
D
R

A
FT

COAST Vulnerability Database Reference Guide - Draft Version

Ivan Krsul�

Technical Report 97-12y

COAST Laboratory
Purdue University

West Lafayette, IN 47907–1398
krsul@cs.purdue.edu

February 27, 1998

1 Introduction

The vulnerability collection at the Computer Operations, Audit, and Security Technology (COAST) lab consists of a
structured vulnerability database; a collection of several thousand vulnerability related files, mailings and articles; and
a directory of vulnerability related tools that include exploit scripts, hacker tools, analysis tools, etc.

This document describes the vulnerability collection, the vulnerability database program, and the vulnerability
database WWW interface. It isstrongly encouragedthat you read through the entire document before you use the
collection or the database for the first time.

There is a mailing list calledvdb-info@cs.purdue.edu where all changes to the structure of the database
(classifiers, fields, etc.) should be announced. General announcements regarding the database will also be sent to that
mailing list.

If you are accessing the collection at the COAST lab, the information should only be accessed by logging into the
machine landover and changing your directory to
tt /homes/krsul/vdbase. The information in that directory tree must never be copied to another directory or another
machine.

2 Terms for Access to the Database

The information contained in the Vulnerability collection at the COAST laboratory is provided to students and COAST
sponsors and collaborators on a case by case basis. To request copies or access to the collection please contact Eugene
Spafford atspaf@cs.purdue.edu.

Please read the rest of this document before requesting access to the vulnerability collection.
All the information contained in the collection should be considered sensitive because it contains material that can

be misused and has the potential of causing damages to people and/or computer equipment. As a student or researcher
accessing this collection, you must take appropriate precautions:
� The information in the collection has been collected from publicly accessible sources (such as mailing lists,

newsgroups, etc.). You shouldneverenter into the database or collection proprietary information, trade secrets,
information for which a non-disclosure agreement has been signed, etc. Help keep our lawyer fees low.

�Portions of this work were supported by sponsors of the COAST Laboratory
yThis technical report is updated constantly. The tables, decision trees, procedures, etc., are under constant revision. Hence,

the document will remain an official COAST Laboratory draft. The latest version of this technical support is available in
ftp://coast.cs.purdue.edu/pub/COAST/papers/krsulvdbref. fpdf,ps g. The document can be cited if the date of the draft is
clearly indicated.

1

D
R

A
FT

� The information should never be posted to any mailing lists, newsgroup, or placed onftp , gopher or http
servers. As a researcher you are being given material that is potentially harmful and you must exercise some
social responsibility. If you think someone else should have this informationdo not give it to them without
contacting Spaf atspaf@cs.purdue.edu.

� The information contained in this collection shouldneverbe used to crack, hack, or break into machines without
the explicit authorization (and we do meanexplicit) of the administrator and owner of that machine.

� When in doubt, do the safe thing. Contact Spaf or Ivan Krsul atspaf@cs.purdue.edu orkrsul@cs.purdue.edu
or call us at (765) 494-9313.

If you are accessing the collection at the COAST lab, the information should only be modified by logging into the
machinelandover.cs.purdue.edu and changing your directory to the vulnerability database directory. The
information in that directory tree must never be copied to another directory or another machine.

If you are a student at the COAST lab or the computer science department, and are being given access to the collec-
tion, you are expected to contribute to it by adding records to the structured database. There is a Java based interface
that you must use and, while modifying information, you must be careful to add your name to the “modifications” field
so that there can be a record of what changes you have made to the collection. If you do not contribute to entering and
polishing the structured database, your access rights to the database may be removed.

3 Structure of the Collection and Database

The directories relevant to the collection are:

The collection: VDBCOLL= /homes/krsul/vdbase

The structured database: VDB= VDBCOLL /vdb/

Index file for vulnerability database: VINDEX= VDBCOLL /vdb/Vulnerabilities

Directory for classifiers: CLASSD= VDBCOLL /vdbclassifiers

File that contains the schema definition for the database:VDBSCH= VDBCOLL /vdbfield list

Directory where the Java Graphical User Interface (GUI) is: JAVAGUI= VDBCOLL /vdb/javaprogs

Directory where the source code for the Java GUI is:JAVAGUIDEV= VDBCOLL /vdb/javaprogsdev

Directory where all the perl based programs are: PERLTOOLS= VDBCOLL /perl

Directory for the MIME included files: MIMEINCLUDES= VDBCOLL /vdbincludes

Directory for HTTP server and cgi-scripts : HTTPD= VDBCOLL /httpd

We have a collection of vulnerability-related files, tools, exploit scripts, etc. that is inVDBCOLL/relatedstuff .
There is no documentation on this part of the collection. You are on your own. Sorry.

The structured database is a collection or records that have a number of fields defined in the fileVDBSCH. The
fields can be of various types, including text, list, choice list, matrix classifier and hierarchical classifiers. All fields
where you can type text are considered to be multi-valued (i.e. you can add as many lines as you wish) and all the
fields where you can type text support the inclusion of arbitrary Multipurpose Internet Mail Extensions (MIME) parts.
See section 10 for a detailed description of the format of this file.

