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Abstract. In this paper, we present for the first time efficient explicit
formulas for arithmetic in the degree 0 divisor class group of a real hy-
perelliptic curve. Hereby, we consider real hyperelliptic curves of genus 2
given in affine coordinates for which the underlying finite field has char-
acteristic > 3. These formulas are much faster than the optimized generic
algorithms for real hyperelliptic curves and the cryptographic protocols
in the real setting perform almost as well as those in the imaginary case.
We provide the idea for the improvements and the correctness together
with a comprehensive analysis of the number of field operations. Finally,
we perform a direct comparison of cryptographic protocols using explicit
formulas for real hyperelliptic curves with the corresponding protocols
presented in the imaginary model.

Keywords: hyperelliptic curve, reduced divisor, infrastructure and dis-
tance, Cantor’s algorithm, explicit formulas, efficient implementation,
cryptographic key exchange.

1 Introduction and Motivation

In 1989, Koblitz [9] first proposed the Jacobian of an imaginary hyperelliptic
curve for use in public-key cryptographic protocols. Hyperelliptic curves are in a
sense generalizations of elliptic curves, which are an attractive option for public-
key cryptography because their key-per-bit security is significantly better than
RSA. This is due to the fact that the best-known attacks on elliptic curve based
cryptosystems have exponential as opposed to subexponential complexity in the
bit length of the key. Hyperelliptic curves can be used with the same key-per-bit

C. Carlet and B. Sunar (Eds.): WAIFI 2007, LNCS 4547, pp. 202–218, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Explicit Formulas for Real Hyperelliptic Curves 203

strength as elliptic curves provided that the genus is very small. In particular,
recent attacks [4,5], imply that only genus 2 and possibly genus 3 hyperelliptic
curves offer the same key-per-bit security as elliptic curves.

The Jacobian is a finite abelian group which, like elliptic curve groups, has
unique representatives of group elements and efficient arithmetic (divisor ad-
dition and reduction). Although the arithmetic appears more complicated than
that of elliptic curves [10,16,21,1,6], there are some indications that it can in some
cases be more efficient. Those results are based on optimized explicit formulas
and very efficient implementations for genus 2 and 3 imaginary hyperelliptic
curves.

Several years later, a key exchange protocol was presented for the real model
of a hyperelliptic curve [18]. Its underlying key space was the set of reduced
principal ideals in the ring of regular functions of the curve, together with its
group-like infrastructure. Although the main operation of divisor class addition,
which is composition followed by reduction, is comparable in efficiency to that of
the imaginary model [20], the protocol in [18] was significantly slower and more
complicated than its imaginary cousin [9], while offering no additional security;
the same was true for subsequent modifications presented in [17].

Despite the apparent short-comings of the real model, recent work [7] shows
that real hyperelliptic curves may admit protocols that are comparable in effi-
ciency to those based on the imaginary model. The main idea is that, in addition
to the divisor class addition operation, the real model has a second operation
called a baby step that is significantly more efficient. By exploiting this opera-
tion and some reasonable heuristics, new public-key protocols for key exchange,
digital signatures, and encryption have been devised that are significantly faster
than all previous protocols in real hyperelliptic curves and might even be com-
parable in efficiency with analogous protocols in the imaginary setting. However,
the protocols in [7] were based on a generic implementation and did not incorpo-
rate explicit formulas. In order to examine the efficiency of these new protocols
completely, it is necessary to devise explicit formulas for divisor arithmetic in
the real model of cryptographically-relevant low genus curves.

The contribution of this paper is to close this gap and for the first time present
efficient explicit formulas for divisor class arithmetic on real hyperelliptic curves.
We concentrate on genus 2 real hyperelliptic curves in affine coordinates for
which the underlying finite field has characteristic p > 3. Formulas for arbitrary
characteristic, that also handle all special cases, will be included in the full
version of this paper, which will be submitted to a journal. We thus provide
explicit formulas for the protocols in [7], thereby enabling a direct comparison
with the corresponding protocols presented in the imaginary model.

Notice that although there exist easy transformations from the imaginary
model to the real model of a hyperelliptic curve, the converse direction is only
possible if the curve defined over Fq contains an Fq-rational point. If q is odd and
one uses an irreducible polynomial for the generation of the real hyperelliptic
curve, one has to extend the field of constants to Fq2g+2 in order to be able to
perform this transformation, which is unrealistic for efficient implementations.
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Furthermore, complex multiplication methods for generating hyperelliptic curves
of small genus often produce real hyperelliptic curves. With an efficient arith-
metic, those curves can be readily used in cryptographic protocols. Finally, ex-
plicit formulas enable us to provide a real-world comparison of subexponential
attacks to hyperelliptic curve cryptosystems in both the real and imaginary
setting.

The analysis of the formulas presented here shows that they require a few more
finite field multiplications than their imaginary counterparts. However, the baby
step operation in its explicit form is significantly more efficient than divisor
class addition in either setting, and as a result, the cryptographic protocols
in the real setting perform almost as well as those in the imaginary case. In
addition, even though the formulas are not as fast as those in the imaginary case,
they are certainly more efficient than using generic algorithms. Thus, using our
formulas will significantly speed other computations in the divisor class group or
infrastructure of a real hyperelliptic curve, for example, computing the regulator
or class number.

