests. The line repre-
sents the results of centralized Datafly (the line is sim-
ply shown for ease in identifying these results; it is not
meant to indicate values between the points shown). For
each value of k, we give the mean precision and high/low

330 W. Jiang, C. Clifton

2

5

10

20

50

100

0.5

0.6

0.7

0.8

0.9

1

k = 2, 5, 10, 20, 50, 100

P
re

ci
si

o
n

Single Site
DkA partition size 1
DkA partition size 2
DkA partition size 3
DkA partition size 4

Fig. 4 Precision of DkA versus Datafly with various partitionings

values for each partition size. For example, the rightmost
point (the dark ∗) gives the mean precision of 0.62 over
five different partitionings, with four attributes going to
each party, for k = 100. The error bars show that the
precision over all five partitionings ranged from 0.60 to
0.63. Likewise, the light × gives results for partitions
with three attributes going to one party and five to the
other, etc.

For small k, the difference in precision between DkA-
Datafly and Datafly is insignificant. As k increases, DkA-
Datafly has the potential to give lower precision if the
data partitioning happens to be particularly bad.5 The
results for k = 100 show an interesting anomaly; DkA-
Datafly actually gives better precision than the central-
ized Datafly. We do not claim that DkA-Datafly can be
expected to give better results; the goal is to approxi-
mate the results of the centralized algorithm. This result
instead demonstrates that Datafly is a heuristic algo-
rithm; this particular situation happens to be a bad case
for the heuristic used. The partitioning forces the local
Datafly instances to generalize differently, resulting in a
better outcome.

The important result of these tests is that the variance
in precision across different partitionings is small; the
different choice of k is a much more significant factor.
This validates that the decision to simultaneously gen-
eralize at both parties (enabling an efficient and fully
secure algorithm) does not significantly impact the out-
come; the resulting dataset is both guaranteed to be
k-anonymous, and can be expected to have precision
(and thus utility) comparable to a dataset anonymized
by a central “trusted authority”.

5 Note that identifying and choosing a good partitioning of data
is not interesting; in the real world the partitioning is governed by
who holds which parts of the (private) data and is not subject to
change.

6.4 Computational cost estimates

In this section, we estimate the practical cost of DkA-
Datafly. The primary cost is encryption; by computing
the number of encryptions required, we are able to esti-
mate the total cost of the algorithm based on implemen-
tation of the encryption technique used. The complexity
of DkA-Datafly is bounded by the number of times the
SSIt protocol is called; we first estimate the cost of SSIt.
Step 1 of Algorithm 2 determines the cost of SSIt, and
we base our estimation on this step only because when
M (the size of the dataset) is large, the cost of the rest of
the protocol is insignificant.

The values that need to be encrypted are either 0
or 1; therefore, the simulation adopts the homomorphic
encryption scheme proposed in [24] (efficient for 0 or 1
encryptions). The scheme has the following parameters:

• Public-Key: (n, g, h, k), where n = p2q, g ∈ (Z/nZ) is
randomly chosen such that the order of gp−1 mod p2

is p, and h = gn mod n.
• Secret-Key: (p, q), where |p| = |q| = k.
• Encryption: C = gmhr mod n, where m is the plain-

text (0 or 1 in our problem domain) and r ∈ (Z/nZ)

is randomly chosen.

We use the same parameters as those adopted in [24],
especially the size of n = 1, 024 bits (commonly used in
public key encryption, and r is randomly chosen from
1, . . . , 2130). Basically, step 1 of Algorithm 2 requires M
homomorphic encryptions. As a result, we present the
cost of SSIt in terms of the number of seconds to perform
M encryptions:

• Estimated cost of SSIt: 19.5 s on average when M =
30,162 (the size of our dataset). In other words, 19.5
s to perform 30, 162 homomorphic encryptions.

• Platform: Intel®XeonTM 3 GHz processor, with 1
GB RAM, hyper-threading enabled, and running the
Linux SMP kernel version 2.6.14.6.

