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Abstract

Recent software systems usually feature an automated
failure reporting component, with which a huge number
of failures are collected from software end-users. With a
proper support of failure indexing, which identifies failures
due to the same fault, the collected failure data can help de-
velopers prioritize failure diagnosis, among other utilities
of the failure data. Since crashing failures can be effectively
indexed by program crashing venues, current practice has
seen great success in prioritizing crashing failures.

A recent study of bug characteristics indicates that as ex-
cellent memory checking tools are widely adopted, seman-
tic bugs and the resulting noncrashing failures have become
dominant. Unfortunately, the problem of how to index non-
crashing failures has not been seriously studied before. In
previous study, two techniques have been proposed to in-
dex noncrashing failures, and they are T-PROXIMITY and
R-PROXIMITY. However, as T-PROXIMITY indexes fail-
ures by the profile of the entire execution, it is generally not
effective because most information in the profile is fault-
irrelevant. On the other hand, although R-PROXIMITY is
more effective than T-PROXIMITY, it relies on a sufficient
number of correct executions that may not be available in
practice. In this paper, we propose a dynamic slicing-based
approach, which does not require any correct executions,
and is comparably effective as R-PROXIMITY. A detailed
case study with gzip is reported, which clearly demon-
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strates the advantages of the proposed approach.

1 Introduction

Software end-users are the most powerful testers: They
keep revealing software faults (i.e., bugs) in released soft-
ware that has undergone rigorous in-house testing. In order
to leverage end-users’ testing power, failure reporting com-
ponents have been widely adopted in deployed software,
with Microsoft Dr. Watson System [2] and the Mozilla
Quality Feedback Agent [3] being the two most typical ex-
amples. When a program fails, the failure reporting compo-
nent automatically collects relevant information of the fail-
ure, and (with the user’s permission) reports it to software
vendors for failure diagnosis and patches. Recently, third-
party libraries that implement such failure reporting func-
tionalities have been released for both C++ and Java, so that
any programs, disregarding their complexity, can have their
own failure reporting channels. The authors have seen this
in Google Toolbar and BitTorrent, just to name a few.

The automatically collected failures reflect how the soft-
ware is exercised in practice, and what software faults really
bother the users. Therefore, an appropriate analysis of such
failure repository will provide invaluable guidance for soft-
ware maintenance and development. However, most utili-
ties of such reported failures rely on the resolution of a crit-
ical problem: failure indexing, which asks how to identify
all failures due to the same fault. If failure indexing can be
nicely performed, most utilities of the collected failure data
will become routine work. For example, some typical and
important utilities are



• Failure Prioritization: Reported failures have dif-
ferent levels of severity, and the most severe failure
should be diagnosed and fixed first. Typically, the
severity of a failure is determined by how many re-
ported failures are due to the same fault as this partic-
ular one. With the support of failure indexing, failures
due to the same fault can be easily identified, and con-
sequently the diagnosis of failures can be prioritized.

• Duplicate Failure Removal: Because of the sheer
number of reported failures, manual diagnosis of ev-
ery failure is impractical. With the support of failure
indexing, developers only need to diagnose one failure
from each failure set that arises from the same fault.

• Patch Suggestion: When a new failure occurs, it can
be easily checked whether this failure has been solved
before through failure indices. If yes, the failure re-
porter can be automatically directed to the patch to re-
solve the problem.

Failure indexing can sometimes be straightforward, es-
pecially when apparently effective failure signature exists.
A case in point is crashing failures, which manifest as pro-
gram crashes. Usually, crashing failures are incurred by
memory bugs, such as dereferences of NULL pointers and
memory corruptions. For crashing failures, the crashing
venue (e.g., the call stack trace at program crashes) is a
great failure signature because failures from the same fault
tend to (but not always) exhibit the same crashing venue.
By virtue of the nearly one-to-one mapping relationship be-
tween crashing venues and faults, indexing of crashing fail-
ures has been very successful in practice, as evidenced by
the success of the Microsoft Dr. Watson System.

However, in the case of noncrashing failures, failure in-
dexing becomes elusive because no unanimous signature
like a crashing venue for crashing failure exists. The reason
is that noncrashing failures are mostly incurred by seman-
tic bugs, which usually cause program malfunctions (e.g.,
incorrect outputs) without crashing the program. Since no
apparently effective signature exists any more, how to index
noncrashing failures becomes an interesting and challeng-
ing problem.