The paper is organized as follows. We first provide the necessary background
on real hyperelliptic curves and introduce the notation. We will also present
the essential, generic algorithms for real hyperelliptic curves and explain how to
perform arithmetic in the degree 0 divisor class group via ideal arithmetic. In
Section 3, we present the explicit formulas for the basic algorithms assuming a
finite field of characteristic p > 3. We provide the idea for the improvements
and the correctness together with a comprehensive analysis of the number of
field operations. Some of the calculations can also be found in the Appendix.
Section 4 contains numerical data comparing cryptographic protocols based on
real hyperelliptic curves with those using imaginary hyperelliptic curves, where
divisor class arithmetic is implemented using explicit formulas in both cases.

2 Background and Notation

Throughout this paper, let Fq be a finite field with q = pl elements, where p
is a prime, and let Fq =

⋃
n≥1 Fqn be its algebraic closure. For details on the

arithmetic of hyperelliptic curves we refer to [11,6,2,7], and specifically for real
hyperelliptic curves we refer to [15,20,3,7,8].

Definition 1. A hyperelliptic curve C of genus g defined over Fq is an absolutely
irreducible non-singular curve defined by an equation of the form

C : y2 + h(x)y = f(x), (2.1)

where f, h ∈ Fq[x] are such that y2 + h(x)y − f(x) is absolutely irreducible, i.e.
irreducible over Fq, and if b2+h(a)b = f(a) for (a, b) ∈ Fq×Fq, then 2b+h(a) �= 0
or h′(a)b − f ′(a) �= 0. A hyperelliptic curve C is called

1. an imaginary hyperelliptic curve if the following hold: If q is odd, then f is
monic, deg(f) = 2g + 1, and h = 0. If q is even, then h and f are monic,
deg(f) = 2g + 1, and deg(h) ≤ g.
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2. a real hyperelliptic curve if the following hold: If q is odd, then f is monic,
deg(f) = 2g+2, and h = 0. If q is even, then h is monic, deg h = g +1, and
either (a) deg f ≤ 2g + 1 or (b) deg f = 2g + 2 and the leading coefficient of
f is of the form β2 + β for some β ∈ F

∗
q.

3. an unusual hyperelliptic curve [3] if the following holds: if Fq has odd char-
acteristic, then deg(f) = 2g+2 and sgn(f) is a non-square in F

∗
q , whereas if

Fq has characteristic 2, then deg(h) = g+1, deg(f) = 2g+2 and the leading
coefficient of f is not of the form e2 + e for any e ∈ F

∗
q .

The function field K = Fq(C) of a hyperelliptic curve C is a quadratic, separable
extension of Fq(x) and the integral closure of Fq(x) in K is given by Fq[C] =
Fq[x, y]/(y2 + h(x)y − f(x)). Let S denote the set of points at infinity. Then
the set C(Fq) = {(a, b) ∈ Fq × Fq : b2 + h(a)b = f(a)} ∪ S is called the set
of (Fq-rational) points on C. For a point P = (a, b) ∈ C(Fq), the hyperelliptic
involution is given by ι(a, b) = (a, −b − h(a)) ∈ C(Fq).

Notice that in all three cases we can assume h = 0 if q is odd. The imaginary
model1 corresponds to the case where S = {∞1}. In the real model2, there exist
two points at infinity so that S = {∞1, ∞2}. Let v1 and v2 be the normalized
valuations of K at ∞1 and ∞2, respectively. It is possible to transform an imag-
inary model of a hyperelliptic curve into a real model. For the converse direction
one needs an Fq-rational point (see [15,6]). From now on, we only consider the
real case.

Let C be a real hyperelliptic curve given as in Definition 1. A divisor on C
is a finite formal sum D =

∑
P∈C mP P of points P ∈ C(Fq), where mP ∈ Z

and mP = 0 for almost all P . The degree of D is defined by deg D =
∑

P mP .
A divisor D of Fq(C) is effective if mP ≥ 0 for all P , and a divisor D is defined
over Fq, if Dσ =

∑
P mP P σ = D for all automorphisms σ of Fq over Fq. The set

Div(K) of divisors of C defined over Fq forms an additive abelian group under
formal addition with the set Div0(K) of all degree zero divisors of C defined over
Fq as a subgroup. For a function G ∈ K, we can associate a principal divisor
div(G) =

∑
P vP (G)P , where vP (G) is the normalized valuation of G at P . The

group of principal divisors P (K) = {div(G) : G ∈ K} of C forms a subgroup
of Div0(K). The factor group J(K) = Div0(K)/P (K) is called the divisor class
group of K. We denote by D ∈ J(K) the class of D ∈ Div0(K).

Since C is a real hyperelliptic curve we have S = {∞1, ∞2} and we know
from [15] that every degree 0 divisor class can be represented by D such that
D =

∑r
i=1 Pi − r∞2, where Pi ∈ C(Fq), Pi �= ∞2, and Pi �= ιPj if i �= j. The

representative D of D is then called semi-reduced. In addition, there exists a
representative D such that r ≤ g. In this case, the representative D is called
reduced. Notice that Pi = ∞1 is allowed for some i. It follows that every degree
0 divisor class contains a unique representative D with

1 In function field terms, the pole divisor ∞ of x in Fq(x) is totally ramified in K so
that Con(∞) = 2∞1.

2 In function field terms, the pole divisor ∞ of x in Fq(x) splits completely in K so
that Con(∞) = ∞1 + ∞2.
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D =
l(D)∑

i=1

Qi − l(D)∞2 + v1(D)(∞1 − ∞2) ,

where Qi ∈ C(Fq), Qi �= ∞1, ∞2, Qi �= ιQj if i �= j, and 0 ≤ l(D) + v1(D) ≤ g.
The regulator R of K in Fq[C] is defined to be the order of the degree 0 divisor
class containing ∞1 − ∞2.

