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Abstract
Prime numbers play a crucial role in number theory, cryptography, and computational mathematics. This poster presents a computational

analysis of modular biases in prime-generating functions of the form: f(a,b,x,c) =

a*+b

- where (a, b, ¢) are integers, x is a positive

integer exponent, and f(a, b, x, ¢) is tested for primality. Numerical experiments reveal a strong bias when b = 0 mod 15, indicating a
structured influence of modular arithmetic on prime density. Applications include algorithmic number theory, prime-search heuristics, and

cryptographic key generation.

Key Discovery

 Computational analysis shows a significant modular bias when
b = 0mod 15
Functions with b = 0 mod 15 appear far more frequently among
top prime-generating functions than expected.
The effect is most pronounced at the highest-performing levels

and diminishes as broader function sets are analyzed.

Empirical Findings

We carried out computational analysis to examine the distribution
of high-performing prime generating functions in relation to b =
0 mod 15. The results showed the following:

Functions withb = 0 Likelihood Compared to

Subset

HhE mod 15 Random (6.67%)
Top 50 30 (60%) 9x more likely
Top 100 57 (57%) 8.5x more likely
Top 1% (1125 230 (20.4%) 3x more likely
functions)
Top 5% (5625 854 (15.2%) 2.3x more likely
functions)
Top 20% (22,500 2040 (9.1%) 1.4x more likely
functions)
Top 50% (56,251 3554 (6.3%) 0.94x more likely
functions)

Qoo

Density Comparison to Random Distribution

Since the dataset contains 112,503 prime-generating functions, the

expected random occurrence of b = 0 mod 15 should be around

1
— = 6.679
15 /

Compared to this we see we see top 50 functions ~ 9 times more
likely than random, top 100 functions ~ 8.5 times more likely etc.

Probability Decline with sample Set

The probability of b = 0 mod 15 influencing prime generation
sharply declines as the sample size increases.

Discussion

This demonstrates that while the modular conditions greatly
increases the chance of appearing in the top prime-generating

functions, its influence diminishes as more functions are
considered. The effected is highly concentrated at the extreme
high-end but does not apply universally.

Significance and Applications

Number Theory: Enhances understanding of prime
distributions and modular properties.

Cryptography: Structured biases in prime generation could
impact key generation.

Computational Mathematics: Optimized algorithms for

prime searching.

Future Work

Extend analysis to a broader range b € [—5000,5000]
Investigate other modular conditions (e.g. b = 0 mod 30) to
see if they exhibit similar biases.

Develop a formal mathematical proof for the observed
modular prime bias and understand why b = 0 mod 15
exhibits this effect.

Further refining the dataset to confirm trends in prime
generation bias across different modular conditions.

Conclusion

This research provides empirical evidence of a strong modular
prime bias in exponential prime-generating functions,
particularly when b = 0 mod 15. The findings suggest an
underlying structure in modular arithmetic that influences prime
formation. Future work will focus on formalizing theoretical
justifications and expanding computational validation.
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