
OPUS: Preventing Weak Password Choices�

Purdue Technical Report CSD–TR 92–028

Eugene H. Spafford
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907–1398

spaf@cs.purdue.edu

June 1991

Abstract

A common problem with systems that use passwords for auth-
entication is that users choose weak passwords. Weak passwords
are passwords that are easy to guess, simple to derive, or likely to
be found in a dictionary attack. Thus, the choice of weak passwords
may lead to a compromised system.

Methods exist to prevent users from selecting and using weak
passwords. One common method is to compare user choices against
a list of unacceptable words. The problem with this approach is the
amount of space required to store even a modest-sized dictionary
of prohibited password choices.

This paper describes a space-efficient method of storing a dictio-
nary of words that are not allowed as password choices. Lookups
in the dictionary are O(1) (constant time) no matter how many
words are in the dictionary. The mechanism described has other
interesting features, a few of which are described here.

1 Introduction

Reusable passwords are a commonly-used and well-studied method of
authentication.[25] A unique sequence of characters is presented to the

�

Versions of this paper have appeared as [23] and [24].

1



system when identification is needed. This sequence is then compared
with a stored sequence, perhaps after some transformation (e.g., encryp-
tion). A match provides the proof of identity. Passwords are commonly
used because they are usually inexpensive to implement and adminis-
ter, and because they offer a familiar paradigm to users. It is likely
that reusable passwords will continue to be used in systems for these
reasons.

One weakness with reusable password systems is the choice of the
password. If the choice of possible characters to use in the password
is too small, or if the overall length of the password is too short, the
password may be compromisable. Even a rich character set may not be
sufficient to create secure passwords if the combination of characters
is restricted to an arbitrary set of possibilities. Thus, good password
choice should avoid common words and names (cf. [1, 6, 11, 13, 16]).

As a commonly-used example, consider the UNIX1 password system.[13]
The current password mechanism is based on a cryptographic transfor-
mation of a fixed string of zero bits, using the user-supplied password
as a key. The transformation is normally an altered version of DES en-
cryption, performed 25 times. The transformation is sufficiently slow so
that exhaustive keyspace attacks are currently not practical, although
fast implementation such as deszip,[3] can perform many thousands or
tens of thousands of comparisons per second.

In UNIX, the encrypted version of the password has traditionally
been kept in a world-readable file; the safety of the passwords has
been protected by the time-complexity of an exhaustive attack. Thus,
one of the factors in the safety of UNIX passwords is a large potential
keyspace for passwords. If the full character set is used, and six-to-
eight-character passwords are chosen, the number of potential pass-
words to be searched is far too large to be successfully searched, even
at high speed.2 Unfortunately, in UNIX and other systems, users of-
ten select passwords that do not exploit the large keyspace available.
Instead, they choose common words and names, or simple transforma-
tions of those names. This greatly simplifies an attacker’s task if these
common words are searched first.

1
UNIX is a trademark of Unix System Laboratories, Inc.

2
Assuming a usable characterset of 120 characters, there are43,359,498,756,302,520

(4:34�1016) possible passwords of length one through eight. At 50,000 attempts per sec-
ond, an exhaustive search of this keyspace would require over 27,480 years to complete.

2



This tendency to select weak3 passwords has led to a number of
system break-ins, some quite highly publicized: cf. [15, 19, 21, 22, 27].
Current technology is such that construction of a large pre-encrypted
dictionary on-line using optical disks is easily done. By creating such
a dictionary, a password search and attack may be easily conducted in
a matter of seconds. Without such a database, but using a tool such
as deszip on a modern workstation, it is possible to make a full scan
of 500,000 dictionary entries against several hundred passwords in a
matter of a few hours or days.

Despite wide-spread publication of good password policy and the
risks inherent in bad passwords, users continue to select weak pass-
words. This is a continuing threat to the best-managed systems. (For
example: [2, 8, 9, 10, 11, 12, 16, 20, 26, 28].)