We know that Fq[C] is a Dedekind domain and the ideal class group Cl(K)
of K in Fq[C] is the factor group of fractional Fq[C]-ideals modulo principal
fractional ideals. A non-zero integral ideal a in Fq[C] is a fractional ideal such
that a ⊆ Fq[C]. It can be represented as a = k[x] d(x)u(x) + k[x] d(x)(v(x) + y)
where , u, v ∈ k[x] and u | f +hv−v2. Note that d and u are unique up to factors
in F

∗
q and v is unique modulo u. a is primitive if we can take d(x) = 1 in which

case we simply write a = [u(x), v(x) + y]. A primitive ideal a = [u(x), v(x) + y]
is reduced if deg u ≤ g. A basis {u(x), v(x) + y} of a primitive ideal is called
adapted or standard if deg(v) < deg(u) and u is monic. For instance, Fq[C] is
represented as Fq[C] = [1, y]. The degree of a primitive ideal is deg(a) = deg u.
We call a basis {u(x), v(x) + y} of a primitive ideal reduced if −v1(v − h − y) <
−v1(u) = deg(u) < −v1(v + y) and u is monic.

For any two ideals a and b in the same ideal class, there exists α ∈ K∗

with b = (α)a. We then define the distance of b with respect to a as δ(b, a) =
−v1(α) (mod R) where R is the regulator. Note that the distance is only well-
defined and unique modulo R. In each ideal class, we expect up to R many re-
duced ideals. If we fix the principal ideal class, then we may assume that a = a1 =
Fq[C] = (1). Then, for any principal ideal b = (α), we have δ(b) = δ(b, a1) =
−v1(α) (mod R). Notice that the distance defines an order on all reduced prin-
cipal ideals, i.e. the set of reduced principal ideals is R = {a1, a2, . . . , am} where
δ(a1) = 0 < δ(a2) < . . . < δ(am).

The following theorem gives a representation of degree 0 divisor classes in
terms of reduced ideals and corresponds to the Mumford representation [13,
page 317] in the imaginary model.

Theorem 1 (Paulus-Rück, 1999). There is a canonical bijection between the
divisor class group J(K) and the set of pairs {(a, n)}, where a is a reduced ideal
of Fq[C] and n is a non-negative integer with 0 ≤ deg(a) + n ≤ g.

The bijection is such that the unique reduced divisor D in a degree 0 divisor
class D corresponds to such a pair {(a, n)}. It follows that arithmetic in J(K)
can be performed via arithmetic of reduced ideals. An algorithm for computing
the group law in J(K) based on this theorem has been presented in [18,15,20].
It consists of three steps, namely (a) composition of reduced ideals, (b) reduc-
tion of the primitive part of the product, and (c) baby steps, i.e. adjusting
the output of the reduction so that the degree condition of the theorem is sat-
isfied. Step (a) and (b) together are called a giant step. A giant step is the
analogue of the group operation in the imaginary case. We use [u1, v1] + [u2, v2]
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to denote the giant step operation. Elements in J(K) can represented as triples
[u, v, n] where [u(x), y + v(x)] is a reduced ideal and 0 ≤ deg(a) + n ≤ g. It
can be easily seen that the arithmetic can be restricted to the special subset
{(a, 0) : a reduced and principal} = R, which is not a group. We may restrict
our arithmetic to the degree 0 divisor classes that correspond to the set R. Those
elements can be represented as [u, v, 0] or simply as pairs [u, v]. We therefore
assume that we only perform operations on elements of J(K) which are given
by a pair D = [u, v], where u, v ∈ Fq[x] such that

1. u is monic,
2. deg(u) ≤ g,
3. u | f + hv − v2,
4. one of the following degree conditions is satisfied, namely

(a) for the reduced basis: −v1(v − h − y) < −v1(u) = deg(u) < −v1(v + y),
or

(b) for the adapted (standard) basis: deg(v) < deg(u) .

If only 1., 3., and 4. are satisfied, the ideal [u(x), y + v(x)] is only primitive and
the corresponding representative D ∈ D is semi-reduced. We also denote this
element by [u, v].

In [7], several optimized key-exchange protocols have been presented that use
arithmetic in R. In fact, under reasonable assumptions, one can avoid the addi-
tional adjusting steps and replace some giant steps by baby steps. Furthermore,
in each giant step, it is easy to keep track of the distances of the corresponding
reduced ideals. In fact, assuming certain heuristics, one can even avoid comput-
ing distances in almost all situations. We will therefore ignore the computation
of distances. Even in those cases, where distances are needed, the running time
for the computation of the distance is negligible. The protocols for real hyper-
elliptic curves are analogous to the ones in the imaginary setting, but they also
make use of the additional baby step operation.

We now give all three relevant algorithms. For details on how to produce
key exchange protocols with these algorithms, we refer to [18,7]. We will use
additive notation in order to express the group operation in J(K) even though
ideal arithmetic is usually denoted multiplicatively. Note that, by using these
algorithms, arithmetic in J(K) is reduced to polynomial arithmetic in Fq[x].

