;:‘ Distributed and Parallel Databases, 10, 111-126, 2001
' © 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Window Query Processing in Linear Quadtrees

ASHRAF ABOULNAGA ashraf @cs.wisc.edu
Computer Sciences Department, University of Wisconsin - Madison, 1210 West Dayton Street, Madison,
WI 53706, USA

WALID G. AREF aref@cs.purdue.edu
Department of Computer Sciences, Purdue University, 1398 Computer Science Building, West Lafayette,
IN 47907, USA

Recommended by: Abdelsalam Helal

Abstract. The linear quadtree is a spatial access method that is built by decomposing the spatial objects in a
database into quadtree blocks and storing these quadtree blocks in a B-tree. The linear quadtree is very useful
for geographic information systems because it provides good query performance while using existing B-tree
implementations. An algorithm and a cost model are presented for processing window queries in linear quadtrees.
The algorithm can handle query windows of any shape in the general case of spatial databases with overlapping
objects. The algorithm recursively decomposes the space into quadtree blocks, and uses the quadtree blocks
overlapping the query window to search the B-tree. The cost model estimates the I/O cost of processing window
queries using the algorithm. The cost model is also based on a recursive decomposition of the space, and it uses
very simple parameters that can easily be maintained in the database catalog. Experiments with real and synthetic
data sets verify the accuracy of the cost model.

Keywords: spatial databases, spatial access methods, quadtrees, window queries, GIS

1. Introduction

Database systems that support spatial data for GIS applications use spatial indexes, also
known as spatial access methods, to speed up access and queries. The linear quadtree is one
such spatial access method, offering good query performance while relying on the efficient
and robust B-tree index.

One operation for which a spatial access method is very useful is the spatial selection,
also known as the window query. The window query operation retrieves all spatial objects
overlapping a given region of the space known as the query window. The query window
is usually a rectangle, but it can also be any arbitrarily shaped region. Figure 1 shows an
example of the window query operation.

To fully support a spatial access method like the linear quadtree, a database system must
be able to estimate the cost of using it for different operations, such as the window query
operation, for example. Cost estimates are required by the query optimizer to compare
different alternative query execution plans and choose the cheapest one. For example, a
selection would use an index only if the cost of using it is lower than the cost of a full file
scan.



112 ABOULNAGA AND AREF

(b)

Figure 1. (a) A road map, and (b) the result of a window query operation on it.

In this paper, we present an algorithm for processing window queries in linear quadtrees
and a cost model that estimates the cost of using this algorithm. The algorithm assumes
a database in which the spatial objects are allowed to overlap and can handle arbitrarily
shaped query windows. It is based on recursively decomposing the space into quadtree
blocks and searching for these quadtree blocks in the linear quadtree index. The cost model
is also based on a recursive decomposition of the space into quadtree blocks. The focus of
the cost model is estimating the I/O cost of processing a window query, and it uses two
very simple parameters of the linear quadtree index that can easily be maintained in the
database catalog. Experiments using real and synthetic data sets verify the accuracy of the
cost model.

The rest of this paper is organized as follows. In Section 2, we present an overview of
related work. Section 3 describes the linear quadtree spatial access method. In Section 4,
we present the general window query algorithm. In Section 5, we present the cost model.
Section 6 presents an experimental evaluation of the cost model. Section 7 contains con-
cluding remarks.

2. Related work

Several spatial access methods have been proposed in the literature. The focus of this paper
is the linear quadtree, which is described in detail in the next section. Another spatial access
method that is very popular and widely used is the R-tree [14], a height balanced tree storing
the minimum bounding rectangles (MBRs) of the objects being indexed. More information
about these and other spatial access methods can be found in [12] and [24, 25].
Algorithms for the window query operation in linear quadtrees are presented in [21] and
[6]. In [21], the window query operation is treated as a special case of the “spatial filter”



WINDOW QUERY PROCESSING 113

join operation. A query window is decomposed into quadtree blocks and the window query
is treated as a join between these quadtree blocks and the quadtree blocks representing
the database. The join algorithm used is a modified merge join. In [6], a query window is
decomposed into quadtree blocks. The linear quadtree index is used to retrieve the quadtree
blocks of the database that overlap the window quadtree blocks. An approach based on
active borders [26] is used to ensure that every quadtree block of the database that overlaps
the query window is retrieved exactly once, thereby minimizing I/O. This algorithm only
works for databases in which the spatial objects do not overlap. Our algorithm is compared
to these two algorithms in Section 4.