The fields of records are stored in individual files, using the file system as a database manager of sorts. The
database directory has a subdirectory for each field in the schema, and in those directories we have a directory for each
database record ID that has the field defined, and in that directory a file (calledV) that contains the value for the field.
If the field has a confidence rating then the value for that rating will be stored in a file calledR in the same directory.

If the field is a text field and it has an included MIME part, this part will be stored in theMIMEINCLUDES
directory in a subdirectory that has the name of the record ID. This allows for multiple fields in the same record to
point to a single MIME file that doe not need to be replicated.

So for example, if the recordsunsmailbug has information on the field description, and this field has a confi-
dence rating, and a MIME part calledMIME123456 then there will be a file calledV, a file calledR, and a file called
MIME123456 as shown in figure 1.

Draft - Cite, quote or reference indicating the draft date.2 February 27, 1998

D
R

A
FTFigure 1: An example of part of the directory structure for the

database for a recordsunsmailbug that has information on
the field description, a confidence rating for this field, and a
MIME part.

4 Record Index

The list of records defined in the database is in the fileVINDEX. Each non-comment line has the ID of a record.

5 The WWW Interface

The preferred mechanism for accessing the database is the HTML-based WWW interface for the vulnerability database.
This interface provides an easy to use browsing tool that displays records and provides comprehensive search mecha-
nisms.

5.1 Using the WWW Interface

The WWW interface requires that you point your favorite WWW browser tohttp://landover.cs.purdue.edu/cgi-bin/vdb .
Because this service is behind a firewall, you will need to be in a machine that is within the COAST internal network
or a machine that is authorized to connect to the service. You will also need a user name and a password to access
the database. Contact Ivan Krsul or Eugene Spafford if you do not have a user name and you would like to access the
database.

5.2 The Gory Details About the Internals of the Interface

As shown in figure 2, the WWW interface requires four components that must work together to display information.
The database is a collection of several thousand files. The search server keeps a copy of the database cached in memory
and waits for connections from thecgi-bin script. Thecgi-bin script receives requests from the user via a WWW
browser (for example, Netscape), translates the request into something that the search server can understand, and relays
the reply from thecgi-bin script to the browser.

This complicated setup is necessary because we need a quick response to queries from the browser and the
cgi-bin script cannot scan through the files in the database fast enough.

Draft - Cite, quote or reference indicating the draft date.3 February 27, 1998

D
R

A
FT

CGI-ScriptSearch Server

Browser

Database

R
eq

ue
st

Request

Reply

R
eply

P
er

io
di

c
U

pd
at

e

Figure 2: In the WWW interface, four components work to-
gether,

The search server is also described in section 6.2 and has two functions. It serves as an intermidiary between the
cgi-bin script and the database, and it allows UNIX users to quickly search the database by issuing a command in
a shell.

5.2.1 cgi-bin Script Details

Thecgi-bin script is located inHTTP /cgi-bin/vdb. This is a Perl script that waits for commands from a browser,
contacts the search server for requests and returns the data provided by the search server to the browser. The script
is responsible for providing the HTML code for the headers and footers of every page, but is not responsible for
formatting the data provided by the search server.

5.2.2 Search Server Details (With Respect to the WWW Interface)

The search server waits on a well defined port (hard coded into the server) for connections from clients that are coming
from the machine where thecgi-bin is located. For security reasons only users inlandover.cs.purdue.edu
are allowed to connect to the search server.Note: The assumption is that DNS cannot be hijacked within the lab
because we are behind a firewall. Hence, the authorization check is performed by comparing the name of the machine
connecting, as returned by a reverse DNS lookup, to the hard coded name.

The search server responds to the following commands:

SEARCH Search String . The search server does a simple string match search on the database and prints in raw
text the search results.

HTMLSEARCH Search String . The search server does a simple string match search on the database and prints
in formatted HTML the search results.

HTMLPERLSEARCH Perl Regular Expression . The search server does a perl regular expression search
on the database and prints in formatted HTML the search results. Note that special characters in the regular
expression are escaped because they are a problem in the web server. Hence, the search server converts these
characters back to normal before using the regular expression (with one notable exception: the back tick.).

Draft - Cite, quote or reference indicating the draft date.4 February 27, 1998

D
R

A
FT

LIST Search String . The search server lists, in raw text, all the records whose title match the string given, if
any.

HTMLLIST Search String . The search server lists, formatted in HTML, all the records whose title match the
string given, if any.

DUMP Record ID . The search server provides a raw text dump of the entire record.

HTMLDUMP RecordID . The search server provides an HTML dump of the entire record. In this dump all URIs
and all references to MIME parts are converted to hyper-links.

MIMEDECODE RecordID MIME Part Name . Given a record ID and the name of a MIME part, the search
server fetches the MIME part, decodes it and returns the result with an associated MIME type header.

6 The Java Interface

A few words about the Java GUI: It’s new and relatively large (8000+ lines of Java) so it is likely to have bugs and
problems. Please notify us if there are any problems.