Previous studies propose two failure proximity mea-
sures, which can be used to index noncrashing failures.
Podgurski et al. [19] propose the T-PROXIMITY, which as-
signs a small dissimilarity value to pairs of failures that
exhibit similar execution traces. In consequence, under
T-PROXIMITY, failures with similar behaviors (e.g., sim-
ilar branching actions) are indexed together. Because
T-PROXIMITY does not rely on the crashing venue, it can
be used to index noncrashing failures. But one shortcom-
ing of T-PROXIMITY is that failures due to different faults
can exhibit quite similar behaviors (especially before faults

are triggered), which renders T-PROXIMITY ineffective in
discriminating failures due to different faults. Based on this
observation, Liu and Han propose R-PROXIMITY, which
extracts fault-relevant information from program failures,
and indexes failures accordingly [16]. Because only fault-
relevant information is considered, R-PROXIMITY is shown
to be more effective than T-PROXIMITY in distinguishing
failures due to different faults.

However, the effectiveness of R-PROXIMITY does not
come for free. The fault-relevant information is extracted
from each failure by contrasting the failure against a set
of passing executions. Unfortunately, the availability of
such a set of passing executions cannot be freely assumed
in practice. In the first place, non-trivial overhead will be
imposed on user sides if passing executions, in addition to
failures, are collected from end-users. More importantly,
users are very sensitive to privacy which could be poten-
tially infringed by the collection of correct executions. This
explains why only program failures are collected in prac-
tice. In general, the availability of a non-trivial set of pass-
ing executions cannot be assumed. Therefore, in this paper,
we investigate how to index noncrashing failures as effec-
tively as R-PROXIMITY but without assuming any passing
executions.

We propose a dynamic program slicing-based approach
to indexing noncrashing failures. Specifically, we take the
backward slices from the program failure point as the fail-
ure signature, and quantify whether two failures are due to
the same fault according to the similarity between their cor-
responding backward slices. For noncrashing failures, the
failure point is the source code that generates the first erro-
neous output. The advantages of this dynamic slicing-based
approach are as follows.

• In comparison with T-PROXIMITY, we use dynamic
slicing techniques to exclude fault-irrelevant informa-
tion that is otherwise considered by T-PROXIMITY.
For the same reason as R-PROXIMITY, exclusion of
the fault-irrelevant information will improve the effec-
tiveness in indexing noncrashing failures.

• In comparison with R-PROXIMITY, the dynamic
slicing-based approach completely eliminates the need
of any passing executions, and hence can be used in
practice where only program failures are collected.

We will use a detailed case study with gzip to demonstrate
the above claims.

Although current practice only reports crashing failures
from user sites, indexing noncrashing failures is not an un-
realistic problem. A recent study of bug characteristics [13]
shows that semantic bugs have become dominant because
of the wide adoption of excellent memory monitoring tools,
such as Valgrind and Purify. Specifically, the authors find
that semantic bugs account for 81.1-86.7% of the 364 bugs
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they examined, and the ratio is projected to increase as
software matures. These semantic bugs mainly manifest
as wrong outputs, performance degradation, and incorrect
functionality, which are all noncrashing failures. More im-
portantly, the authors find that 71.9-83.9% of security bugs
are also semantic bugs, and security break-ins always take
place without crashing the program. Because of the in-
creasing dominance of semantic bugs and the resulting non-
crashing failures, we believe that the collection of noncrash-
ing failures will be supported in the near future. Because
no unanimous indexing techniques exist for indexing non-
crashing failures, a systematic study of existing ones and
investigation of new indexing techniques are in great need.

In summary, we make the following contributions in this
paper.

• We pose the problem of indexing noncrashing failures,
an increasingly critical problem due to the dominance
of semantic bugs in the future.

• We propose a distance metric-based framework, which
incorporates existing approaches and our proposed
one. In order to foster future developments, a quan-
titative measure of indexing effectiveness is proposed
within this framework, so that future techniques can be
objectively evaluated.

• We propose a dynamic slicing-based approach to in-
dexing noncrashing failures, which are advantageous
over existing techniques. To the best of our knowl-
edge, this is the first attempt of using dynamic slices in
failure indexing.

The rest of this paper is organized as follows. Section 2
explains the distance metric-based framework for failure in-
dexing, and Section 3 discusses our dynamic slicing-based
approach with references to the framework. We report the
experiment results in Section 4. Related work and threats to
validity are discussed in Section 5, and Section 6 concludes
this study.