Several cost models for window queries in R-frees have been proposed [5, 10, 16, 22,
28], but we are not aware of any published cost models for window queries in linear
quadtrees, despite the importance of linear quadtrees as a spatial access method. Like
[16] and [22], our cost model assumes that the data in the underlying spatial database is
uniformly distributed. In particular, we assume that the quadtree blocks representing the
data are uniformly distributed in the space. More accurate approximations of the spatial data
distribution include assuming that the data is self-similar and using the concept of fractal
dimension as in [10], using the average number of objects per point for some representative
points in the space as in [28], or using a histogram to represent the spatial data distribution
as in [3] and [4]. As we shall see later in the paper, for our approach based on a top
down decomposition of the space, assuming uniformity is quite adequate for estimating the
I/O cost of window queries in linear quadtrees. The more accurate (and more expensive)
approximations of the data distribution are useful for estimating the selectivity of window
queries [4] or their total CPU and I/O cost on polygonal data sets [3].

3. The linear quadtree

The quadtree is a hierarchical data structure based on recursively decomposing the space.
Each quadtree node represents a rectangular region of the space and can have up to four
children, each representing a quadrant of the region represented by the parent quadtree
node. The root node of the quadtree represents the entire space. Variants of the quadtree
can be used to store points, lines, or regions [23, 25].

The quadtree is a very useful data structure for many spatial database applications. For
example, it is used in the Sloan Digital Sky Survey to build indexes for different views of
the sky (different “catalogs”) [27]. Figure 2 shows a region in an 8 x 8 space represented
as a quadtree. The rectangular (or in this case square) regions 1-5 are known as quadtree
blocks.

The linear quadtree spatial access method is based on representing the spatial data as
a quadtree (i.e., decomposing the spatial objects into quadtree blocks), encoding the non-
empty quadtree blocks (i.e., the quadtree blocks containing data) as integers, and storing
these integers in a B-tree index [13]. The quadtree blocks are encoded as integers known as
Morton blocks, which we describe next.

A Morton block is an integer representing a quadtree block. Morton blocks are based
on the Morton order [17], also known as the z-order [19]. The Morton order is a space
filling curve, a line that visits every point in a two-dimensional space exactly once in a



114 ABOULNAGA AND AREF

Figure 2. A region represented as a quadtree.

NK I ~
LD AN RN
1 T3 ] 5\ yT \
01 2 yT ol 2 \ls ! \ ! \
= —>

Figure 3. The Morton order for 2 x 2,4 x 4, and 8 x 8 spaces.

predetermined order. The order in which the space filling curve visits the points of the
two-dimensional space maps the two-dimensional space to the one-dimensional space of
integers. Figure 3 shows the recursive definition of the Morton order. If the figure is turned
sideways, the Morton order resembles the letter Z, which is why it is referred to as the z-order
in [19]. The Morton order of a point can be very efficiently computed by interleaving the
bits of its x and y coordinates. Other space filling curves include the Gray order and the
Hilbert order [1, 9, 11, 15].

The Morton order encodes the points of a two-dimensional space as integers. If n-bit
integers are used for the x and y coordinates of the points, the Morton order representing
a point would be a 2n-bit integer. To encode entire quadtree blocks, and not just points,
as integers, we use (2n + [)-bit integers. In the 2n most significant bits of the integer
representing a quadtree block, we store the Morton order of its lower left corner. In the /
least significant bits of this integer, we store the level in the quadtree of the quadtree block.
The quadtree is a hierarchical data structure, and the level in the quadtree of a quadtree



WINDOW QUERY PROCESSING 115

block is the number of edges between the quadtree node representing this block and the
root of the quadtree. Alternately, we can view the level in the quadtree of a quadtree block
as the number of times the space has to be decomposed to get this quadtree block. The root
of the quadtree—the quadtree node representing the entire space—is at level 0. As such, /
is the number of bits required to represent a level in the quadtree. [ = log, (height of the
quadtree). The (2n + [)-bit integer representing a quadtree block is called the Morton block
corresponding to this quadtree block.