There are four basic methods for a system administrator to enforce
better reusable password security on a computer system:

1. Educate and encourage users to make better choices of passwords.

2. Generate strong passwords for users and do not allow them to
choose passwords of their own creation. This is often done using
some random password generator.

3. Check passwords after-the-fact and force users to change those
that can be easily broken with a dictionary attack.

4. Screen users’ password choices and prevent weak ones from being
installed.

This first method, that of educating users to choose strong pass-
words, is not likely to be of use in environments where there is a sig-
nificant number of novices, or where turnover is high. Users might not
understand the importance of choosing strong passwords, and novice
users are not the best judges of what is “obvious.” For instance, novice
users (mistakenly) may believe that reversing a word, or capitalizing
the last letter makes a password “strong.” Also, no matter how good the
education may be, some users may forget, or may believe that it is not
significant to follow the guidelines, leading to a transient (or long-term)
endangerment.

3
Strength being defined as the ability to resist an attack of repeated, non-random

trials, and weakness as its opposite.

3



A further problem is if the education provided to users on how to
select a password is itself dangerous. For instance, if the education
provided gives users a specific way to create passwords — such as using
the first letters of a favorite phrase — then many of the users may use
that exact algorithm, thus making an attack easier.

The second method of strengthening passwords is to generate the
passwords for the users and not allow them the opportunity to select a
weak password. For this mechanism to work well the passwords need
to be randomly drawn from the whole keyspace. Unfortunately, this
method also has flaws. In particular, the “random” mechanism chosen
might not be truly random, and could be analyzed by an attacker. Fur-
thermore, random passwords are often difficult to memorize (especially
if they are changed (aged) regularly). As a result, users may write
the passwords down, thus providing an opportunity to intercept them
without the effort of a dictionary search.

The third method of preventing poor password choice is to scan the
passwords selected, after they are chosen, to see if any are weak. This
is supported by many systems, including deszip and COPS.[5] There are
significant problems with this approach:

� The dictionary used in the search may not be comprehensive
enough to catch some weak passwords. Outside attackers might
scan for these choices, but the system password scanner would not
include them in the search.

� The scanning approach takes time, even for a fast implementation.
A lucky (or determined) attacker may be able penetrate a system
through a weak password before it is discovered by the scanner.
This is especially a problem in an environment with a very large
number of users and systems.

� The output of a scanner may be intercepted and used against the
system.

Additionally, there is not always a correlation between finding a weak
password and getting it replaced with a stronger one. At many univer-
sities, for example, faculty members have repeatedly been informed of
the weakness of their passwords as exposed by a scanner, but they have
not chosen new passwords in years. The administration of university
systems is such that it is usually impossible to force faculty members to

4



choose better passwords. In many business and government settings, it
is likewise difficult to get higher-level managers to change their pass-
words.

The fourth method, that of disallowing the choice of poor passwords
in the first place, appears to have none of the drawbacks mentioned
above. However, it too has difficulties associated with it. In particular,
the storage required to keep a sufficiently large dictionary may pre-
vent this method from being used on workstations and small computer
systems. For instance, the standard UNIX dictionary, /usr/dict/words, is
about 25,000 words and 200,000 bytes of space. A dictionary of 10 to 20
times that size would be necessary for reasonable protection; there are
over 170,000 words in Webster’s New World Dictionary, and that would
occupy well over a million bytes of disk storage. That figure does not
include many slang and colloquial words and phrases, nor does it in-
clude any user names, local names and phrases, likely words in foreign
languages, or other strings shown to be poor password choices. A mod-
erately comprehensive dictionary I have used in password research has
over 500,000 entries, and requires over five million bytes of storage. My
full-fledged collection of dictionaries, including words in 11 foreign lan-
guages, proper names, an atlas, and a collection of slang terms, occupies
almost 25 megabytes of storage.

Maintaining a large dictionary is also difficult. To add new words
or phrases means that the dictionary must have additional space over-
head for indexing or it must be sorted after each addition — otherwise,
lookups take time proportional to the length of the dictionary. In small
computer environments, neither of these alternatives may be appropri-
ate.