2 A Distance Metric-based Framework for
Failure Indexing

Intuitively, failure indexing tries to compute a failure sig-
nature (i.e., the index) for each program failure, such that
failures due to the same fault can be identified through the
similarity between failure signatures. While this explana-
tion suffices for intuitive understanding, a precise formu-
lation facilitates unambiguous discussion and potentially
fosters healthy development in the future. Therefore, in
this section, we present a distance metric-based framework
for failure indexing, which incorporates both existing ap-
proaches and our proposed one.

2.1 Failure Indexing in Formulation

Suppose a set of n failures X = {x1, x2, · · · , xn} is
collected from a program P , and the n failures are due to m
(unknown) faults F = {f1, f2, · · · , fm}. An oracle func-
tion Φ, which is also unknown, specifies the due to relation-
ship between X and F , namely,

Φ(x) = k ⇐⇒ the failure x is due to fault fk,

and the fault fk is the root cause of the failure x. For clar-
ity, we only consider failures that are induced by one fault at
runtime even though multiple faults may reside in the pro-
gram.

The oracle function Φ partitions the set of failures X into
m mutually exclusive and collectively exhaustive sets:

Sk
k=1,2,··· ,m

= {xi|Φ(xi) = k, for i = 1, 2, · · · ,n}.

For any failure xi, G(xi) is the failure group that xi belongs
to, and G(xi) includes all the failures due to the same fault
as xi, namely,

G(xi) = {xj |Φ(xj) = Φ(xi), for j = 1, 2, · · · , n},

and xi is a member of G(xi). With the above definitions,
we can formulate failure indexing within a distance metric-
based framework as below.

A failure indexing technique is a function pair (φ,D),
where the function φ is a signature function, and the func-
tion D is a distance function that is defined on a pair of sig-
natures returned by φ. Specifically, function φ takes a pro-
gram failure x as input, and returns a failure signature; the
distance functionD quantifies how failures are close to each
other based on the similarity between their corresponding
failure signatures. Usually, we require the distance function
D be a metric, meaning that the following four properties
are satisfied:

(1) D(α, β) ≥ 0 (non-negativity),
(2) D(α, β) = 0 iff α = β (identity),
(3) D(α, β) = D(β, α) (symmetry),
(4) D(α, γ) ≤ D(α, β) +D(β, γ) (triangle inequality),

where α, β, and γ are three failure signatures.
Then a pair-wise distance matrix M(φ,D), which is called

the proximity matrix, can be calculated for the given set of
n failures, where

M(φ,D)(i, j) = D(φ(xi), φ(xj)).

A small value of M(φ,D)(i, j) means that failures xi and xj

are similar, and are likely to be indexed together by the in-
dexing technique (φ,D). Each indexing technique defines a
failure proximity, which is embodied by the proximity ma-
trix.
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Table 1. Different Indexing Techniques under the same Distance Metric-based Framework
φ(x) D(φ(xi), φ(xj))

The optimal index Φ(xi), i.e., the root cause of xi 1 if two root causes are different and 0 otherwise

T-PROXIMITY Profile of the whole execution Euclidean distance and city-block distance

R-PROXIMITY A ranking of fault-relevant predicates Weighted Kendall’s tau distance

Index by dynamic slices Dynamic slices from the program failure point Set-based distance

Within this framework, the optimal indexing technique
(φ,D) will minimize the intra-group distances,

min
∑

Φ(i)=Φ(j)

M(φ,D)(i, j),

and meanwhile maximize the inter-group distances,

max
∑

Φ(i) 6=Φ(j)

M(φ,D)(i, j).

Certainly, distances defined on different failure signatures
must be first normalized before comparison. We will dis-
cuss a normalized measure in Section 2.2.

Previous studies, as well as the optimal indexing and our
dynamic slicing-based approach, all fit into this distance
metric-based framework, and Table 1 lists what functions
are actually used in different indexing techniques. Espe-
cially, the first row of Table 1 indicates that if the oracle
function Φ were known, the optimal indexing becomes a
routine work. Because Φ can only be obtained through
expensive manual work, our objective is to investigate au-
tomated indexing techniques that approximate the optimal
one. In the next subsection, we propose an evaluation metric
that quantifies the effectiveness of each indexing technique.

2.2 An Evaluation Metric

An evaluation metric should be independent of how in-
dexing techniques are implemented, i.e., it does not need
to know what φ and D are; instead, the evaluation metric
should only care about the proximity matrices that are gen-
erated by different indexing techniques. Besides the inde-
pendence of indexing details, a good metric needs to con-
sider the following two aspects:

• Cohesion: To what extent failures in the same group
are close to each other;

• Separation: To what extent failures in different groups
are separated from each other.