The Morton order of the lower left corner of a quadtree block identifies the location of the
block in the two-dimensional space, but it does not identify its size. The same point can be
the lower left corner of many quadtree blocks at different levels of the quadtree. Including
the quadtree level in the representation uniquely identifies the size of the quadtree block
and removes any ambiguity.

In [21], quadtree blocks are represented as bit strings known as z-values. To get the z-
value corresponding to a quadtree block, we start with the entire space and repeatedly apply
a quadtree decomposition until we get the required quadtree block. At each stage of the
decomposition, we append the bits 00, 01, 10, or 11 to the z-value depending on whether
the decomposition takes us into the SW, NW, SE, or NE quadrant, respectively (the same
sequence used to define the Morton order). To get the Morton block from a z-value, we
store the z-value left-justified in the most significant 2z bits and the level in the quadtree of
the quadtree block in the least significant / bits.

In this paper, we use the term “Morton block™ and not “z-value” to emphasize the fact that
we are using integers and not strings to represent quadtree blocks. Furthermore, z-values
as presented in [21] can represent regions that are twice as high as they are wide, not just
quadtree blocks. Figure 4 shows the z-values and Morton blocks for the quadtree blocks in
figure 2.

In the linear quadtree spatial access method [13], the non-empty quadtree blocks are
represented as Morton blocks, and these Morton blocks are stored in a B-tree (a B* -tree, to

5 ot T v | e, |
4 1 00 1 000000 01
2 3 2 011000 3 011000 11
3 011010 3 011010 11
4 011011 3 011011 11
1 5 1101 2 110100 10
Yy
—
x

Figure 4. The region in figure 2 and the Morton blocks representing it.



116 ABOULNAGA AND AREF

Morton Block

B3 B6
Rect | Blk. Binary Hex
sile2leslBs A A1l | 001100 10 32
A2 | 100100 11 3
A3 | 100101 11 97
B B1 | 011001 11 67
Al b B2 [ 01101111 [ 6F
N B3 [01110010 | 72
B4 | 110001 11 c7
¥y BS5 | 11001111 | CF
B6 | 11010010 | D2

—_—

B-tree
F Root

B-tree
Leaf Level

B-tree Internal
Nodes

(32[a] [&[B] [r[n] [72]] [93]a] [97[a] [c7]B] [cr]B] [D2]8]
Al Bl B2 B3 A2 A3 B4 BS B6

Figure 5. A linear quadtree representing two rectangles.

be more specific) [8]. In addition to the Morton block, each B-tree entry contains the id of
the spatial object to which the block belongs. Figure 5 shows a linear quadtree representing
two rectangles A and B.

To represent a spatial object in a linear quadtree, we can decompose it into the maximal
quadtree blocks overlapping it and store these quadtree blocks as Morton blocks in the
B-tree. However, such an exact decomposition may require a large number of quadtree
blocks to represent each object, which means that the B-tree may have many more entries
than there are spatial objects. This can degrade the performance of the linear quadtree
index. Instead, we may want to limit the number of quadtree blocks to which an object is
decomposed by storing an approximate representation of the object in the linear quadtree.
Since the linear quadtree is used in the filtering step of a filter and refine query processing
strategy, it is acceptable to have it store a conservative approximation of the spatial objects,
because the objects retrieved from the linear quadtree are further tested in the refinement
step [20].