We encourage you to familiarize yourself with the source code of the interface and it’s inner workings and, if
necessary, to improve it as you see fit. The code is in theJAVAGUIDEVdirectory. The perl programs that are used as
support are in thePERLTOOLSdirectory.

Onevery importantpiece of information that you should be aware of: The Java GUI implements record locking to
allow multiple people access to the database at the same time. If the program crashes before it released the locks on
the records you were editing (which happens when you save or when you exit), it is possible that the next time you
use the program you may have to clean the locks by hand. The program will tell you how to do that.... but be sure that
the lock that you clean by had is yours! It is possible that someone else may be editing that record. You can do that by
checking the ownership of the lock-file it created.

6.1 Running the GUI Interface

There is a shell script that sets the Java classpath and runs the GUI interface. We recommend that to run the interface
you create the following alias: “alias vdbJava JAVAGUI/runvdbgui.”

Please, don not run the database using another command!The script makes sure that yourumask is set to 007
and hence the files created by the database will have the correct permissions. The script also makes sure that your
classpath contains all the packages needed to run the system. If yourumask is not 007 then it is possible that the files
you create using the Java GUI will not be readable or writable by anyone else. This has the potential for breaking lots
of things.

6.2 Searching in the Database fromUNIX

The PERLTOOLSdirectory contains a program calledpattern match.pl that takes as an argument a series of
words and searches the vulnerability database for matches on those keywords. This perl program loads the database
index and calls thefgrep program to search every file calledV in the VDB directory. Searching the database this
way can bring any machine to its knees (every search opens thousands of files) so we do not recommend that you use
it unless you have no other choice.

The same directory contains two other programs that are particularly useful for searching the database The first
is a program calledsearchServer.pl and it essentially loads the entire database to memory and does a pattern
search using perl. The server will check to see if new records have been added or if records have been modified every
thirty seconds and will load/reload as needed.

The second program is calledsearchClient.ps and it contacts the server and gives it a string to search for
and displays whatever the search server returns.

The match is similar tofgrep in that the entire text passed has to be matched. Unlikefgrep , however, the
search string is altered a little bit before its used in the server:

Draft - Cite, quote or reference indicating the draft date.5 February 27, 1998

D
R

A
FT

$line = "" if length($line) > 200; # We only want reasonable entries
$line =˜ s/ˆ(\s)*(\S*.*\S)(\s)*$/$2/; # Remove leading and trailing spaces
$line = "" if !defined($line);
$line =˜ s/[ˆa-zA-z0-9\@_\-\!\%\’\:\.]/ /g; # Special characters are not allowed
$line =˜ s/\s\s+/ /g; # Replace multiple spaces with single spaces
$line =˜ s/ˆ(\s)*(\S*.*\S)(\s)*$/$2/; # Remove leading and trailing spaces

In it’s output the search server prints the results with some very simple filling so that what you see in the screen is
not likely to be in the same format as what you see in the database. If this is a problem then please let me know. After
all, this tool is used mainly to find out if an entry we are about to add already exists in the database.

To run the search servercd to PERLTOOLSand type:

% ./searchServer.pl -p 6768

where the-p option tells it which port to use. To run the client,cd to PERLTOOLSand type:

% ./searchClient.pl -p6768 -k "String to search for"

where the-p option tells it which port the server is using.
Be warned that the server is not a full-blown daemon and should not be run in the background of some obscure

window. Create a separatexterm window for it and look at it periodically to make sure that no errors are being
ignored. I have not tested this beast completely.

6.3 Using the Database

Using the database is fairly straightforward. Running the Java interface will present you a the main screen as shown
in figure 3. Double-clicking on an item on the list of vulnerabilities will display the contents of that record.

The file menu, shown in figure 4, has options for saving your changes to the database, exiting the database, printing
the record as pure text, and exporting the record as a multi-part MIME file.

The view menu, shown in figure 5, has options for displaying information regarding the field rating system, the
classifiers used for the database, etc. Of particular importance is the option for indicating to the GUI interface to
eliminate from the record display selected fields. This is particularly useful when fields such as patches and exploit
scripts clutter the screen and the user wishes to view records without displaying these fields. When printing records
the interface will also only print the fields as indicated by this menu.

The edit menu, shown in figure 4, has options for editing the current record and adding new records to the database.
When you create a new record, a dialog is presented to the user requesting a record ID and title for the new vulnera-
bility. Once this information is presented a new blank record is created for that vulnerability.

When editing a record the GUI interface will open a window, shown in figure 6, that contains fields and pop-up
menus for entering data. Fields that have classifiers are marked by including the name of the classifier in parenthesis
under the field name and you can display the classifier by clicking on the name of the field. If the field has a classifier
and is a text field then and the you are not required to enter data that matches the classifiers. However, the GUI will
complain about it and we strongly recommend that you do stick with well defined choices.

Some fields in the database have associated confidence ratings that give users an idea of how reliable is the data
for that particular field. The rating system is as follows:

Value of 0: Item has not been rated. Users will generally make no assumptions about the information in this field.
Items with a rating of 0 should not be trusted or used to justify any results.