Algorithm 1 (Composition)
Input: D1 = [u1, v1], D2 = [u2, v2], and h(x), f(x) as in (2.1).
Output: D = [u, v] such that D is semi-reduced and D = D1 + D2.

1. Compute d, x1, x2, x3 ∈ Fq[x] such that

d = gcd(u1, u2, v1 + v2 + h) = x1u1 + x2u2 + x3(v1 + v2 + h) .

2. Put u = u1u2/d2 and v = (x1u1v2 + x2u2v1 + x3(v1v2 + f))/d (mod u).

For the group operation, we assume that the representatives of the degree 0
divisor classes D1 and D2 are reduced so that the ideals [u1(x), y + v1(x)] and
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[u2(x), y + v2(x)] are reduced, i.e. deg(u1), deg(u2) ≤ g. However, the algorithm
also allows semi-reduced representatives D1 and D2 as an input. Notice that the
output of this algorithm D = [u, v] corresponds to a semi-reduced divisor so that
[u(x), v(x) + y] is a primitive ideal which is not necessarily reduced.

For the second step, we need to precompute the principal part H(y) = 	y
 of
a root y of y2 +h(x)y−f(x) = 0. The other root is −y−h. If y =

∑m
i=−∞ yix

i ∈
Fq〈x−1〉, then H(y) =

∑m
i=0 yix

i.

Algorithm 2 (Reduction)
Input: D = [u, v], where D is semi-reduced, and h(x), f(x) as in (2.1).
Output: D

′
= [u′, v′] such that D′ is reduced and D

′
= D.

1. Compute a = (v + H(y)) div u.
2. Let v′ = v − au, u′ = (f + hv′ − v′2)/u.
3. If deg(u′) > g, put u = u′, v = v′, and goto 1.
4. Make u′ monic and adjust v′ to a reduced/adapted basis if necessary.

If we allow the input of Algorithm 2 to be reduced and only perform 1,2, and
4, the output will be another reduced divisor D′ representing a different degree
0 divisor class D

′
. In this case, we call this operation a baby step3 denoted by

[u′, v′] = ρ[u, v].

3 Explicit Formulas

Let [u, v] be a Mumford representation of a degree 0 divisor class. We present
explicit formulas for divisor class addition (ideal multiplication), divisor class
doubling (ideal squaring), and a baby step. We will assume that characteristic
of the field is a prime p > 3. Under this assumption, we can transform the general
equation defining the curve to one of the form

C : y2 = f(x)

that is isomorphic to the original curve, where f(x) = x6 + f4x
4 + f3x

3 + f2x
2 +

f1x + f0, i.e., we can assume that h(x) = 0, the leading coefficient of f(x) is
1, and the x5 term of f(x) is 0. The transformation y → y − h/2, valid if the
finite field characteristic is not 2, eliminates h(x) and x → x − f5/6, valid if the
characteristic is not 2 or 3, eliminates the x5 term in f(x). This assumption also
implies that H(y) = x3 + y1x + y0, with y1 = f4/2 and y0 = f3/2.

We also assume that the divisor [u, v] is in reduced basis. Under our assump-
tions about C, this implies that v is of the form

v = x3 + v1x + v0,

i.e., the leading two coefficients of v always match that of H(y). We will present
formulas for the general description of a genus two real hyperelliptic curve in
3 However, notice that in this case the reduced ideal a corresponding to D and the

reduced ideal a′ corresponding to D
′
are in the same ideal class.
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affine presentation over an arbitrary finite field, using both reduced and adapted
basis, in the full version of this paper.

We only count inversions, squarings and multiplications of finite field elements,
which consist of the bulk of the computation when compared with additions
and subtractions. In the tables below, we let I, S and M denote “inversion,”
“squaring,” and “multiplication,” respectively.

In the formulas described below, we assume that the coefficients of f(x) =
x6 + f4x

4 + f3x
3 + f2x

2 + f1x + f0 and H(y) = x3 + y1x + y0 that define the
hyperelliptic curve are available. Thus, these are not explicitly listed as input.

3.1 Baby Step

Let [u, v] be the Mumford representation of a degree 0 divisor class. To compute
ρ[u, v] = [u′, v′], we apply the following formulas:

v′ = H(y) − [(H(y) + v) mod u] ,

u′ = Monic
(

f − (v′)2

u

)

were, as mentioned above, H(y) is the principal part of a root of a root y of
y2 + h(x)y − f(x) = 0. Explicit formulas are derived by simply expanding the
operations and using the formula for reducing a degree three polynomial (H(y)+
v) modulo a monic polynomial of degree two (u) described in [10]. The resulting
formulas are presented in Table 1.