WINDOW QUERY PROCESSING 117

In alinear quadtree, each spatial object is decomposed into multiple quadtree blocks so the
number of entries in the index is greater than the number of spatial objects. Furthermore,
each two-dimensional query is converted to a series of one-dimensional searches in the
B-tree. Despite these apparent drawbacks, the linear quadtree does offer very good query
performance. Moreover, the linear quadtree can be used to represent any variant of the
quadtree data structure, so it can be used for points, lines, or regions [25].

A very important advantage of the linear quadtree is that it uses the B-tree index. The
B-tree is the workhorse index for current commercial database systems, offering excellent
performance for both queries and updates. There are specialized algorithms for concurrency
control and recovery in B-trees, and all commercial database systems have well-established
highly tuned B-tree implementations that scale well with the data size and the number of
concurrent users. The linear quadtree leverages all these desirable properties of the B-tree
index, so it is especially useful for adding support for spatial data on top of a relational infra-
structure in object-relational database systems. For example, the linear quadtree is used in the
recently released Oracle Spatial product (http://technet.oracle.com/products/spatial/) [18].

4. The window query algorithm

In this section, we present an algorithm for processing window queries in linear quadtrees.
The algorithm works for query windows of any shape and assumes the general case of a
database with overlapping spatial objects. If the spatial features represented in the database
do overlap (e.g., roads), then we must obviously assume a database with overlapping objects.
Furthermore, even if the spatial features represented in the database do not overlap (e.g.,
land use), assuming a database with overlapping objects is still the correct assumption
when the linear quadtree represents a conservative approximation of the objects and not an
exact decomposition. As we saw in the previous section, this is the common case for linear
quadtree indexes. In this case, the approximate representations of the objects in the linear
quadtree may overlap even though the spatial features corresponding to these objects do
not overlap.

The window query algorithm is given in figure 6. The algorithm is based on recursively
decomposing the space into quadtree blocks. This recursive decomposition terminates when
it reaches the maximal quadtree blocks totally enclosed in the query window. The initial
call to the algorithm is WindowQuery (w, r), where w is the query window and r is the
quadtree block representing the entire space (the root of the quadtree). With each recursive
call, the algorithm searches for the input quadtree block, b, in the B-tree. b is guaranteed to
overlap the query window, w.

If b is totally enclosed in the query window, w, then all quadtree blocks of the database
enclosed in b qualify as results of the window query operation. We retrieve all these quali-
fying quadtree blocks of the database in one B-tree scan. An important feature of the linear
quadtree is that any quadtree blocks of the database contained in b will appear as conse-
cutive Morton blocks in the B-tree immediately after M}, the Morton block representing b.
Thus, we compute Mpn.x, the maximum possible Morton block totally enclosed in b. This
is the Morton block representing the point in the upper right corner of b, and can easily be
computed by interleaving the bits of the x and y coordinates of this point. A B-tree scan



118 ABOULNAGA AND AREF

algorithm WindowQuery (window w, quadtree block b)
M, = Morton block representing b;
if b is totally enclosed in w then
/* Get all quadtree blocks of database enclosed in b */
Compute Mppmaz;
Perform a B-tree scan for all Morton blocks My < M < Mymaz;
Add object ids corresponding to the retrieved Morton blocks to result set;
else /* w overlaps b without containing it */
/* Check if b is in database */
Perform a B-tree scan for all Morton blocks M = My;
Add object ids corresponding to the retrieved Morton blocks to result set;
/* Recursive application of algorithm */
Decompose b into its four children, sw, nw, se, and ne;
for child in {sw, nw, se, ne} do
if child overlaps w then
WindowQuery (w, child);
end if;
end for;
end if;
end WindowQuery;

Figure 6. The window query algorithm.

using the range predicate M, < M < My, retrieves all quadtree blocks of the database
enclosed in b, which are all results of the window query operation.

If b overlaps the query window, w, without being totally enclosed in it, we perform
a B-tree scan using the equality predicate M = M, to check if b itself is in the database.
However, we cannot retrieve the quadtree blocks of the database contained in b because they
do not necessarily overlap the query window. Instead, we decompose b into its four children
(quadtree sub-blocks), and recursively call the algorithm for the children that overlap the
query window.