Value of 1: Item is likely to be a guess or speculation.

Value of 2: Item is not likely to be correct and limited trust should be put on it.

Value of 3: Item is likely to be only partially correct, may contain errors, may be incomplete, etc.

Value of 4: Item seems to be correct but has not been verified by a trusted party. The operator that entered this
information, to the best of his knowledge, believes the information to be accurate.

Draft - Cite, quote or reference indicating the draft date.6 February 27, 1998

D
R

A
FT

Double click on a vulnerability
name to view the contents of
the corresponding record

Figure 3: The main screen of the database. Double-clicking on
an item on the list of vulnerabilities will display the contents of
that record.

Figure 4: The file menu has options for saving your changes to
the database, exiting the database, printing the record as pure
text, and exporting the record as a multi-part MIME file. The
edit menu has options for editing the current record and adding
new records to the database

Draft - Cite, quote or reference indicating the draft date.7 February 27, 1998

D
R

A
FTFigure 5: The view menu has options for displaying informa-

tion regarding the field rating system, the classifiers used for
the database, and for limiting the fields that are displayed or
printed for a record.

Values of 5: Item is correct and has been verified by a trusted entity. The operator has evidence that the item is correct
and can guarantee, with a high probability, that the item contains accurate and complete information.

When entering data you should be specially careful to enter the appropriate rating for the data that you are entering.
Leaving that rating at it’s default value of zero will cause the data that you are entering to be ignored in some automatic
processes.

All text fields where you can type information can have MIME parts inserted within the text1 MIME parts are
manipulated by using the following keyboard commands while in the text field:

<control-i> : Insert textual mime part. Opens a dialog, as shown in figure 7, that allows the user to type or paste
some text into the field and insert it as a MIME part.
Important Note: The editor is not smart enough, nor it should be, to notice that you have inserted a MIME
part and that it should remove the corresponding file if you decide to discard your changes to the record. Hence,
if you add a MIME part and then discard your changes to the record you will have a MIME part file in the
MIMEINCLUDES directory that will not be referenced by any record. Hence, delete the MIME parts created
manually before discarding your changes to the record if you want the MIME parts to be discarded too!

<control-d> : Delete MIME part. This option deletes the MIME part where the cursor is located. The MIME
include directive is removed from the text and the MIME part file is deleted from the file system.

<control-e> : Edit MIME part. If the MIME part is editable then this command allows the user to edit the part in
a special MIME part editor as shown in figure 7.

<control-v> : View the MIME part. Displays the content of the MIME part in a special window.

<control-x> : Export MIME part.Not implemented yet!Allows the user to export this part to a multi-part MIME
file that can be viewed with an external viewer or that can be send via email.

<control-m> : View part with an external viewer. If the MIME part is not a textual part then it cannot be viewed
using thecontrol-v command. This command saves exports the part as a temporary file and calls an external
MIME viewer to display the part.

1Fields that have associated classifiers can also have MIME parts. However, we don’t recommend that this be done as some utilities will not
work correctly in this case.

Draft - Cite, quote or reference indicating the draft date.8 February 27, 1998

D
R

A
FT

Fields that have associated
classifiers display the classifier
name in parenthesis under the
field name. Click in the field
name to display the allowable
values for the field.

Popup menus show fields that are
defined as choice classifiers in the
database schema.

Fields that have ratings
associated with them will
display these pop-up menu bars

Figure 6:

Draft - Cite, quote or reference indicating the draft date.9 February 27, 1998

D
R

A
FT

MIME Parts are specified with
the #VDB_INCLUDE directive.
Press <control-i> to insert
a MIME part manually.

Figure 7:

<control-f> : MIME encode a file. This command opens a file dialog box and lets the user select an external file
that must be MIME encoded and saved to a MIME part for the record. Once the file is selected, the interface
will attempt to guess the MIME type and will open a dialog box, shown in figure 8, to confirm that the type
selected is indeed correct. If it is not, then select the correct type and proceed with the conversion.

Figure 8: When MIME encoding a file, the interface will at-
tempt to guess the MIME type and will ask the user to confirm
that the type selected is indeed correct

As shown in figure 9 MIME parts are highlighted in the main window and can be viewed by double clicking on
the name of the included part.Bug Note:Under some window managers in UNIX, a double click is defined as two
successive clicks on the mouse with themiddlebutton. With other window managers the double click is done with the
left button.

7 Data Entering Procedures

In [KSb] we claim that there are four requirements that must be satisfied by the features (or values of fields that have
associated classifiers) we select:Objectivity (the features must be identified from the object known and not from the
subject knowing),Determinism (there must be a clear procedure that can be followed to extract the feature),Repeata-
bility (several people extracting the same feature for the object must agree on the value observed), andSpecificity(the
value for the feature must be unique and unambiguous).

Draft - Cite, quote or reference indicating the draft date.10 February 27, 1998

D
R

A
FT

In the main view window, MIME parts are shown
highlighted in blue. Double click in the name of
the MIME part to view the contents of that part.

Figure 9: MIME parts are highlighted in the main window and
can be viewed by double clicking on the name of the included
part.