Table 1. Explicit Formulas for a Baby Step

Baby Step, Reduced Basis, deg u = 2
Input u = x2 + u1x + u0, v = x3 + v1x + v0

Output [u′, v′] = ρ[u, v]
Step Expression Operations

1 v′ = H(y) − [(H(y) + v) mod u] 1S, 1M
v′
1 = 2(u0 − u2

1) − v1

v′
0 = −2u0 · u1 − v0

2 u′ = Monic((f − (v′)2)/u) 1I, 1S, 3M
u2 = f4 − 2v′

1

I = u−1
2

u′
1 = I · (f3 − 2v′

0 − u1)
u′

0 = I ·
(
f2 − (v′

1)2
)

− u0 − u′
1 · u1

Total 1I, 2S, 4M

3.2 Addition Formulas

Let the Mumford representations of two degree 0 divisor classes be [u1, v1] and
[u2, v2]. The main case of addition of degree 0 divisor classes occurs when the
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Table 2. Explicit Formulas for Addition of Divisor Classes

Addition, Reduced Basis, deg u1 = deg u2 = 2, gcd(u1, u2) = 1
Input u1 = x2 + u11x + u10, v1 = x3 + v11x + v10

u2 = x2 + u21x + u20, v2 = x3 + v21x + v20

Output [u′, v′] = [u1, v1] + [u2, v2]
Step Expression Operations

Composition
1 inv = z1x + z2 4M

z0 = u10 − u20, z1 = u11 − u21

z2 = u11 · z1 − z0, z3 = u10 · z1

r = z1 · z3 − z0 · z2

2 s′ = s′
1x + s′

0 4M
w0 = v10 − v20, w1 = v11 − v21

s′
1 = w0 · z1 − w1 · z0, s′

0 = w0 · z2 − w1 · z3

Reduction
3 k = k2x

2 + k1x + k0

k2 = f4 − 2v21

4 s = 1
r
s′ = s1x + s0 1I, 2S, 6M

r2 = r2, ŵ0 = r2 − (s′
1 + r)2(= r2m4), ŵ1 = (r · ŵ0)−1,

ŵ2 = ŵ0 · ŵ1(= 1
r
), ŵ3 = r · r2 · ŵ1(= 1

m4
)

s1 = s′
1 · ŵ2, s0 = s′

0 · ŵ2

5 l = l3x
3 + l2x

2 + l1x + l0 (note that l3 = s1) 3M
w̃0 = s0 · u20, w̃1 = s1 · u21, l2 = s0 + w̃1

l1 = (s0 + s1) · (u21 + u20) − w̃1 − w̃0, l0 = w̃0

6 m′ = x4 + m′
3x

3 + m′
2x

2 + m′
1x + m′

0, u′ = x2 + u′
1x + u′

0 6M
m′

3 = ŵ3 · (−s1 · (s0 + l2) − 2s0)(= m3
m4

)
m′

2 = ŵ3 · (k2 − s1 · (l1 + 2v21) − s0 · l2)(= m2
m4

)
u′

1 = m′
3 − u11, u′

0 = m′
2 − u10 − u11 · u′

1

7 v′ = x3 + v′
1x + v′

0 3M
w1 = u′

1 · (s1 + 2), w0 = u′
0 · (l2 − w1)

v′
1 = (u′

0 + u′
1) · (s1 + 2 − w1 + l2) − v21 − l1 − w0 − w1

v′
0 = w0 − v20 − l0

Total 1I, 2S, 26M

two degree 0 divisor classes consist of four points on the curve which are differ-
ent from each other and their opposites. This situation occurs precisely when
deg(u1) = deg(u2) = 2 and u1, u2 are relatively prime. In the rare cases when
u1 or u2 has degree less than 2, or when u1 and u2 are not relatively prime,
the costs are considerably less than the general case. Here, we present addition
for the general case; the special cases will be presented in the full version of the
paper.

To optimize the computations, we do not follow Cantor’s algorithm literally;
we proceed instead as described in [10]. Given two degree 0 divisor classes [u1, v1]
and [u2, v2], the algorithm for divisor addition [u′, v′] = [u1, v1]+[u2, v2] is found
by calculating the following subexpressions.



Explicit Formulas for Real Hyperelliptic Curves 211

r = resultant of u1, u2 inv ≡ r(u2)−1 (mod u1)

s′ ≡ (v1 − v2) · inv (mod u1) s = 1
r · s′

k = f−v2
2

u2
l = s · u2

m = k − s · (l + 2v2) m′ = m/m4 = m made monic
u′ = m′/u1 v′ = H(y) − [(H(y) + v2 + l) (mod u′)]

The explicit formulas are presented in Table 2.

1. Step 1 and Step 2 calculate the coefficients of s = s1x+s0 = (v1−v2)·(u2)−1

mod u1. Instead of calculating s1 and s0, we calculate s′1 = r · s1 and s′0 =
r · s0, thereby postponing the inversion until Step 4.

2. If s′1 = 0 in Step 2, one needs to modify Step 4 through Step 7. In this special
case, the sum of the two divisors will be a degree one divisor. As this case
only occurs very rarely, we do not describe the required modifications here,
rather, they will appear in the full version of the paper.

3. The composition of divisors in Step 1 and Step 2 is exactly the same for both
real and imaginary cases. These two steps can replace the first three steps
of imaginary divisor addition found in [10] for a savings of one squaring. For
reference, this improvement makes 1I, 2S, 22M the least known number of
field operations needed for divisor addition in the imaginary case.

3.3 Doubling Formulas

Let [u, v] = [x2 +u1x+u0, x
3 +v1x+v0] be a degree two divisor in reduced basis

with both points of the divisor not equal to their opposites. Again following [10],
we compute the degree 0 divisor class [u′, v′] := [u, v] + [u, v] as follows.

r = resultant of u and ṽ

ṽ ≡ 2v (mod u) inv ≡ r(ṽ)−1 (mod u)

k = f−v2

u s′ ≡ k · inv (mod u)

s = 1
r · s′ ũ = s2 + 2vs−k

u

u′ = ũ made monic v′ = H(y) − [(H(y) + s · u + v) (mod u′)]

The resulting explicit formulas are presented in Table 3. The special cases when
s′1 = 0 in Step 4 and when w̃0 = 0 in Step 5 need to be handled separately.
As these occur only rarely, we do not describe the required modifications here,
rather, they will appear in the full version of the paper.