The order of the recursive calls to the algorithm should be the same as the Morton order.
This causes the algorithm to generate quadtree blocks in increasing order of Morton blocks.
The B-tree scans for these Morton blocks will traverse the B-tree in a left-to-right order.
Contrary to commonly used buffer management strategies, the best buffer management
strategy for traversing a B-tree left-to-right is last-in first-out [7].

While the algorithm in [6] minimizes the number of I/O’s required to process a window
query, it only works for databases where the spatial objects do not overlap. The algorithm
presented here is more general because it can handle databases where the spatial objects do
overlap.

Our algorithm is similar to the “spatial filter” algorithm presented in [21] in that we make
use of the ability of a B-tree to support range predicates in addition to equality predicates.
A B-tree scan can return all entries satisfying a range predicate by doing a search in the
B-tree followed by a sequential scan of the leaf level. This ability is used in [21] to skip
ahead in the B-tree leaf level past quadtree blocks of the database that are guaranteed not



WINDOW QUERY PROCESSING 119

to overlap the query window. In our algorithm, we use this ability to retrieve all quadtree
blocks of the database that are guaranteed to overlap the query window in one shot. Our
algorithm is much simpler than the spatial filter algorithm in [21], and it accesses the B-
tree using equality and range predicates, which perfectly match the interface offered by
B-trees. Unlike the spatial filter algorithm, our algorithm traverses the B-tree left-to-right,
which is very useful for minimizing I/O’s by using the last-in first-out buffer management
strategy.

5. A cost model for the window query algorithm

For our window query algorithm to be fully integrated in a database system, the query
optimizer must be able to estimate its cost. In this section, we present a cost model that
estimates the I/O cost of processing a window query using our algorithm.

The cost model computes two measures of the I/O cost of a window query in a linear
quadtree: the number of B-tree scans, S, and the number of visits to B-tree nodes, V. The
parameters required to estimate these two measures are the number of leaf nodes of the
B-tree, Nie,, and the height (number of levels) of the B-tree, & 5. These two parameters can
easily be maintained in the database catalog.

The cost model is based on an algorithm that recursively decomposes the space into
quadtree blocks in exactly the same way as the window query algorithm. This cost estimation
algorithm is given in figure 7. The algorithm has three parameters: the query window, w,
the current quadtree block in the decomposition, b, and the level in the quadtree of b, /.
Recall that / is the number of times the space has to be decomposed to get b. The initial
call to the cost estimation algorithm is WindowQueryCostEstimate (w, r, 0), where w is
the query window and r is the root of the quadtree. The number of B-tree scans, S, and

algorithm WindowQueryCostEstimate (window w, quadtree block b, integer )
S=8+1;
V=V+hpg;
if b is totally enclosed in w then
/* Estimate the number of additional B-tree leaf nodes visited */
V=V+ LN—ZFLJ ;
else /* w overlaps b without containing it */
/* Recursive application of algorithm */
Decompose b into its four children, sw, nw, se, and ne;
for child in {sw, nw, se, ne} do
if child overlaps w then
WindowQueryCostEstimate (w, child, I + 1);
end if;
end for;
end if;
end WindowQueryCostEstimate;

Figure 7. A cost model for window queries.



120 ABOULNAGA AND AREF

the number of visits to B-tree nodes, V, are global to the cost estimation algorithm and are
initialized to O before the first call to the algorithm.

The window query processing algorithm recursively decomposes the space into quadtree
blocks until it encounters quadtree blocks that are totally enclosed in the query window. The
cost estimation algorithm emulates the window query algorithm by decomposing the space
into quadtree blocks in exactly the same manner using a similar sequence of recursive calls.

The cost estimation algorithm increments the number of B-tree scans, S, by 1 every time
itis recursively called. Since the sequence of recursive calls to the cost estimation algorithm
matches the sequence of recursive calls to the window query algorithm, and since every
recursive call to the window query algorithm results in exactly one B-tree scan, the cost
estimation algorithm computes an exact value for the number of B-tree scans, S.