DkA-Datafly utilizes an iterative process, the time
complexity of each iteration of DkA-Datafly is deter-
mined by the number of calls to the SSIt protocol, and
it is consequently determined by the number of encryp-
tions. Let λ1 be the number of the homomorphic encryp-
tions needed for the first iteration of DkA-Datafly.6 The
first iteration requires M (30,162) number of calls of
SSIt; therefore, λ1 = 30, 162 × 30, 162. Since globally
k-anonymous data are removed after each iteration, the

6 Note that our estimates are from P1’s point of view since P1
performs more computations than P2.

A secure distributed framework for achieving k-anonymity 331

Table 5 Complexity of
DkA-Datafly in terms of λ1
(the first round cost)

k 20 50 100

Max. 1.75× λ1 2.35× λ1 2.89× λ1
Min. 1.07× λ1 1.11× λ1 1.11× λ1
Avg. 1.53× λ1 ≈ 10.14 days 1.89× λ1 ≈ 12.53 days 2.43× λ1 ≈ 16.11 days

size of following rounds are generally much smaller.
Although dependent on the value of k, the size of the
dataset remained for the second iteration is generally
less than half that of the first iteration; in other words,
the time to perform the homomorphic encryptions is
generally less than 1/4 of the first round. We estimated
that when k = 100, the total expected number of encryp-
tions by DkA-Datafly is about 2.43 times of the number
of encryptions required for the first iteration. Table 5
includes estimates for different k values, and it records
the maximum, minimum and expected costs across differ-
ent partition sizes and trials.

While these times may seem long, it is important to
view them in the context in which DkA-Datafly would
be used. When privacy concerns prevent sharing of data,
the time required to construct a k-anonymous data-
set from distributed sources is infinite. More practi-
cally, such release of data would require permission
from all of the subjects involved, or at the very least,
an involved approval process (e.g., Institutional Review
Board approval for Human Subjects Research). Such
approval, from each institution involved, is likely to take
months. Given the guarantees of privacy provided by
DkA-Datafly, fast review (such as Exempt status under
U.S. Human Subjects Research regulations) may be pos-
sible, saving much more than the 2 weeks of (relatively
inexpensive) CPU time to generate the dataset.

There are two simple methods to improve the effi-
ciency of DkA-Datafly (or the DkA framework in gen-
eral): pre-computation and parallelization. Since we know
the values need to be encrypted are either 0 or 1, we
can pre-compute and store encryptions of 0s and 1s.
Then encryption becomes fetching an element from the
corresponding set. In addition, step 8 of Algorithm 6
(DkA-Datafly) or step 7 of Algorithm 4 (DkA frame-
work) is parallelizable because each pair of θ1

c [j], θ2
c [j] is

independent of the other.

7 Conclusion/future work

The knowledge in data has value; the more complete
the data, the greater the potential knowledge. On the
other hand, privacy of information in databases is an
increasingly visible issue. Partitioning data, so as to pre-
vent complete information from being available, is effec-

tive at preventing misuse of data, but it also makes
beneficial use more difficult. One way to preserve pri-
vacy while enabling beneficial use of data is to utilize
k-anonymity for publishing data. Maintaining the
benefits of partitioning while generating integrated
k-anonymous data requires a protocol that does not vio-
late privacy through disclosure to the data holders.

In this paper, we have laid out this problem and pre-
sented a two-party framework DkA that is proven to
generate a k-anonymous dataset while satisfying the
security definition of SMC. DkA is very general in a
sense that any centralized k-anonymization protocol can
be used to compute locally k-anonymous data, and its
structure can be effectively adopted to create a
secure two-party k-anonymization protocol from an inse-
cure centralized k-anonymization algorithm. DkA-
Datafly provides such an application. In addition to
being privacy-preserving, our empirical analyses have
validated that the k-anonymous dataset computed by
DkA-Datafly has comparable precision to that
computed by Datafly.

While this framework is a general solution, there are
still interesting issues to address with respect to the cre-
ation of k-anonymous datasets from distributed sources.

Based on the structure of DkA and the effective-
ness of DkA-Datafly, we hypothesize that centralized
k-anonymization algorithms (especially cell-level or attri-
bute level based algorithms such as [15,28,30]) utilizing
the sub-optimal structure stated in Theorem 1 can be
easily and effectively transformed into a secure two-
party protocol by using the DkA framework. Although
the DkA framework can also be applied to full-domain
generalization based algorithms (such as [3,19]), the
effectiveness of such transformation needs to be
validated through extensive empirical analyses.