During the summer of 1997, however, we realized that there were many fundamental problems with the features
collected for the vulnerability analysis project at COAST. Many of the features we had collected were ambiguous,
many were not repeatable, many were not specific, etc. (See [KSb] for the details).

One possible solution to these problems is to patch these features so they will satisfy as many—if not all—of our
requirements as possible. Hence, for example, features that are ambiguous could be fixed by providing instructions
that will resolve the ambiguities. Features that are not deterministic could be fixed by providing a procedure that must
be followed for the determination of the value of the feature.

The greatest objection to this solution is that we do not have (and sometimes we cannot have) enough information
to fix the features objectively. Any fix we provide will be biased to our interpretation of what the author or creator of
the feature really meant.

However, we argue that it is desirable to have thesefixedfeatures rather than the old. Any analysis with the old
features is likely to be biased and highly contested because different researchers can come to different conclusions
based on the values they choose for their features and there is not procedure that can help resolve such conflicts.

We chose to fix some of the problems of some of the features listed in [KSb] by providing a decision tree that
will both remove ambiguities and provide a deterministic procedure that can be used to determine the value of the
feature. The selection of values using these trees does not solve the problem of objectivity and does not remove
ambiguities completely because to select a value for a feature a series of questions must be answered and there is
no guarantee that different people will not answer these questions differently. This problem is particularly acute in
vulnerabilities because the questions asked are bound to be highly technical and can only be answered by a person
intimately familiar with the vulnerability. Vulnerability analysis is highly subjective and it seems paradoxical to
attempt to extract objective features from a subjective procedure.

In the development of these decision trees we have attempted to choose questions that are as objective as pos-
sible and where appropriate we have chosen to annotate the decision procedure to clarify doubts and increase the
quality of these features. These annotations are indicated by a number inside a circle in the lower right corner of the
corresponding decision.

Feature indirect impact : This feature attempts to identify the indirect or ultimate impact of the vulnerability.
Indirect impacts are those that ultimately result from the exploitation of the vulnerability. See figure 10

Featuredirect impact : This feature attempts to identify the direct impact of the vulnerability. Direct impacts
are those that are felt immediately after the vulnerability is exploited. See figure 11

Threat features: The original threat feature—extracted from “Current and Future Danger: A CSI Primer on Com-
puter Crime & Information Warfare” by Richard Power [Pow96],–was developed as a classification of hostile
actions that an adversary could take against your system.

Draft - Cite, quote or reference indicating the draft date.11 February 27, 1998

D
R

A
FT

Figure 10: Selection decision tree for theindirect impact
feature.

Draft - Cite, quote or reference indicating the draft date.12 February 27, 1998

D
R

A
FT

Figure 11: Selection decision tree for thedirect impact
feature.

Draft - Cite, quote or reference indicating the draft date.13 February 27, 1998

D
R

A
FT

This classification is difficult to apply to the vulnerability database because it is essentially ambiguous. In [KSa]
we argue that classification trees should use decision nodes that use onefundamentum divisionisand as can be
seen in figure 12, the threat classifier does not follow this principle.

Destroy, damage
or contaminate

Deny, prolong, or
delay use of access

Threats to availabil ity and
usefulness

Enter, use or produce
false data

Modify, replace or
reorder

M isrepresent

Repudiate

Misuse or fail to use
as required

Acess

Disclose

Observe or monitor

Copy

Steal

Endanger by exposure
to any other threats

Threats to integrity and
authenticity

Threats to confidentiality
and posessions

Exposure to threats

Nodes do not branch
on the same funda-
mentum divisionis
and hence the classif i-
cation is ambiguous

1

2

3

1

2

3

It is possible repudiate by modifying
data, misrepresent byentering or pro-
ducing data, misuse by modifying or
replacing data.

Can we observe without access? Can
we copy without access? Can we Steal
without copying? To steal one would
normally have to copy, to observe one
would normally have to have access,
to disclose one would need access or
to copy.

Inherits the problems mentioned above.

Figure 12: The Threat classifier is ambiguous because it uses
nodes that have more than onefundamentum divisionis

A fundamentum divisionisis a term from Scholastic Logic and Ontology that means “grounds for a distinction”
[Aud95]. Ambiguities can arise when the selection criteria for an internal node of the tree has more than one
fundamentum divisionis. In the threat classifier, a single node in the classification tree branches intoAccess,
Disclose, Observe, Copy, andSteal. The categoriesObserveandAccessare concrete actions while the category
Stealis subjective and requires a value judgment. Hence, it is possible toAccessandStealsimultaneously.

Another of the fundamental problems with features of this kind is that they do not specify an explicit maximum
level of indirection that can be used for the determination of the threat of a vulnerability. Hence, a vulnerability
that causes the encrypted password of a user to be displayed is a treat to integrity if the password is decrypted,
the user account is compromised, an encrypted administrator password can be obtained using this account, this
last password can be decrypted, a root shell can be obtained. Because root shells allow any operation to proceed,
integrity can be violated. A similar reasoning can be applied to most of the UNIX vulnerabilities we have seen.
Hence, it is important that we clearly specify that we are interested in the immediate threat that is present
with the vulnerability .