2 The OPUS Approach

The OPUS Project4 is intended to address the space problems associated
with a sufficiently complex password screening dictionary. The goal is to
derive a mechanism that provides protection equivalent to a comparison
against a large dictionary, yet be small enough to be practical in a small
computer environment.

4
Obvious Password Utility System.

5



2.1 The Dictionary Filter

The central component of this system is a Bloom filter-encoded version
of the wordlist to be used.[4] A Bloom filter is a well-studied proba-
bilistic membership checker, often used in applications such as spelling
checkers.[14, 17, 18] It works as follows: a word to be entered into the
filter is passed through n independent hash functions generating dis-
crete values. Each of these values is used as an index into the filter,
represented as an array of boolean values. These locations (one per hash
function) corresponding to the input word are then set. This procedure
is repeated for each word to be entered into the filter.

When a lookup is to be performed, the word to be examined is passed
through the same hash functions and the corresponding locations in the
filter are examined. If any of the bits is false (i.e., not set), then the word
is determined not to be present in the dictionary. If all the corresponding
values are true, the likelihood is high that the word was in the list that
was used to build the dictionary. In the case of OPUS, this means the
choice is rejected as a weak password choice. The probability of a false
rejection can be set arbitrarily low by increasing the size of the bitmap
and increasing the number of hash functions used; an obvious upper
bound on the size of the hash table is the size of the plaintext dictionary.
In practice, a much smaller filter gives very good results.

To be more exact, assume we have a hash table of N bits, and d

independent, uniform hash functions. From [4], with n words we have
the proportion of bits left unset, �, equal to

� = (1�
d

N
)
n

A word will be falsely shown as present in the dictionary if and only
if it hashes to a set of bits that are all set. The expected proportion,
P , of words in the input space that will be mistakenly shown as in the
dictionary is thus

P = (1� �)d

From these equations, we can derive appropriate values to choose for
our filter and hash functions.

For example, suppose we pick n = 250; 000 words for the dictionary,
and we wish to have a 0.5% chance (P = 0:005, i.e., one out of 200)
of false positives on any arbitrary text string chosen from the entire
input alphabet. If we choose six uniform hash functions, we will need

6



2,800,000 bits of storage and achieve � = 0:586. This works out to a file
of 350K bytes. Doubling the chance of false positives to 1% (P = 0:01)
results in needing only 300K bytes of storage for the dictionary with
six hash functions. Storing the full dictionary as plaintext would likely
take in excess of 2 Mb of storage. Thus, we are able to achieve almost
a seven-fold compression with only a small loss of accuracy. In the
case of weak passwords, however, the input space is not uniform, and
better compression may be achievable; my preliminary experiments
have achieved compression ratios of better than twelve-to-one, and as
high as fifteen-to-one on restricted wordlists.

As can be seen from the above examples, with the appropriate choice
of hash functions it is possible to greatly reduce the storage necessary
to keep an extensive dictionary of words to compare against password
choices. By making queries on the dictionary with variations of the
candidate password — upper/lower case, reversed, trailing digit, etc. —
it should be possible to quickly check for the strength of the password.
Each probe into the dictionary is basically a constant-time operation,
so the number of words in the dictionary has no effect on the time of
access. If the disjunction (union) of all the probes results in a positive
response, the user is told to try again.

2.2 Other Features

The model of the dictionary used in OPUS provides benefits other than
simple dictionary lookup — which, by itself, is implemented well in
many other systems such as “Password Coach” by Baseline Software.[7]
By providing a writable interface to the dictionary for the system ad-
ministrator, it is a simple task to add the representation of new words to
the dictionary. The administrator can therefore augment the dictionary
with local user names and colloquialisms. Adding words to the dictio-
nary requires no expensive sorting or temporary storage. Furthermore,
the system administrator never needs to be concerned if a word has
already been added — adding a word more than once has no effect.