There are generally two kind of approaches to
compute a k-anonymous dataset: bottom-up and top-
down. Datafly is a bottom-up algorithm in that it com-
putes k-anonymous data by substituting a specific value
with a more generalized value. A top-down k-anony-
mization algorithm does the opposite. If a k-anonymiza-
tion protocol used to compute locally k-anonymous data
adopts top-down strategy, the DkA framework can be
modified slightly to produce the correct result as follows:
the loop from steps 3–8 of Algorithm 4 should terminate
whenever ω1

c �= ω2
c , and the join of locally k-anonymous

332 W. Jiang, C. Clifton

datasets from the round right before the termination
round creates a globally k-anonymous dataset.

Another issue is how to extend DkA to a multiparty
framework. While executing DkA between two parties,
then joining the resulting dataset with a third, etc. would
ensure k-anonymity, keeping the global identifier hidden
during the process demands some thought. Another idea
to explore is iteratively pairwise executing DkA among
parties. Even though this approach would generate a
globally k-anonymous dataset, it could violate security
under the consideration of SMC.

Could we efficiently extend DkA to satisfy the
security definition of a malicious adversary? It would
seem that since DkA requires the local dataset to be
k-anonymous before creating globally k-anonymous
dataset, the most a malicious party can get is the other
party’s locally k-anonymous data. However, this can
give the malicious party a global dataset that is less
anonymous than joining their own dataset with a glob-
ally k-anonymous dataset, violating a strict standard of
k-anonymity.

Privacy is a challenging area. Privacy does not yet
have solid definitions corresponding to semantic secu-
rity – it is instead a tradeoff between utility of data and
the potential for misuse. We have presented a frame-
work for generating a k-anonymous dataset that pro-
vides the utility of k-anonymity and ensures that the
process of constructing the dataset does not pose any
additional risk to privacy.

Acknowledgments We wish to thank Professor Elisa Bertino for
comments and discussions that lead to this work.

Appendix

Here, we present a pure circuit based implementation of
the SSIt protocol whose key structure is highlighted in
Algorithm 8. Refer to Algorithm 8, the SUM indicates a
summation circuit computing the sum of M bits, and the
COMPARE indicates a comparison circuit producing
bit 1 if d < t.

Complexity of circuit-based SSIt

Since the size of sj is M, the number of AND gates for
step 1 in Algorithm 8 is M. Because each c[i] is a single

bit, the number of gates of the summation circuit (or the
number of gates required at step 2 in Algorithm 8) is
bounded by O(M). The size of the sum resulted at step 2
of Algorithm 8 is no bigger than log M number of bits, so
the comparison circuit at step 3 is bounded by O(log M).
According to the above analysis, the number of gates of
SSIt is bounded by O(M).

In general, the number of oblivious transfers (OT)
required for secure circuit evaluation is bounded line-
arly on the size of the circuit.7 Suppose the range of the
key adopted in a OT protocol is bounded by N, the size
of the key is bounded by log N. As a consequence, the
communication complexity of SSIt is O(M log N) in bits.
Note that although this circuit-based SSIt protocol has
the same complexity as SSIt presented in Sect. 3, the
constant cost of OT is expected to be higher (in number
of encryptions) than the direct encryption used in SSIt.

References

1. Agrawal, R., Evfimievski, A., Srikant, R.: Information
sharing across private databases. In: Proceedings of
ACM SIGMOD international conference on Manage-
ment of Data. San Diego, California, 9–12 June 2003.
http://doi.acm.org/10.1145/872757.872771

2. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In:
Proceedings of the 2000 ACM SIGMOD Conference on Man-
agement of Data. pp. 439–450. ACM Dallas, TX, 14–19 May
2000, http://doi.acm.org/10.1145/342009.335438

3. Bayardo, R.J., Agrawal, R.: Data privacy through optimal
k-anonymization. In: Proceedings of the IEEE International
Conference on Data Engineering. Tokyo, Japan, 5–8 2005
April