3.4 Summary of Results

The best known results for the imaginary case are found in [10]. As noted ear-
lier, an improvement of one less squaring has been found which applies to the
addition formula in the imaginary case (though not in the doubling case). Com-
pared to the imaginary case, the addition formulas for the real case requires four
more multiplications in the main case. The doubling formulas require six more
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Table 3. Explicit Formulas for Doubling Divisor Classes

Doubling, Reduced Basis, deg u = 2
Input [u, v], u = x2 + u1x + u0, v = x3 + v1x + v0

Output [u′, v′] = 2[u, v] := [u, v] + [u, v]
Step Expression Operations

1 ṽ = ṽ1x + ṽ0 1S, 1M
w1 = u2

1, ṽ1 = 2(v1 + w1 − u0), ṽ0 = 2(v0 + u0 · u1)
2 r = res(ṽ, u), inv = inv1x + inv0 4M

w2 = u0 · ṽ1, w3 = u1 · ṽ1

inv1 = ṽ1, inv0 = w3 − ṽ0

r = ṽ0 · inv0 − w2 · ṽ1

3 k′ ≡ (f − v2)/u (mod u) = k′
1x + k′

0: 1S, 3M
k′
2 = f4 − 2v1,

k′
1 = f3 − 2v0 − 2k′

2 · u1,
k′
0 = f2 − v2

1 − k′
1 · u1 − k′

2 · (w1 + 2u0)
4 s′ = s′

1x + s′
0 4M

s′
1 = inv1 · k′

0 − ṽ0 · k′
1, s′

0 = inv0 · k′
0 − w2 · k′

1

5 Inversion, r−1, s0, s1, ũ−1
2 I, 2S, 6M

r2 = r2, ŵ0 = (s′
1 + r)2 − r2(= r2ũ2), ŵ1 = (r · ŵ0)−1

ŵ2 = ŵ0 · ŵ1(= 1
r
), ŵ3 = r · r2 · ŵ1(= 1

ũ2
)

s1 = ŵ2 · s′
1, s0 = ŵ2 · s′

0

6 u′ = x2 + u′
1x + u′

0 5M
u′

1 = 2ŵ3 · ((s0 − u1) · s1 + s0)
u′

0 = ŵ3 · ((s0 − 2u1) · s0 + ṽ1 · s1 − k′
2)

7 v′ = x3 + v′
1x + v′

0 5M
z0 = u′

0 − u0, z1 = u′
1 − u1

w0 = z0 · s0, w1 = z1 · s1

v′
1 = 2u′

0 − v1 +(s0 + s1) · (z0 + z1)−w0 −w1 −u′
1 · (2u′

1 +w1)
v′
0 = w0 − v0 − u′

0 · (2u′
1 + w1)

Total 1I, 4S, 28M

Table 4. Comparison of Operation Counts for Explicit Formulas

Imaginary Real
Baby Step NA 1I, 2S, 4M
Addition 1I, 2S, 22M [10] 1I, 2S, 26M
Doubling 1I, 5S, 22M [10] 1I, 4S, 28M

multiplications but one less squaring than the imaginary case. It is worth noting
that the baby step operation is the cheapest of all, and that there is no analogue
for this operation in the imaginary case. Table 4 summarizes the comparison.

The main obstruction from getting more competitive formulas in the real case
is the extra coefficient interfering with the inversion step. In the imaginary case,
the leading coefficient of the new u is simply s2

1, which allows one to simplify
both addition and doubling formulas. In the real case, we found that computing
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s0 and s1 explicitly was the most efficient way to compute addition and doubling
of divisors.

4 Numerical Results

As cryptographic applications were one of our motivations for developing explicit
formulas for divisor arithmetic on genus 2 real hyperelliptic curves, we have im-
plemented key exchange protocols in the imaginary and real models in order to
determine whether the real model can be competitive with the imaginary model
in terms of efficiency. In the imaginary case, the main operation is scalar mul-
tiplication using a non-adjacent form (NAF) expansion of the multiplier, which
we will refer to as SCALAR-MULT. In the real case, there are two variations
of scalar multiplication described in [7] that comprise the key exchange proto-
col. Algorithm VAR-DIST2 is a variation of NAF-based scalar multiplication
using only degree 0 divisor class doubling and baby steps, whereas Algorithm
FIXED-DIST2 generalizes the usual NAF-based scalar multiplication algorithm.
The costs of these each of these algorithms in terms of divisor class additions,
doublings, and baby steps, assuming that the NAF representation of the corre-
sponding scalar multiplier has l +1 bits, is recalled from [7] in Table 5. All three

Table 5. Operation counts for scalar multiplication in R

Doubles Adds Baby Steps
Imaginary (SCALAR-MULT) l l/3 -
Real, Variable Distance (VAR-DIST2) l l/3 d
Real, Fixed Distance (FIXED-DIST2) l 1 l/3

of these algorithms were implemented, using the explicit formulas from [10] for
the imaginary case and the formulas in this paper for the real case.