An excellent indexing technique will generate a proximity
matrix that exhibits both high cohesion and high separation.

In order to consider both cohesion and separation simulta-
neously, we propose the following metric, which borrows
the idea of the Silhouette coefficient (SC) [20]. The Sil-
houette coefficient was originally proposed to evaluate the
internal structure of data clustering results without know-
ing what data should be clustered together. Here, as we do
know what failures should be indexed together, the Silhou-
ette coefficient can be adapted to evaluate how effective an
indexing technique is.

Specifically, the Silhouette coefficient (SC) of each fail-
ure xi is defined as

SC(xi) =
bi − ai

max{ai, bi} (1)

where

ai =

∑
xj∈G(xi)

M(i, j)

|G(xi)|
and

bi = min
k=1,2,··· ,m,k 6=Φ(xi)

∑
xj∈Sk

M(i, j)

|Sk| .

Intuitively, ai is the average distance from xi to all other
failures in the same group. To compute bi, we first calculate
the average distances between xi and failures in Sk for all
k 6= Φ(xi), and bi is the minimum value among the m − 1
average distances.

Apparently, SC(xi) varies between -1 and +1. A neg-
ative value is undesirable because it suggests xi is closer
to a group it does not belong to than to its own group. On
the other hand, a positive value means xi is close to other
failures in the same group. After getting the Silhouette co-
efficients of each failure, the overall Silhouette coefficient,
calculated from a proximity matrix M , is

SC(M) =
∑n

i=1 SC(xi)
n

. (2)

Again SC(M) ranges from -1 to 1, and a high value indi-
cates that the indexing technique (φ,D) is effective in in-
dexing the given n failures. It is easy to verify that SC(M)
is 1 for the optimal indexing technique.
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3 Dynamic Slicing-based Failure Indexing

In this section, we discuss the dynamic slicing-based ap-
proach to noncrashing failure indexing. Specifically, Sec-
tion 3.1 discusses dynamic slicing techniques that serve as
the signature function φ, and Section 3.2 explains the dis-
tance functionD defined on dynamic slices. Finally, in Sec-
tion 3.3, we describe a technique that visualizes failure in-
dexing result.

3.1 Dynamic Slices as Failure Signatures

Dynamic slicing, invented as a debugging aid [11], is
able to identify a subset of program statements that are in-
volved in producing a program failure. Dynamic slicing
operates by observing the execution of the program on a
given input and collecting the dependences between exe-
cuted statements. These dependences are used to compute
dynamic slices.

Because a statement s can be executed multiple times for
a given input, we distinguish different execution of the same
statement s by execution instances. Suppose s is executed
n times, we use s1, s2, · · · , sn to denote the n execution
instances.

A dynamic slice is computed w.r.t. a specific execution
instance si. In this paper, as we will use dynamic slicing
techniques as the signature function φ, dynamic slices are
computed w.r.t. program failure points. For noncrashing
failures, the failure point is the statement instance that pro-
duces the first erroneous output. We now describe different
types of dynamic slices that are used in this study.

Data Slice (DS). Statements that directly or indirectly
influence computation of the faulty output through chains
of dynamic data dependences are included in data slices.
Formal definitions are as follows.

Definition 1 (Dynamic Data Dependence) An execution
instance si of the basic statement s has a data dependence
on the execution instance tj of the statement t, denoted as

si
dd−→ tj , if and only if there exists a variable var whose

value is defined at tj and is then used at si.

Definition 2 (Data Slice) The data slice of an execution in-
stance si, denoted as DS(si), is

DS(si) = {s} ∪
⋃

∀tj , si
dd−→tj

DS(tj).

Figure 1 (left) shows an example of DS. It presents an
execution trace instead of the static source code even though
the code is self-explicit from the trace. This is also the case
in the rest of the paper unless otherwise specified. In this
example, there are data dependences between 30 and 40,

101. x=...; 101. x=...;
. . . ...

201. y=...; 201. y=...;
. . . ...

301. z=...x...; 301. if (y)
. . . 311. z=...x...

401. print(z) ...
401. print(z)

DS(401)={10, 30, 40} FS(401)={10,20,30,31,40}

Figure 1. Data Slice (left) and Full Slice (left)

and between 10 and 30. Therefore, the data slice of the
value z at 40 includes 10, 30, and 40.

Note that even though dependences are defined between
statement instances, a slice contains unique statements in-
stead of statement instances. In other words, a statement
appears in the slice only once even when multiple instances
of the statement are involved in computation of the faulty
value.