4. Benaloh, J.C.: Secret sharing homomorphisms: Keeping
shares of a secret. In: Advances in Cryptography, CRYPTO86:
Proceedings, Odlyzko, A. (ed.) vol. 263. pp. 251–260.
Springer-Verlag, Lecture Notes in Computer Science, 1986,
http://springerlink.metapress.com/openurl.asp?genre=article
&issn=0302-9 743&volume=263&spage=251

5. Blake, C., Merz, C.: UCI repository of machine learning
databases. 1998. http://www.ics.uci.edu/∼mlearn/ MLRepos-
itory.html

6. Boudot, F., Schoenmakers, B., Traore, J.: “A fair and effi-
cient solution to the socialist millionaires’ problem. Discrete
Appl. Math. 111 (1-2), 23–36 2001. http://www.win.tue.nl/
∼berry/papers/dam.pdf

7. Dobkin, D., Jones, A.K., Lipton, R.J.: Secure databases: Pro-
tection against user influence. ACM Trans. Database Syst 4(1),
97–106 1979. http://doi.acm.org/10.1145/320064.320068

8. Fischlin, M.: A cost-effective pay-per-multiplication compari-
son method for millionaires. RSA Secu 2001 Cryptographer’s
Track 2020(1–2), 457–471, 2001. http://www.mi.informatik.
uni-frankfurt.de/research/papers/fischlin.millio-
naire.2001.pdf

9. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private
matching and set intersection. In: Eurocrypt 2004. Interna-

7 Details regarding secure circuit evaluation can be found in [11]
and [12], and the concept of oblivious transfer can be found in [23]
and [25].

A secure distributed framework for achieving k-anonymity 333

tional Association for Cryptologic Research (IACR), Interla-
ken, Switzerland: 2–6 2004 May

10. Goethals, B., Laur, S., Lipmaa, H., Mielikainen, T.: On secure
scalar product computation for privacy-preserving data min-
ing. In: Park, C., Chee, S., (eds.), The 7th Annual International
Conference in Information Security and Cryptology (ICISC
2004), Seoul, Korea, 2–3 2004 December

11. Goldreich, O., Micali, S., Wigderson, A.: How to play any men-
tal game - a completeness theorem for protocols with honest
majority. In: 19th ACM Symposium on the Theory of Comput-
ing, 1987, pp. 218–229. http://doi.acm.org/10.1145/28395.28420

12. Goldreich, O.: The Foundations of Cryptography.Cambridge
University Press, 2004, vol. 2, ch. General Cryptographic Pro-
tocols. http://www.wisdom.weizmann.ac.il/∼oded/ PSBook-
Frag/prot.ps

13. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput.
Syst. Sci. 28(2), 270–299 (1984)

14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge com-
plexity of interactive proof systems. In: Proceedings of the
17th Annual ACM Symposium on Theory of Computing
(STOC’85), pp. 291–304 Providence, Rhode Island, USA, 6–8
1985 May

15. Hundepool, A., Willenborg, L.: μ- and τ -argus: software for
statistical disclosure control. In: Third International Seminar
on Statistical Confidentiality (1996)

16. Ioannidis, I., Grama, A.: An efficient protocol for yao’s mil-
lionaires’ problem. In: Hawaii International Conference on
System Sciences (HICSS-36), pp. 205–210. 2003 Waikoloa
Village, Hawaii, 6–9 2003 January

17. Iyengar, V.S.: Transforming data to satisfy privacy constraints,
In: Proceedings of the 2002 ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp.
23–26 Edmonton, Alberta, Canada, 2002

18. Jiang, W., Clifton, C.: Privacy-preserving distributed k-ano-
nymity. In: Proceedings of the 19th Annual IFIP WG 11.3
Working Conference on Database and Applications Security,
Storrs, Connecticut, 7–10 2005 August

19. LeFevre, K., DeWitt, D., Ramakrishnan, R.: Incognito: Effi-
cient full-domain k-anonymity. In: Proceedings of the 2005
ACM SIGMOD International Conference on Management
of Data, Baltimore, MD, 13–16 2005 June