The cost estimation algorithm also adds &g, the height of the B-tree, to the number of
B-tree nodes visited, V, each time it is recursively called. Every B-tree scan descends down
the tree from the root to the leaf level visiting exactly one node from every level, for a total
of hp nodes. A B-tree scan may also visit some additional nodes at the leaf level in order
to return all B-tree entries satisfying the scan predicate.

If the current quadtree block, b, overlaps the query window without being totally enclosed
in it, the window query algorithm performs a B-tree scan using an equality predicate, M =
M. In this case, the cost model assumes that all B-tree entries satisfying the scan predicate
are in the same leaf node. This means that no additional nodes are visited at the B-tree leaf
level, so no more nodes are added to V. The cost estimation algorithm decomposes b into its
four children (quadtree sub-blocks) and calls itself recursively for the children overlapping
the query window. Note that the children of quadtree block b are at quadtree level [ + 1.

If the current quadtree block, b, is totally enclosed in the query window, the window
query algorithm performs a B-tree scan using a range predicate, M, < M < Mpmax. In this
case, the scan is very likely to visit additional nodes at the B-tree leaf level.

To estimate the number of additional B-tree leaf nodes visited, recall that the Morton
blocks stored in the B-tree represent quadtree blocks in a two-dimensional space. The scan
predicate, M;, < M < Mpnax, retrieves all quadtree blocks in the B-tree contained in
the area of this two-dimensional space covered by quadtree block b. Since b is obtained
by repeatedly decomposing the space into four quadrants, its area is ;—1 of the area of the
two-dimensional space, where [ is the quadtree level of b. We assume that the quadtree
blocks of the database, which are stored in the B-tree, are uniformly distributed in the two-
dimensional space. Therefore, the scan will retrieve 4% of these quadtree blocks. Retrieving
these quadtree blocks requires visiting (%1 B-tree leaf nodes. The number of additional
leaf nodes visited by the B-tree scan is therefore

’V Nleaf—‘ \‘ NleafJ
—1=
4! 4!

This assumes that % has a fractional part, which we can generally expect to be true.

Thus, when the current quadtree block, b, is totally enclosed in the query window, the
cost estimation algorithm adds L%J to the number of B-tree nodes visited, V, to account
for the additional leaf nodes visited to retrieve all entries satisfying the scan predicate.




WINDOW QUERY PROCESSING 121

Our cost model focuses on the I/O cost of using a linear quadtree and ignores the CPU
cost. For window queries on databases containing complex spatial objects, the CPU cost of
the exact geometry overlap test may not be negligible [3]. However, this CPU cost is not
related to the cost of using a linear quadtree. A linear quadtree is used for the filtering step in
a filter and refine query processing strategy. The linear quadtree identifies a set of candidate
objects that potentially qualify as result objects. The CPU cost of this step is very low. In
the refinement step, the exact geometry of these candidate objects is tested to see which of
them actually overlap the query window [19]. This CPU intensive exact geometry overlap
test is completely independent of the linear quadtree. Thus, while CPU cost is important in
estimating the overall cost of a window query, it can safely be ignored when estimating the
cost of using a linear quadtree.

6. Experimental evaluation

In this section, we experimentally verify the accuracy of our cost model. A more compre-
hensive experimental evaluation can be found in [2]. Recall that the number of B-tree scans,
S, is computed exactly by our cost model. The goal of this section is therefore to verify the
accuracy of the cost model only in estimating the number of B-tree nodes visited, V.

Figure 8. The Baltimore data set.



122 ABOULNAGA AND AREF

Figure 9. The DC data set.

The experiments in this section use two real data sets and one synthetic data set. The real
data sets consist of road maps of Washington, DC and Baltimore obtained from the U.S.
Bureau of Census TIGER/Line database (http://www.census.gov/ftp/pub/geo/www/tiger/).
Figures 8 and 9 show the Baltimore and DC data sets, respectively. We construct the
minimum bounding rectangle of each road and normalize these rectangles to a 4096 x
4096 space. This results in 19,896 and 11,165 rectangles for the Baltimore and DC data
sets, respectively. The synthetic data set consists of 15,000 rectangles of area 1024 uniformly
distributed in a 4096 x 4096 space.