Full Slice (FS). Statements that directly or indirectly
influence the computation of faulty output value through
chains of dynamic data and/or control dependences are in-
cluded in full slices [11].

Definition 3 (Dynamic Control Dependence) A
statement execution instance si of statement s has a con-
trol dependence on the execution instance tj of statement t,

denoted as si
cd−→ tj , if and only if

1. statement t is a predicate statement, and
2. the execution of si is the result of the branch outcome

of tj .

Definition 4 (Full Slice) The full slice of an execution in-
stance si, denoted as FS(si), is

FS(si) = {s} ∪
⋃

∀tj , si
dd−→tj or si

cd−→tj

FS(tj).

Figure 1 (right) shows an example of FS. The control de-
pendence 311

cd−→ 301 renders both statements 30 and then
20 included in the full slice.

3.2 Distances between Dynamic Slices

By taking dynamic slicing as the signature function φ,
each failure is represented by a dynamic slice. Therefore, an
appropriate distance function D that is defined on dynamic
slices is needed to complete the dynamic slicing-based fail-
ure indexing. Given that a dynamic slice is essentially a set
of statements, any distance metric defined on sets suffices.
In this study, we choose the Jaccard distance, which was
originally proposed by Levandowsky and Winter [12].
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Definition 5 (Distance between Dynamic Slices) For any
two non-empty dynamic slices ei and ej of the same pro-
gram P , the distance between them is

D(ei, ej) = 1− |ei ∩ ej |
|ei ∪ ej | .

This distance is a valid metric. Readers interested in the
proof of the triangle inequality are referred to [12].

The distance D completes our dynamic slicing-based
approach to failing indexing. Depending on what dy-
namic slices are chosen as failure signatures, we have
a series of four indexing techniques: FS-PROXIMITY,
DS-PROXIMITY, PFS-PROXIMITY and PDS-PROXIMITY,
whose meanings are self-explained.

3.3 Failure Indexing in Visualization

The Silhouette coefficient discussed in Section 2.2 nu-
merically summarizes the effectiveness of an indexing tech-
nique; consequently, different indexing techniques can be
quantitatively compared. However, the ultimate goal of
failure indexing is not to compare different techniques, but
rather to help developers explore a (potentially huge) set
of failures. A typical task of failure exploration is to iden-
tify the largest subset of failures that are likely due to the
same fault for the purpose of failure prioritization. For this
reason, we believe that a frontend that visualizes the index-
ing result of a set of failures will greatly assist users’ fail-
ure exploration. In addition, the visualization also provides
us with an intuitive approach to comparing different index-
ing techniques, i.e., we can visually assess the cohesion and
separation of a given indexing result.

For the same reason as the Silhouette coefficient, the
visualization should only rely on the proximity matrix
M . The dependence on neither original failure data nor
failure signatures makes it compatible with any distance
metric-based failure indexing techniques to be developed
in the future. For this reason, we choose to use the multi-
dimensional scaling (MDS) techniques [5], which visualize
the proximity between the n failures given a proximity ma-
trix M .

The obstacle that MDS techniques want to overcome is
that the n objects whose pair-wise distances are specified
by M could originally reside in a very high-dimensional
space. For example, in our case, each failure is in a space
of hundreds of dimensions because a typical slice contains
hundreds of statements. Apparently, we cannot visualize the
proximity between the n failures in the original space. In-
stead, what we can do is to re-arrange them in a specific way
in a much lower (usually 2) dimensional space such that the
pair-wise distances are best preserved. Readers interested
in the technical details of MDS are referred to [5].

We call the visualization of an indexing result a proxim-
ity graph. Since the only objective of MDS techniques is to
best preserve the original distances in a much lower dimen-
sional space, the axes in a proximity graph are meaningless.
A caveat that one should keep in mind while interpreting a
proximity graph is that the proximity graph is not a projec-
tion of the original data into a low-dimensional subspace.
Explicitly, a large distance between two objects in a prox-
imity graph just indicates that the two objects are far from
each other in the original space. No projection should be
applied to proximity graphs.

4 Experiment Result

In this section, we report on a case study with gzip-1.2.3,
which demonstrates the effectiveness of dynamic slicing-
based indexing techniques. Before going into details about
experiment result, let us first examine the experiment setup
in Section 4.1.

4.1 Experiment Setup

The subject program gzip, together with the accompa-
nying test suites, is obtained from the “Software-artifact In-
frastructure Repository” (SIR) [10], which “is a repository
of software-related artifact meant to support rigorous con-
trolled experimentation.” It has 6,184 lines of C code, ex-
cluding blanks and comments, as measured by the SLOC-
Count Tool1, and the accompanying test suite contains 217
test cases.