The OPUS system also supports password aging. With password ag-
ing, users are required to change their passwords periodically. However,
a common fault with password aging is that users attempt to reuse old
passwords, and this may present a security risk. Password aging is
usually handled by saving old password strings and comparing them
all against future choices. This may represent a significant amount of

7



storage and frequent changes.
OPUS can be configured so that whenever a password is changed,

it is added to the dictionary. Thus, if a user attempts to reuse an old
password, she will find it already in the dictionary, and the choice will
not be allowed. As seen from the value of �, above, there is plenty of room
in the dictionary for adding new words, so even prolonged operation will
not result in a noticeable degradation of service. However, simple steps
need to be taken to prevent very frequent changes of passwords that
might degrade the filter, such as putting a minimum time for which
a new password must be kept before a change is again allowed. No
additional allocation of space is needed to support this change.

One obvious problem with updating the dictionary in this manner
is the possibility of an attacker using delta information to craft a set
of password attempts. That is, by observing the changes made to the
filter when another user changes his password, an attacker might be
able to use the hash functions to derive a set of possible text strings that
account for the changes, and use these in a penetration attempt.

A related problem is if an attacker finds a way to use the dictionary
as a filtering mechanism to exclude patterns when doing a brute-force
keyspace search to break passwords. Doing a probe into the filter will
determine if a candidate is a possible choice or not, thus saving (some)
on the computation required to perform an exhaustive search.

Luckily, there is a simple way to defeat these problems. Instead
of hashing plaintext words into the dictionary, OPUS first encrypts the
words to be entered or examined. The encryption must be something
time-consuming, similar to multiple rounds of the DES function, com-
putationally infeasible to reverse, and basically uniform in mapping to
the output alphabet. The hashing algorithms are then applied to the
encrypted string rather than to the plaintext. Thus, to gain any in-
formation from the filter, either as a pre-screen or as a source of delta
information, would require more computational effort than some other
approach (e.g., exhaustive keyspace search).

To further confound attackers, the key used to encrypt the input
words should either be site-selectable, or generated as a function of
the input word itself. For instance, if something similar to the UNIX

mechanism is used, the first and last letter of the input word, converted
to uppercase, could be used as the “salt.” As there is never a reason
to recover words from the filter, this choice of key is something that
probably cannot be recovered unless the plaintext word is known.

8



3 Final Remarks

This paper has discussed the motivations and design behind a sys-
tem for preventing users from installing weak passwords. The system
should be compact and simple to customize and enhance. It can be used
standalone, as a front-end to an existing password program, or coupled
with some form of password generator so as to prevent the accidental
generation of a word susceptible to dictionary attacks.

The choice of hashing algorithms used with the system is critical for
the success of the filter. Choosing non-uniform or overlapping hash al-
gorithms reduces the effectiveness of the Bloom filter by increasing the
incidence of false positives (effectively shrinking the number of useful
bits employed). When possible, the hash algorithms should be chosen
to produce the same results whether used on a string or on its reverse.
This will allow probes for common words and their reverses to be made
simultaneously. Case-insensitivity can also be used in the hash func-
tions, but this may result in too great a narrowing of the keyspace;
words in monocase, or with only a leading or trailing capital letter are
perhaps the only combinations that need to be examined.

A UNIX version of OPUS is being constructed. It will be preloaded
with a locally-developed dictionary of as many as 500,000 strings. Ex-
periments will then be conducted to determine, for this dictionary, the
optimal working size and number of hash functions. Further experi-
ments will determine the accuracy rate for rejection of candidate pass-
words that are not present in the real dictionary, and the speed of
operation. By performing side-by-side experiments with users selecting
potential passwords and comparing a dictionary search with the results
of the Bloom filter, it should be possible to determine the operational
utility of this approach.

References

[1] Ana Maria De Alvaré. How crackers crack passwords, or what
passwords to avoid. Technical Report UCID–21515, Lawrence Liv-
ermore National Laboratory, 1988.