We can split the threat classifier into a list of action and consequence binary features that follow:

Action Features

Draft - Cite, quote or reference indicating the draft date.14 February 27, 1998

D
R

A
FT

thac observe : The vulnerability2

can result in a user observing ob-
jects, data, etc., in violation of ex-
pected policy.

thac destroy : The vulnerability
can result in a user destroying
objects, data, etc., in violation of

expected policy.

thac modify : The vulnerability can
result in a user modifying ob-
jects, data, etc., in violation of ex-
pected policy.

thac create : The vulnerability can

result in a user creating objects in
violation of expected policy.

thac exec : The vulnerability can
result in a user executing a pro-
gram in violation of expected
policy.

Consequence Features

thac cavail : The vulnerability can
result in the change of availabil-
ity of the system.

thac disclose : The vulnerability
can result in the disclosure of
information in violation of ex-
pected policy.

thac misrep : The vulnerability can
result in misrepresentation of in-
formation.

thac repudiate : The vulnerabil-
ity can result in repudiation of in-
formation.

thac integrity : The vulnerabil-
ity can result in a change of in-
tegrity of the system.

thac conf : The vulnerability can
result in the loss of confidential-
ity of information.

Each of these features can take the values “Yes,” “No,” “Does Not Apply,” and “Unknown”. Hence, each feature
is a decision tree with a depth of one that has a singlefundamentum divisionis.

The other categories (steal, copy, contaminate, misuse, fail to use as required, change in usefulness, production
of false data) are ambiguous, subjective, abstract, or equivalent to the features shown.

Featureaccess required : This classifier was originally defined from a talk given by Tom Longstaff [Lon97]
and defines the kind of access that is required to exploit the vulnerability. See figure 13

Featurecomplexity of exploit : This feature attempts to identify the complexity of the exploitation of a vul-
nerability, regardless of whether a script or toolkit exists for the exploitation of the vulnerability. See figure 14

1. The notion of asimple sequence of commandswill, of course, vary from person to person. We will consider
a simple sequence of commandsa linear sequence of commands (i.e. no loops, gotos, etc.) of no more
than a dozen commands. Also, these dozen commands must be common commands supported by the
operating system, common applications and utilities. Commands that involve scripts and applications that
the exploiter must compile, install, etc., do not qualify.

2. Shell scripts, command interpreter source files and macros all qualify. Programs that are implemented in a
general purpose programming language (including such languages as Perl) do not qualify.

3. Typically requires a script or application that tries several times and may require slowing down the system.
4. Applications that the exploiter must compile, install, etc.

Aslam Classification: The Aslam classification has been expanded and a decision tree has been introduced to elimi-
nate ambiguities and resolve some conflicts. See figures 15 and 16.

2In this list of features, for brevity, “The exploitation of the vulnerability” has been shortened to “The vulnerability”

Draft - Cite, quote or reference indicating the draft date.15 February 27, 1998

D
R

A
FT

Does the exploitation of
the vulnerability require
that the user have a user
account in the system?

Feature Name: Access Required
Feature ID: access_required

Does the exploitation of
the vulnerability require
that the user use a remote
system using a common
service?

Remote Access

Does the exploitation
require an account in a
trusted system but not
one in the system
being exploited?

Trusted Sys-
tem

Physical Access

Yes

Yes

Yes

Yes

No

No

No

No

No

START

Yes

Does the exploitation of
the vulnerability require
that the user have physi-
cal access to the system?

User Account

Does the exploitation of
the vulnerability require
that the user have a privi-
leged account in the
system?

Pr ivileged Access

Other

Figure 13: Selection decision tree for theaccess required
feature.

Draft - Cite, quote or reference indicating the draft date.16 February 27, 1998

D
R

A
FT

Figure 14: Selection decision tree for the
complexity of exploit feature.

Draft - Cite, quote or reference indicating the draft date.17 February 27, 1998

D
R

A
FT

Figure 15: Aslam Classification decision tree (part 1 of 2) for
theclassification feature.

Draft - Cite, quote or reference indicating the draft date.18 February 27, 1998

D
R

A
FT

Figure 16: Aslam Classification decision tree (part 2 of 2) for
theclassification feature.

Draft - Cite, quote or reference indicating the draft date.19 February 27, 1998

D
R

A
FT

Aslam Description
Classification

1:2:3 SUID/SGID routines that use thesystem() , popen() ,
execlp() , or execvp() calls to run something else.

2 Environment faults are introduced when specifications are
translated to code but sufficient attention is not paid to the run-
time environment. Environmental faults can also occur when
different modules interact in an unanticipated manner. Indepen-
dently the modules may function according to specifications but
an error occurs when they are subjected to a specific set of in-
puts in a particular configuration environment.

3:1 Failure of software to authenticate that it is really communicat-
ing with the desired software or hardware module it wants to be
accessing.

3:1:1 For example, routine B assumes routine A’s parameters are cor-
rect because routine A is a system process.

3:3:1 A fault can be exploited because of a timing window between
two operations.