Two “subclause-missing” bugs are seeded into the source
code, as depicted in Figure 2. There are 82 failures when
both faults are enabled. In particular, all these failures are
noncrashing failures, i.e., manifesting as incorrect outputs
with no crashes.

Table 2. Failure Group Determination Table
Fails or Pass

Situation Fault 1 Fault 2 Failure Group
1 Pass Pass x /∈ S1 and x /∈ S2

2 Fail Pass x ∈ S1 and x /∈ S2

3 Pass Fail x /∈ S1 and x ∈ S2

4 Fail Fail x ∈ S1 and x ∈ S2

For evaluation purpose, we need to determine the fail-
ure group for each program failure. Precisely, one needs
to manually investigate each failure x, and decides whether
x ∈ S1 or x ∈ S2, or even both for some extreme cases.
However, manual examination of the 82 failures is not a big
fun at all; plus, more extended experiments cannot rely on

1http://www.dwheeler.com/sloccount/
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Figure 2. Two Seeded Faults in Gzip-1.2.3

manual labeling. Therefore, we propose to determine the
failure group for each failure through the following proce-
dure, which we believe can accurately determine the true
failure group membership for each failure.

For each subject program, we first activate both faults
and run the faulty program through the whole test suite.
This gives the set of failures that we want to index. Then
we run through the test suite with one and only one fault en-
abled each time, and consult Table 2 to determine the failure
group for each failure.

Table 2 presents the four situations that correspond to the
four outcome (fail or pass) combinations when a failing test
case is subject to each fault separately. In the case study
with gzip, 65 failures fall into S1, and the other 17 fall into
S2. This suggests that no failures fall into Situation 1 and 4.
Basically, Situation 1 represents a small-probability event
that only two faults together can fail a test case, but not by
either one. In other words, the two faults need to collabo-
rate to fail the test case. Situation 4 represents a reasonable
scenario, but is nevertheless unobserved in our case study.

As one may have noticed, here we have not considered
scenarios with more than two faults. We focus our dis-
cussion on the two-fault scenario because (1) the purpose
of this study is to compare the dynamic slicing-based ap-
proach with existing techniques, and (2) we believe that no
fundamental difference exists between two-fault and three-
fault scenarios in order to study the indexing effectiveness.

Therefore, we restrict our case studies to the two-fault sce-
narios in this paper, and leave more-fault scenarios to future
work.

4.2 Comparison with T- and R-Proximity

We manually check the 82 failures from the two faults,
and find all failures have the same failure point. This sug-
gests that indexing by the failure point, which is the simplest
slice, is not effective.

Figure 3 plots the proximity graphs for the four in-
dexing techniques. Interestingly, we notice that the devi-
ating blue circle in Figure 3(a) moves closer and closer
to the blue cluster with R-PROXIMITY (Figure 3(b))
and FS-PROXIMITY (Figure 3(c)), and finally completely
merges into the cluster with DS-PROXIMITY. This sug-
gests that some failures that are not correctly identified by
T-PROXIMITY can be correctly indexed by dynamic slicing-
based approaches. In addition, DS-PROXIMITY has also
done a great job in indexing failures in S1: The red crosses
clearly form two cohesive and dense clusters in Figure 3(d).
This is a very nice property because a duplicate failure re-
mover will have a high confidence in keeping just one repre-
sentative failure from each dense cluster and throwing away
the rest.

Although DS-PROXIMITY appears to achieve the best
indexing result in Figure 3, its Silhouette coefficient is
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Figure 3. Comparison with T-Proximity and R-Proximity on Gzip-1.2.3(trees.c)958 int ct_tally (dist, lc)     { ...962     l_buf[last_lit++] = (uch)lc;       ...1011 local void compress_block(ltree, dtree)       { …1026         lc = l_buf[lx++];         ...1032             code = length_code[lc];1033             send_bits(code+LITERALS+1, ltree);         …       } (bits.c)119 void send_bits(value, length)       {   ...132     if (bi_valid > (int)Buf_size - length) {133         bi_buf |= (value << bi_valid);134         put_short(bi_buf);  //Output point        …      }
Figure 4. Data Slice of the Test Case 8

strangely low. Apparently, the low coefficient comes from
the large distance between the two red clusters. Then, a
natural wonder is that given that all red crosses represent
failures in S1, why are they separated into two clusters?

