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Problem Statement

A group of robots deployed in an environment (in any arbitrary initial
configuration) is moved to optimal locations that maximize the
overall sensing/coverage performance.

Certain robots are attacked by adversaries (such as GNSS
spoofing/ Denial of Service) resulting in disruption of coverage task
and the underlying network topology.

Our goal is to move the robots to cover a desired area while
ensuring that they remain well-connected and collaboratively
protect/guide each other under unknown localization drifts/failures
caused by faults or cyberattacks.
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lllustration of multi-robot coverage control for environmental
monitoring during wildfire. Our proposed distributed approach
ensures the coordination of the network of robots even when some
robots become attacked while executing the mission.

Bearing Maintenance For Coverage Control

Rigidity theory investigates the flexibility of graph networks, classically

studied for bar-and-joint framework.

Multi-agent system (MAS) can be viewed as joints and their sensing
network as an invisible bars connecting them!'l.

We transform the coverage control problem into rigidity maintenance
of a network (or structure) formed by robots (as joints) and their virtual
sensing and communication links (as bars) as it is scaled and translated
In space.
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Bearing-rigidty equips the MRS to have the following key properties
essential for resilient MRS operations::

* Decentralized self-localizationl-2!

* Formation stabilization!?

* Reconfiguration!®

Key ldea: Given a feasible target configuration, the MRS should be

steered towards it while maintaining a constant bearing formation
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Robot positions and Voronoi partitions along with bearing formation
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Coverage performance with increasing weights on bearing
maintenance
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* We are only required to search locally for the contractible edges
among the 2 —hop neighbors of the robot.

* Check all possible contractible edges for the neighbor of each
robot in the MRS network.
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Rigidity recovery in the event of loss of robot 4. The neighbors of robot 4,
l.e., robots 1,5, 6, and 7, utilize the rigidity recovery algorithm to
identify (1,6) and (1, 7) as the new set of edges for rigidity recovery.
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Simulation Results
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