3:3:2 A fault results from improper serialization of operations.
3:5 Did the error occur when partially-modified data structures were

observed by another process? Did the error occur because the
code terminated with data only partially modified as part of
some operation that should have been atomic?

Featureenvass : This feature attempts to identify the environmental assumptions that were made by programmers
or designers and that, if correct, would make the program correct.

The features can have the following possible values:

Draft - Cite, quote or reference indicating the draft date.20 February 27, 1998

D
R

A
FT

envass Possible Values
Item Value Item Description
nameinv Assumes that a name (i.e. a path) is strongly bound to a specific

system object.
objinv Assumes the invariance of an object during the execution of a

program (i.e. the program assumes that no other subject can
change the object while the program is running)

objne A program assumes that an object does not exist at the time
of execution (i.e. a program assumes that a file with a specific
name does not exist)

tempdel A program assumes that a temporary item it created cannot be
deleted by any other subject while the program is running.

memavail A program assumes that sufficient memory for it’s execution
will always exist.

netdata A program assumes that data from a network service will al-
ways be reliable.

envdata A program assumes that the data in environment variables is
valid and bounded.

userdata A program assumes that user-provided input is valid and
bounded

filedata A program assumes that the input from a file is valid and
bounded

reassembly A program assumes that the re-assembly of a data object form
fragments will not affect the essential properties of the original
object.

execpath A program assumes a specific execution path.
objatt A program assumes that certain attributes of certain objects

have predefined values.
perstore A program assumes that persistent store is immutable (i.e. as-

sumes that a file it writes cannot be modified by any other sub-
ject in between program runs)

dataexec A program assumes that the modification of program data (by
external subjects) will not affect the semantics of the program.

nameover A program assumes that, while creating a file, any existing file
that has the same name can be overwritten.

falseconst A program falsely assumes that a constraint or property holds
in the system.

insufverif A program falsely assumes that a set of operations are suffient
for the verification of the property of an object

namepurpose A program assumes that there is a strong binding between the
name and purpose of an object

reservedobject A program assumes that an object with a specific name will not
be used by any other entity in the system by virtue of its name
alone.

other Other
NA Does not apply
? Unknown

Featurecategory : This feature attempts to identify the system component that a vulnerability belongs to. See
figure 17

1. The notion of Operating System (OS) is ambiguous as some consider the OS to be the bare bones kernel
and others include all the files that were shipped with the distribution of the OS. We take the view that

Draft - Cite, quote or reference indicating the draft date.21 February 27, 1998

D
R

A
FT

Figure 17: Selection decision tree for thecategory feature.

Draft - Cite, quote or reference indicating the draft date.22 February 27, 1998

D
R

A
FT

the OS is the kernel and all the utilities that are common to all distributions of that OS that are minimally
required for it’s operation. Hence, in the Windows NT 3.5 OS the Internet Explorer is not a part of the OS,
even if it is included in all distributions because it can be deleted without affecting the operation of the OS.
In versions of Windows NT where the Internet Explorer replaces the file system NT Explorer we would
consider it a part of the OS.

Featureos type : This classifier attempts to identify the class of operating systems that is affected by the vulnera-
bility. See figure 18

Featuresnature object , nature effect , nature method , and nature method input : These features
attempt to capture the fundamental consequences of vulnerabilities by looking at the object that is essentially
affected by the vulnerability, the effect that the vulnerability has on that object, the method or means that lead
to the effect on the object, and, if appropriate, the type of input that leads to the effect on the object.

The features can have the following possible values:

Draft - Cite, quote or reference indicating the draft date.23 February 27, 1998

D
R

A
FT

Feature Name: Operating System Type
Feature ID: os_type

Is the vulnerability operat-
ing system independent? OS Independent

Yes

No

START

Is the vulnerability
present only on some
(or all) Unix variants?

Is the vulnerability
present only on some

(or all) Microsoft Win-
dows NT variants?

Is the vulnerability
present only on some
(or all) DOS variants?

Is the vulnerability
present only on some
(or all) VMS variants?

Is the vulnerability
present on more than
one operating system?

Is the vulnerability
present only on some (or

all) MacOS variants?

Unix

Windows

DOS

VMS

Mac OS

Multiple OS

Other

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Figure 18: Selection decision tree for theos type feature.

Draft - Cite, quote or reference indicating the draft date.24 February 27, 1998

D
R

A
FT

nature object Possible Values
Item Value Item Description
user files User files in the system.
system files System-related or administrative files in the system.
public files Publicly available files in the system.
directory Directories in the system
partition A file system partition
heap data Data in the heap of running program.
heap code Executable code in the heap of running program.
stack data Data in the stack of a running program.
static data Data that is statically allocated in a running program
stack return Return address of a function in the stack of a running program.
stack code Executable code in the stack of a running program.
password Password or access token. Can also be a pass-phrase.
shell command Shell command.
system program System program.
user program User installed or owned program.
system info Information regarding the system.
outfiles Files outside a restricted space. Describes files that should not

be visible/accessible outside achrooted environment, virtual
environment, sandbox, etc.