We manually investigate the two red clusters in Figure
3(d), and find that the two clusters correspond to two dif-
ferent failing mechanism although they are all due to Fault
1 (Figure 2). We select a representative from each cluster
(test cases 8 and 82 respectively), and explain how they fail
differently from the same fault. Because slices in the same
cluster are nearly identical, it does not matter which partic-
ular failure is chosen.

Figure 4 presents the data slice of case 8. The
wrong value is observed at statement 134 in function
send bits(), which is called and passed with a faulty
parameter at line 1033. The faulty parameter is produced by
the data dependence chain of 1033 dd−→ 1032 dd−→ 1026 dd−→
962.

A further study of Fault 1 in Figure 2 reveals that
the faulty branch at statement 686 produces a faulty
match length, which makes the control flow select the
wrong branch at 707. This in turn results in ct tally()

(trees.c)958 int ct_tally (dist, lc)     { ...974         dyn_dtree[d_code(dist)].Freq++;       }...451 local void pqdownheap(tree, k)     { ...462         if (tree[n].Freq < tree[m].Freq ||...)        …470        heap[...] = ...;      }...483 local void gen_bitlen(desc)      { …507         n = heap[h];508         bits = tree[tree[n].Dad].Len + 1;        ...515         bl_count[bits]++;      } ...568 local void gen_codes (tree, max_code)      { …581         next_code[...] = ... bl_count[...]) << 1;        ...594         tree[n].Code = bi_reverse(next_code[...]++, ...);        …       }740 local void send_tree (tree, max_code)      { ...773        send_bits(bl_tree[...].Code,...); ...        …      }(bits.c)119 void send_bits(value, length)       {   ...134         put_short(bi_buf);  //Output point        …      }
Figure 5. Data Slice of the Test Case 82

being called by mistake at line 738. Inside this call, the
array l buf is polluted. Finally, when the execution tries
to print a compressed block that is affected by l buf, an
incorrect output is observed.

Figure 5 presents the data slice of case 82. In this fail-
ing case, the wrong output is observed at the same source
code location (statement 134) as case 8. However, the fail-
ure follows a completely different dependence path. At the
function level, the dependence chain is
send bits

dd−→ send tree
dd−→ gen codes

dd−→
gen bitlen

dd−→ pqdownheap
dd−→ ct tally.

The explanation is that ct tally() is mistakenly
called at line 707 due to Fault 1. The function
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ct tally() calculates the frequencies of different trees,
which are used to encode bytes in gzip. Because of Fault
1, the faulty frequency calculated by ct tally() re-
sults in wrong trees being constructed, which are eventually
dumped to the output by the function send tree(), as
part of the entire output.

Therefore, the case study with gzip clearly indicates that
the same fault can fail the program in totally different ways,
and that DS-PROXIMITY explicitly indexes failures with
different failing mechanism apart. While this is intuitively
an advantage, DS-PROXIMITY is nevertheless penalized by
the Silhouette coefficient for it. This raises our wonder
about whether the optimal indexing should index all fail-
ures due to the same fault together, or should only index
failures with similar failure mechanism together. For some
applications, like failure prioritization, the former is pre-
ferred; but for some others, like assigning failures to the ap-
propriate developers, the latter is better. Our current metric
(Section 2.2) follows the former belief, and hence penalizes
DS-PROXIMITY on gzip. The Silhouette coefficient met-
ric can also follow the latter belief, but human beings need
to specify what failures exhibit the same failure mechanism.
In this study, we stick with the former belief for consistency.

5 Discussion

In this section, we review related work, and discuss po-
tential threats to validity of the experiment.

5.1 Related Work

Failing indexing, although not yet formally studied, has
been a widely supported functionality in bug tracking sys-
tems [18]. A bug tracking system supports bug diagnosis
and software evolution by keeping records of reported fail-
ures. Some bug tracking systems, like Bugzilla [1], are
designed for manual failure reporting. Software develop-
ers or technically savvy people manually type in critical at-
tributes of encountered failures. Typical attributes include,
but are not limited to, the platform, failure stack trace, and
the submitter-perceived severity. By storing the reported in-
formation into databases, failure indexing on the provided
attributes is automatically supported. For example, one can
easily retrieve all failures that manifest on FreeBSD and
have a severity level of 5. However, such borrowed indexing
capability from databases does not support automated fail-
ure prioritization and duplicate removal because root causes
are usually not reported, and automatically inferring the
root cause from the reported static failure data is extremely
hard. In comparison, this paper, as well as previous stud-
ies [16, 19], investigates how to index program failure by
program dynamic data.