We used the computer algebra library NTL [19] for finite field and polyno-
mial arithmetic and the GNU C++ compiler version 3.4.3. The computations
described below were performed on a Pentium IV 2.4 GHz computer running
Linux. Although faster absolute times could be obtained using customized im-
plementations of finite field arithmetic, our goal was to compare the relative
performance of algorithms in the imaginary and real settings using exactly the
same finite fields as opposed to producing the fastest times possible. Thus, NTL
was sufficient for our purposes.

All three algorithms were implemented using curves defined over prime finite
fields Fp where p > 3. We ran numerous examples of the three scalar multiplica-
tion algorithms using curves with genus 2 where the underlying finite field was
chosen so that the size of J(K), and hence the set R, was roughly 2160, 2224,
2256, 2384, and 2512. Note that |J(K)| ≈ p2 in this case, and that most likely
|R| = |J(K)| for a randomly-chosen curve. Thus, curves offer 80, 112, 128, 192,
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and 256 bits of security for cryptographic protocols based on the correspond-
ing DLP. NIST [14] currently recommends these five levels of security for key
establishment in U.S. Government applications.

For the finite field, we chose a random prime p of appropriate length such
that p2 had the required bit length. For each finite field, we randomly selected
5000 curves and executed Diffie-Hellman key exchange once for each curve. Thus,
we ran 10000 instances of Algorithm SCALAR-MULT (two instances for each
participant using each curve) and 5000 instances each of Algorithm FIXED-
DIST2 and VAR-DIST2 (one instance of each algorithm per participant using
each curve). The random exponents used had 160, 224, 256, 384, and 512 bits,
respectively, ensuring that the number of bits of security provided corresponds
to the five levels recommended by NIST (again, considering only generic at-
tacks). In order to provide a fair comparison between the three algorithms, the
same sequence of random exponents was used for each run of the key exchange
protocol.

Table 6 contains the average CPU time in seconds for each of the three al-
gorithms. The times required to generate domain parameters required for our
real hyperelliptic curve protocols (see [7]), are not included in these timings,
as domain parameter generation is a one-time computation that is performed
when the public keys are generated. The time for Algorithm SCALAR-MULT is
denoted by ”Imag,” the time for Algorithm FIXED-DIST2 by ”Fixed” and that
for Algorithm VAR-DIST2 by ”Var.” We also list the times required to execute
Diffie-Hellman key exchange using both real and imaginary models. Note that
in the imaginary case this amounts to two executions of Algorithm SCALAR-
MULT, and in the real case one execution of VAR-DIST2 and one of FIXED-
DIST2. The run-times achieved using the real model are slower than those using
the imaginary model, but they are certainly close.

Table 6. Scalar multiplication and key exchange timings over Fp (in seconds)

Security Level (bits) Imag Fixed Var DH Imag DH Real
80 0.0048 0.0050 0.0056 0.0097 0.0106
112 0.0083 0.0085 0.0096 0.0166 0.0180
128 0.0103 0.0106 0.0117 0.0206 0.0223
192 0.0220 0.0230 0.0256 0.0442 0.0485
256 0.0403 0.0411 0.0452 0.0806 0.0863

5 Conclusions

The formulas presented in this paper are the first explicit formulas for divisor
arithmetic on a real hyperelliptic curve. Although they are a few field multiplica-
tions slower than their imaginary counterparts, they will certainly out-perform a
generic implementation of Cantor’s algorithm and will be useful for any compu-
tational tasks in the class group or infrastructure. Unfortunately cryptographic
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protocols using our formulas in the real model are also slower than those us-
ing the imaginary case, even with the improved protocols described in [7] in
which many divisor additions are traded for significantly faster baby steps. Nev-
ertheless, we hope the fact that we can achieve run times close to those in the
imaginary case will increase interest in cryptographic protocols in this setting.

There is still much work to be done on this topic. As mentioned earlier, for-
mulas for degree 0 divisor class arithmetic that work for the general form of the
curve equation and any finite field, including characteristic 2, will be presented
in the full version of this paper. As in [10], there are certain special cases that
can arise in the formulas, for example, the polynomial s may have degree 1 in-
stead of degree 2. As in the imaginary setting, this can be exploited to simplify
the formulas; these cases will also be dealt with in the full version of the paper.

We continue to look for improvements to the formulas presented here. Reduc-
ing the number of field multiplications required for addition and doubling by only
two or three would likely result in the cryptographic protocols in the real setting
being slightly faster than the imaginary case. Another possible improvement that
would improve the performance of the protocols in the real setting is compound
operations. In particular, compounding the doubling and baby step operations
will almost certainly save a few multiplication and require would likely require
only one inversion (as opposed to two) as compared to performing them sepa-
rately. This would improve the speed of the VAR-DIST2 scalar multiplication
algorithm (doubling and baby steps) from [7].