The linear quadtrees for these data sets are built by decomposing each data rectangle
into at most 50 quadtree blocks. The quadtree blocks obtained by this decomposition are
an approximate representation of the data rectangles. These quadtree blocks are stored as
Morton blocks in B-trees with 50 elements per node. The number of elements per B-tree
node is set artificially low to correspond to the relatively small number of objects in our
data sets.

To verify the accuracy of the cost model, we generate rectangular query windows of 8
different sizes (areas), ranging from 0.06% to 6.25% of the area of the space. We generate
20 different query windows of each size and use each window to query the linear quadtree
using our window query algorithm. We count the number of B-tree nodes visited by the
algorithm for each window query. For each window query, we also estimate the number of
B-tree nodes visited using our cost model.



WINDOW QUERY PROCESSING 123

30
—e— Estimated ,l
| -#--Measured - f

Nodes Visited (Thousands)
e - N [\e]
o o = o

19) ]

0 ! 1 | 1 L 1
0% 1% 2% 3% 4% 5% 6%
Window Area (% of Space)

Figure 10. Accuracy of the cost model for the DC data set.

35 —

—e— Estimated
- a--Measured

Nodes Visited (Thousands)
—_ —_ ()] [\*] (5]
o o o [4)] o

&)

0 L ] ] ] 1 L
0% 1% 2% 3% 4% 5% 6%
Window Area (% of Space)

Figure 11. Accuracy of the cost model for the Baltimore data set.



124 ABOULNAGA AND AREF

—e— Estimated
- m--Measured

no
[4)]

o
o

Nodes Visited (Thousands)
= o

(&)}

0 | | | 1 1 I
0% 1% 2% 3% 4% 5% 6%
Window Area (% of Space)

Figure 12. Accuracy of the cost model for the synthetic data set.

Figures 10-12 show the average estimated and measured number of B-tree nodes visited
at each query window size for the three data sets used. The figures clearly show that the
number of nodes visited is very accurately estimated by our cost model.

7. Conclusions

In this paper, we presented an algorithm for window queries in linear quadtrees. The algo-
rithm is based on recursively decomposing the space into quadtree blocks and searching
for these quadtree blocks in the B-tree. The algorithm is much simpler than previously
proposed algorithms, and it works for query windows of arbitrary shape and databases
with overlapping spatial objects. It uses equality and range predicates to access the B-tree,
which perfectly matches the interfaces B-trees usually provide, and it traverses the B-tree
left-to-right allowing us to minimize the number of I/O’s by using the appropriate last-in
first-out buffer management strategy.

We also present a cost model for estimating the I/O cost of our window query algorithm.
The cost model accurately estimates the number of B-tree scans and the number of visits to
B-tree nodes required to process a window query. It is based on a recursive decomposition
of the space just like the window query algorithm, and it uses two parameters that are easily
maintained in the database catalog. The accuracy and simplicity of the cost model make it
very useful for query optimization.



WINDOW QUERY PROCESSING 125

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25

. D.J. Abel and D.M. Mark, “A comparative analysis of some two-dimensional orderings,” Int. Journal of

Geographical Information Systems, vol. 4, no. 1, pp. 21-31, 1990.

. A. Aboulnaga, “An algorithm and a cost model for window queries in spatial databases,” Master’s thesis,

Faculty of Engineering, Alexandria University, Alexandria, Egypt, 1996.

. A. Aboulnaga and J.F. Naughton, “Accurate estimation of the cost of spatial selections,” in Proc. IEEE Int.

Conf. on Data Engineering, San Diego, California, March 2000, pp. 123-134.

. S. Acharya, V. Poosala, and S. Ramaswamy, “Selectivity estimation in spatial databases,” in Proc. ACM

SIGMOD Int. Conf. on Management of Data, June 1999, pp. 13-24.

. P. Aoki, “How to avoid building DataBlades that know the value of everything and the cost of nothing,” in

Proc. Int. Conf. on Scientific and Statistical Database Management, Cleveland, Ohio, July 1999.