On the other hand, some bug tracking systems aim at
automated collection of program failures from production
runs [2,3,14], which save users’ hassles in providing techni-
cal details. Given that current systems have done a great job
in indexing crashing failures, this paper investigates how to
index noncrashing failures that will prevail in the future.

In this paper, we compare our dynamic slicing-based
approach to existing techniques T-PROXIMITY [19] and
R-PROXIMITY [16]. T-PROXIMITY is inspired by the pre-
ceding studies that suggest program failures can be found
from a set of mostly passing executions through cluster-
ing execution profiles [8, 9]. In comparison, our approach
indexes program failures through dynamic slices, which
are more fault-relevant than the execution profile used by
T-PROXIMITY. In comparison with R-PROXIMITY, our ap-
proach eliminates the need of passing executions, and is
shown to achieve comparable result as R-PROXIMITY. In-
terestingly, similar to R-PROXIMITY, the dynamic slicing-
based approach also falls into the fault localization-based
framework [16], because dynamic slicing is also a fault
localization technique. Our approach is better than
R-PROXIMITY because dynamic slicing does not need any
passing executions while the SOBER [15] algorithm lever-
aged by R-PROXIMITY does.

Recently, the importance of failure indexing is also rec-
ognized by computer system researchers [7, 21, 22]. Cohen
et al. suggest that as computer systems become increasingly
complex, indices of system states are helpful for system
maintenance and malfunction diagnosis [7]. Basically, sys-
tem statistics, such as the average CPU and memory usage,
is treated as the signature of system states during a time in-
terval. If a state is known faulty or will eventually lead to
a faulty state, it is put into the index together with patches.
In the future, when a similar state is encountered, corre-
sponding patches can be automatically retrieved from the
index. This approach is shown particularly effective in di-
agnosing performance problems [6], which are essentially
noncrashing failures. Similar work is also seen on Win-
dows platform, where snapshots of Windows registry are
treated as signatures of system states. Some tools, such as
STRIDER [22] and PeerPressure [21] have been invented,
which leverage the signature indices to troubleshoot mis-
configurations, which are another form of noncrashing fail-
ures. In comparison, our dynamic slicing-based approach
focuses on indexing program failures, rather than indexing
failures in a computer system, but the dynamic slicing idea
can be extended to indexing system problems because inten-
sive dependences are also involved in system problems [6].

Finally, this study also relates to dynamic program slic-
ing. Dynamic slicing [4, 11] is a debugging technique that
captures the executed statements that are involved in com-
putation of a wrong value. Dynamic dicing [17] leverages
multiple dynamic slices to reduce the fault candidate set.
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The idea of dynamic dicing is to take away the statements
that appear in the dynamic slices of correct values from a
dynamic slice of some incorrect value. The goal of these
techniques is to locate the root cause of a failure more pre-
cisely. Therefore, data slices may not be a good starting
point for dicing because they often miss the root cause.
In contrast, the proposed technique uses multiple dynamic
slices for the purpose of failure indexing, where the capa-
bility of discriminate failures from different groups is more
important than the fault localization effectiveness. Finally,
to the best of our knowledge, this is the first attempt to study
the effectiveness of various types of dynamic slices in fail-
ure indexing.

5.2 Threats to Validity

A number of threats to validity need to be considered
for the experiment results. First, although the two faults
gzip mimic realistic semantic bugs, they are nevertheless
manually seeded. For this reason, case studies with real-
world faults are needed in the future. However, as this pa-
per aims at a comparative study between different indexing
techniques, seeded faults may suffice. Second, hand-crafted
test inputs, rather than operational traces from the wild, are
used in this study. In general, traces from the wild could be
more complicated. But as dynamic slicing has been shown
effective in extracting fault-relevant information from long
executions [23], we expect similar observations about fail-
ure indexing will be made. Finally, the experiment in this
paper is evaluated with the metric proposed in Section 2.2.
Although every effort has been exercised to keep it objective
and reasonable, the metric is by no means the ultimate mea-
sure. Ultimately, all indexing techniques need to be sub-
jected to real-world noncrashing failures, and let the end-
users, i.e., the developers, to judge the effectiveness.

6 Conclusion

In this study, we proposed a dynamic slicing-based ap-
proach to indexing noncrashing failures, an increasingly
critical problem due to the dominance of semantic bugs in
the future. The case study with gzip clearly demonstrated
the advantages of our proposed approach. Specifically, our
proposed approach is more effective than T-PROXIMITY,
and does not rely on correct execution as R-PROXIMITY
does. During this study, a few interesting observations have
been made, which merit further study in the future.
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