Finally, a great deal of work has been done on explicit formulas in the imagi-
nary setting including using projective coordinates to obtain inversion-free for-
mulas, formulas for genus 3 and 4, explicit formulas via theta functions, and
explicit formulas via NUCOMP. All of these topics are work in progress.
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5. Gaudry, P., Thomé, E., Thériault, N., Diem, C.: A double large prime variation for
small genus hyperelliptic index calculus. Mathematics of Computation 76, 475–492
(2007)

6. Jacobson Jr., M.J., Menezes, A.J., Stein, A.: Hyperelliptic curves and cryptography.
In: High Primes and Misdemeanours: lectures in honour of the 60th birthday of
Hugh Cowie Williams. Fields Institute Communications Series, vol. 41, pp. 255–
282. American Mathematical Society (2004)

7. Jacobson Jr., M.J., Scheidler, R., Stein, A.: Cryptographic protocols on real and
imaginary hyperelliptic curves. Accepted to Advances in Mathematics of Commu-
nications pending revisions (2007)

8. Jacobson Jr., M.J., Scheidler, R., Stein, A.: Fast Arithmetic on Hyperelliptic Curves
Via Continued Fraction Expansions. To appear in Advances in Coding Theory
and Cryptology. In: Shaaska, T., Huffman, W.C., Joyner, D., Ustimenko, V. (eds.)
Series on Coding, Theory and Cryptology, vol. 2, World Scientific Publishing (2007)

9. Koblitz, N.: Hyperelliptic cryptosystems. Journal of Cryptology 1, 139–150 (1988)
10. Lange, T.: Formulae for arithmetic on genus 2 hyperelliptic curves. Applicable

Algebra in Engineering, Communication, and Computing 15, 295–328 (2005)
11. Menezes, A.J., Wu, Y., Zuccherato, R.J.: An elementary introduction to hyperel-

liptic curves. Technical Report CORR 96-19, Department of Combinatorics and
Optimization, University of Waterloo, Waterloo, Ontario, 1996. In: Koblitz, N.
(ed.) Algebraic Aspects of Cryptography, Springer-Verlag, Berlin Heidelberg New
York (1998)

12. Müller, V., Stein, A., Thiel, C.: Computing discrete logarithms in real quadratic
congruence function fields of large genus. Mathematics of Computation 68, 807–822
(1999)

13. Mumford, D.: Tata Lectures on Theta I, II. Birkhäuser, Boston (1983/84)
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A Divisor Addition

To perform divisor addition, we compute the following expressions, then show
that these formulas give the desired result.

s ≡ (v1 − v2) · (u2)−1 (mod u1) l = s · u2

k = f−v2
2

u2

m = k − s · (l + 2v2) m′ = m/m4 = m made monic
u′ = m′/u1 v′ = H(y) − [(H(y) + v2 + l) (mod u′)] .

Let (u1, v1) and (u2, v2) be two reduced divisors written in the Mumford rep-
resentation. Assume u1 and u2 are both degree 2 and are relatively prime. The
composition step of Cantor’s Algorithm is given by

U0 = u1u2

V0 ≡ v2 + su2 = v2 + l (mod U0)

where s ≡ u−1
2 (v1 − v2) (mod u1) and l = su2. The reduction step can be

expressed as

V1 = −V0 +
⌊

V0+H(y)
U0

⌋
· U0

U1 = f−V 2
1

U0

where H(y) is the principal part of a root of the equation y2 = f(x). Since V0

and d both have degree 3 and U0 has degree 4,
⌊

V0+H(y)
U0

⌋
= 0, and so

V1 = −V0 = −(v2 + l)

Plugging this into the formula U1 yields

U1 = f−(v2+l)2

u1u2

= f−v2
2−l2−2v2l
u1u2

= 1
u1

(
f−v2

2
u2

− l(l+2v2)
u2

)

= k−s(l+2v2)
u1

where k = f−v2
2

u2
.

The final output is [u′, v′] transformed to reduced basis, i.e., u′ = U1 made
monic, and v′ = H(y) − [(H(y) − V1) (mod u′)]. In the formulas, we first find
m = k − s(l + 2v2), find the leading coefficient and compute its inverse, then
compute m′ = m made monic.
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B Divisor Doubling

To perform divisor doubling, we compute the following expressions, then show
that these formulas give the desired result.

k = f−v2

u s ≡ k · (2v)−1 (mod u)

ũ = s2 + (2v)·s−k
u u′ = ũ made monic

v′ = H(y) − [(H(y) + s · u + v) (mod u′)]

Let (u, v) = (x2+u1x+u0, x
3+v1x+v0) be a degree two reduced basis Mumford

representation with both points of the divisor are not equal to their opposites.
Then Cantor’s Algorithm for doubling the divisor (u, v) must result in (U1, V1)
such that

U0 = u2

V0 ≡ v (mod u)
(V0 = v + su for some s)

V1 = −V0 +
⌊

V0+H(y)
U0

⌋
U0

U1 = f−V 2
1

U0

Here, s is chosen such that U0 divides V 2
0 − f . Again,

⌊
V0+H(y)

U0

⌋
is zero since U0

has degree 4 and V0 + H(y) has degree 3. Hence, V1 = −V0 = −v − su and

U1 = f−(−v−su)2

u2

= f−v2−2vsu−s2u2

u2

= 1
u

(
f−v2

u − 2vs
)

− s2

= 1
u (k − 2vs) − s2

where the division in k = (f − v2)/u is exact. To ensure that the division of
k − 2vs by u is exact, we choose s ≡ −k · (−2v)−1 (mod u), and obtain

k − 2vs ≡ k + 2v · k · (−2v)−1 ≡ 0 (mod u) .

Finally, U1 will be made monic, to arrive at

u′ = s2 + 2vs−k
u made monic

v′ = H(y) − [(H(y) + v + su) mod u′]

where [u′, v′] is in reduced basis.
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