. W.G. Aref and H. Samet, “Efficient window block retrieval in quadtree-based spatial databases,” Geolnforma-

tica, vol. 1, no. 1, pp. 59-91, 1997.

. H.-T. Chou and D.J. DeWitt, “An evaluation of buffer management strategies for relational database systems,”

in Proc. Int. Conf. on Very Large Data Bases, Stockholm, Sweden, August 1985, pp. 127-141.

. D. Comer, “The ubiquitous B-tree,” ACM Computing Surveys, vol. 11, no. 2, pp. 121-137, 1979.
. C. Faloutsos, “Gray codes for partial match and range queries,” IEEE Transactions on Software Engineering,

vol. 14, no. 10, pp. 1381-1393, 1988.

C. Faloutsos and I. Kamel, “Beyond uniformity and independence: Analysis of R-trees using the concept
of fractal dimension,” in Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), Minneapolis, Minnesota, May 1994, pp. 4-13.

C. Faloutsos and S. Roseman, “Fractals for secondary key retrieval,” in Proc. ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS), Philadelphia, Pennsylvania, March 1989,
pp. 247-252.

V. Gaede and O. Giinther, “Multidimensional access methods,” ACM Computing Surveys, vol. 30, no. 2,
pp. 170-231, 1998.

I. Gargantini, “An effective way to represent quadtrees,” Communications of the ACM, vol. 25, no. 12,
pp. 905-910, 1982.

A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Proc. ACM SIGMOD Int. Conf.
on Management of Data, June 1984, pp. 47-54.

H.V. Jagadish, “Linear clustering of objects with multiple attributes,” in Proc. ACM SIGMOD Int. Conf. on
Management of Data, 1990, pp. 332-342.

I. Kamel and C. Faloutsos, “On packing R-trees,” in Proc. 2nd Int. Conference on Information and Knowledge
Management, Washington, DC, November 1993, pp. 490-499.

G.M. Morton, “A computer oriented geodetic data base and a new technique in file sequencing,” IBM, Ottawa,
Canada, Technical report, 1966.

Oracle Corporation. Oracle Spatial User’s Guide and Reference, 1999. Available from http://technet.
oracle.com/products/spatial/.

J.A. Orenstein, “Spatial query processing in an object-oriented database system,” in Proc. ACM SIGMOD
Int. Conf. on Management of Data, May 1986, pp. 326-336.

J.A. Orenstein, “Redundancy in spatial databases,” in Proc. ACM SIGMOD Int. Conf. on Management of
Data, June 1989, pp. 294-305.

J.A. Orenstein and F.A. Manola, “PROBE spatial data modeling and query processing in an image database
application,” IEEE Transactions on Software Engineering, vol. 14, no. 5, pp. 611-629, 1988.

B.-U. Pagel, H.W. Six, H. Toben, and P. Widmayer, “Towards an analysis of range query performance in
spatial data structures,” in Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), Washington, DC, May 1993, pp. 214-221.

H. Samet, “The quadtree and related hierarchical data structures,” ACM Computing Surveys, vol. 16, no. 2,
pp- 187-260, June 1984.

H. Samet, Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS, Addison-
Wesley: Reading, MA, 1990.

H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley: Reading, MA, 1990.



126 ABOULNAGA AND AREF

26. H. Samet and M. Tamminen, “Computing geometric properties of images represented by linear quadtrees,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 7, no. 2, pp. 229-240, 1985.

27. A.S.Szalay, P.Z. Kunszt, A. Thakar, J. Gray, D. Slutz, and R.J. Brunner, “Designing and mining multi-terabyte
astronomy archives: The Sloan Digital Sky Survey,” in Proc. ACM SIGMOD Int. Conf. on Management of
Data, Dallas, Texas, May 2000, pp. 451-462.

28. Y. Theodoridis and T. Sellis, “A model for the prediction of R-tree performance,” in Proc. ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), Montreal, Canada, June 1996,
pp. 161-171.