20. Meyerson, A., Williams, R.: On the complexity of optimal
k-anonymity. In: Proceedings of the 23rd ACM SIGACT-SIG-
MOD-SIGART Symposium on Principles of Database Sys-
tems (PODS 2004).: ACM Press, Paris, France 14–16 2004
June

21. Moore, R.A., Jr., Controlled data-swapping techniques for
masking public use microdata sets. U.S. Bureau of the Census,
Washington, DC., Statistical Research Division Report Series
RR 96-04, 1996. http://www.census.gov/srd/papers/pdf/rr96-
4.pdf

22. Naccache, D., Stern, J.: A new public key cryptosystem based
on higher residues. In: Proceedings of the 5th ACM confer-
ence on Computer and communications security. pp. 59–66.
ACM Press, San Francisco, California, United States (1998)

23. Naor, M., Pinkas, B.: Oblivious transfer and polynomial eval-
uation In: Proceedings of the Thirty-first Annual ACM Sym-
posium on Theory of Computing. pp. 245–254. ACM Press,
Atlanta, Georgia, United States: (1999)

24. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as
secure as factoring. In:Advances in Cryptology-Eurocrypt’98,
LNCS 1403. pp. 308–318. Springer, Berlin Heidelberg
Newyork(1998)

25. Rabin, M.: How to exchange secrets by oblivious transfer.
Aiken Computation Laboratory, Harvard University, Tech.
Rep. TR-81, 1981

26. Samarati, P.: Protecting respondent’s privacy in microdata re-
lease. IEEE Trans. Knowl. Data. Eng. 13(6), 1010–1027 (2001)

27. Schadow, G., Grannis, S.J., McDonald, C.J.: Privacy-
preserving distributed queries for a clinical case research
network. In: Clifton, C., Estivill-Castro, V.: (eds), IEEE Inter-
national Conference on Data Mining Workshop on Privacy,
Security, and Data Mining, vol. 14. pp. 55–65. Australian
Computer Society, Maebashi City, Japan: 9 2002 December,
http://crpit.com/Vol14.html

28. Sweeney, L.: Guaranteeing anonymity when sharing medical
data, the datafly system. Proc. J. Am. Med. Inform. Assoc.
(1997)

29. Sweeney, L.: Computational disclosure control: A primer on
data privacy protection. Ph.D. dissertation, Massachusetts
Institute of Technology, (2001)

30. Sweeney, L.: Achieving k-anonymity privacy protection
using generalization and suppression. Int J Uncertainty,
Fuzziness and Knowledge-based Syst 10(5), 571–588, 2002.
http://privacy.cs.cmu.edu/dataprivacy/ projects/kanonymity/
kanonymity2.html

31. Sweeney, L.: k-anonymity: a model for protecting pri-
vacy. Int. J. Uncertainty, Fuzziness and Knowledge-
based Syst. 10(5), 557–570 2002. http://privacy.cs.cmu.
edu/dataprivacy/projects/kanonymity/kanonymity.html

32. Vaidya, J.: Privacy preserving data mining over verti-
cally partitioned data. Ph.D. dissertation, Purdue Uni-
versity, West Lafayette, Indiana, 2004. http://www.cs.
purdue.edu/homes/jsvaidya/thesis.pdf

33. Vaidya, J., Clifton, C.: Secure set intersection cardinality with
application to association rule mining. J. Comput. Sec. 13(4),
593–622 (2005)

34. Wright, R.N., Yang, Z.: Privacy-preserving bayesian network
structure computation on distributed heterogeneous data. In:
Proceedings of the 2004 ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Seattle,
WA, 22–25 2004 August

35. Yao, A.C.: Protocols for secure computation. In: Proceedings
of the 23rd IEEE Symposium on Foundations of Computer
Science. pp. 160–164. IEEE, 1982

36. Yao, A.C.: How to generate and exchange secrets. In: Pro-
ceedings of the 27th IEEE Symposium on Foundations of
Computer Science. pp. 162–167. IEEE, 1986

37. Zhong, S., Yang, Z., Wright, R.N.: Privacy-enhancing k-anon-
ymization of customer data. In: Proceedings of the 24rd
ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS 2005). ACM Press, Balti-
more, Maryland, 13–16 2005 June

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