[2] Ana Maria De Alvaré and Jr. E. Eugene Schultz. A framework
for password selection. Technical Report UCRL-99382, Lawrence
Livermore National Laboratory, 1988.

9



[3] M. Bishop. An application of a fast data encryption standard im-
plementation. Computing Systems, 1(3):221–254, 1988.

[4] Burton H. Bloom. Space/time trade-offs in hash coding with al-
lowable errors. Communications of the ACM, 13(7):422–426, July
1970.

[5] Daniel Farmer and Eugene H. Spafford. The COPS security
checker system. In Proceedings of the Summer Usenix Conference.
Usenix Association, June 1990.

[6] Simson Garfinkel and Gene Spafford. Practical Unix Security.
O’Reilly & Associates, Inc., Sebastapol, CA, 1991.

[7] Harold Joseph Highland. How to prevent the use of weak pass-
words. EDPACS Newsletter, XVIII(9), March 1991.

[8] David L. Jobusch and Arthur E. Oldehoeft. A survey of pass-
word mechanisms: Weaknesses an potential improvements. part
2. Computers & Security, 8(8):675–689, 1989.

[9] David L. Jobusch and Arthur E. Oldehoeft. A survey of pass-
word mechanisms: Weaknesses and potential improvements. part
1. Computers & Security, 8(7):587–603, 1989.

[10] Daniel V. Klein. A survey of, and improvements to, password se-
curity. In UNIX Security Workshop II, pages 5–14. The Usenix
Association, August 1990.

[11] Belden Menkus. Understanding password compromise. Computers
& Security, 7(5):475–481, December 1988.

[12] Chris Mitchell and Michael Walker. The password predictor — a
training aid for raising security awareness. Computers & Security,
7(5):475–481, October 1988.

[13] Robert Morris and Ken Thompson. Password security: a case his-
tory. In Unix Programmer’s Supplementary Documentation. AT&T,
November 1979.

[14] James K. Mullin. A second look at Bloom filters. Communications
of the ACM, 26(8):570–571, August 1983.

10



[15] Neil Munro. Simple password opens navy computer to hacker.
Government Computer News, 7(15):61, July 1988.

[16] National Computer Security Center. Password management
guideline. Technical Report CSC-STD-002-85, US Department of
Defense, 1985.

[17] Robert Nix. Experience with a space efficient way to store a dictio-
nary. Communications of the ACM, 24(5):297–298, May 1981.

[18] M. V. Ramakrishna. Practical performance of Bloom filters
and parallel free-text searching. Communications of the ACM,
32(10):1237–1239, October 1989.

[19] Brian Reid. Reflections on some recent computer break-ins. Com-
munications of the ACM, 30(2):103–105, February 1987.

[20] Bruce L. Riddle, Muray S. Miron, and Judith A. Semo. Passwords
in use in a university timesharing environment. Computers &
Security, 8(7):569–578, 1989.

[21] Donn Seeley. Password cracking: A game of wits. Communications
of the ACM, 32(6):700–703, June 1989. 1989.

[22] Eugene H. Spafford. The Internet Worm: Crisis and aftermath.
Communications of the ACM, 32(6):678–687, June 1986.

[23] Eugene H. Spafford. Preventing weak password choices. In Pro-
ceedings of the 14th National Computer Security Conference, pages
446–455, Oct 1991.

[24] Eugene H. Spafford. Opus: Preventing weak password choices.
Computers & Security, 11(3):273–278, 1992.

[25] Eugene H. Spafford and Stephen A. Weeber. User authentication
and related topics: An annotated bibliograph. Technical Report
91–086, Purdue University, Department of Computer Sciences, De-
cember 1991.

[26] Cliff Stoll. How secure are computers in the U.S.A.? an analysis
of a series of attacks on MilNet computers. Computers & Security,
7(6):543–547, 1988.

11



[27] Cliff Stoll. The Cuckoo’s Egg. Doubleday, NY, NY, October 1989.

[28] Patrick H. Wood and Stephen G. Kochan. Unix System Security.
Hayden Book Company, 1987.

12