classloader A ClassLoader object in Java or any object responsible for load-
ing dynamic classes in any object oriented programming lan-
guage.

library System function or service library.
a net connection Network connections to arbitrary hosts.
web pages WWW page.
names User names, domain names, work-group names, etc.
pass known Well-known nonce encrypted with user password.
o attributes System-managed object attributes. Attributes the object itself

(or entities other than the system) does not manage.
cpu CPU time.
os Operating System.
email Electronic Mail
netport Network Port
packets Network Packets
system names Internal system names in control of the system.
device A device in the system
addr mapping Address mapping maintained by the system. i.e. an ARP cache
command prompt A command prompt presented to the user
other Other
NA Does not apply
? Unknown

Draft - Cite, quote or reference indicating the draft date.25 February 27, 1998

D
R

A
FT

nature effect Possible Values
Item Value Item Description
replaced Contents are completely replaced.
changed Can be written to or can be changed.
read Can be read.
append Information can be appended.
created Can be created.
displayed Displayed or revealed.
change owner Ownership can be changed.
change permission Permissions can be changed.
predictable Is predictable or can be guessed.
executed Can be executed in violation of expected policy.
loaded Can be dynamically loaded and linked.
clear text Is transmitted or stored in clear text.
exhausted Is exhausted.
crash Crashes
bound Can be bound to in violation of expected policy
exported Can be exported for mounting
mounted Is mounted or attached
locked Can be locked
debugged Can be debugged or attached to with a debugger
presented Presented to the user in a console or terminal
other Other
NA Does not apply
? Unknown

Draft - Cite, quote or reference indicating the draft date.26 February 27, 1998

D
R

A
FT

nature method Possible Values
Item Value Item Description
symlink Program follows symbolic link or late binding link without ver-

ifying that the object being pointed to is correct.
memcpy Program usesstrcpy , sprintf , or bcopy to copy data of

arbitrary length to a stack buffer.
config Configuration error.
back ticks Back ticks in parameter or input string.
special chars Special characters in input string, including file completion

characters, special shell characters, etc.
dotdot Uses “..” to climb up a directory tree past allowable bounds.
verify fail Bytecode or code verifier allows code that catches a security

exception when creating an object loader.
mod name Modifying compiled code to alter the name of objects.
mod env Modifying environment variables.
NTMLauth NTML authentication process requires action.
inherit privs Program inherits unnecessary privileges.
capability System provides inappropriate capability.
hidden mount System provides hidden system mount point
syscall disclose System call discloses sensitive information.
incorr imp Incorrect implementation given current environment (mistaken

environmental assumption)
rel paths Program refers to relative paths
incprot System fails to implement the protection mechanisms correctly
proxy Program uses a trusted intermediary or proxy to bypass protec-

tion mechanisms
coresymlink A program dumps a core file that follows symbolic links or late

binding link.
infloop Program uses an infinite and tight loop that consumes resources
criticalsect Program fails to protect or isolate a critical section
other Other
NA Does not apply
? Unknown

nature method input Possible Values
Item Value Item Description
env Environment variable.
command User command line option.
netdata Network data.
store Persistent store.
tempfile Temporary file.
conffile Configuration file.
datafile Data file.
gecos System User information (Name, phone number, etc.)
parameter Parameter to a system call
libparameter Parameter to a library call
floppy Removeable media
other Other
NA Does not apply
? Unknown

Draft - Cite, quote or reference indicating the draft date.27 February 27, 1998

D
R

A
FT

8 Classifiers

Classifiers are stored as files in the directoryCLASSD. Depending on whether the classifier is a straight list or a choice
list,the first line of the classifier includes the type. Classifiers can have comments and all blank lines in classifiers are
ignored.

For example, a standard choice list for yes/no fields is theyes no classifier. It typically has the following contents:

#cclass

Choice list for a yes/no choice.
This choice list also allows the
user to specify that a yes/no answer
is not appropriate or that a value is
not know for the record.

yes#Yes
no#No
NA#Does not apply
?#Unknown

An example of a list classifier is thesystem classifier that defines the kinds of operating systems that are allowed.
A reduced example of this classifier is:

#list
This classifier is used to define
operating systems and has the
following form:
#
Operating system code#Operating system name
#
Solaris#SUN Solaris
SunOS#SUN OS
DOS#Microsoft DOS
Windows95#Microsoft Windows 95
Caldera#Caldera
Goah#NEC’s Goah
NA#Does not apply

A complete list of the classifiers defined for the database is given in section 14.

9 An Annotated Example

This section presents an annotated example of a vulnerability record in the database. Annotations are either given as
footnotes or endnotes denoted by the symbols① , ② , etc.

VULNERABILITY ID:
solaris getopt

TITLE:
Solaris libcgetopt(3) vulnerability

DESCRIPTION:
A buffer overflow condition exists in thegetopt(3) routine. By supplying an invalid option and replacing argv[0]
of a Set-User-ID (SETUID) program that uses thegetopt(3) function with the appropriate address and machine

Draft - Cite, quote or reference indicating the draft date.28 February 27, 1998

D
R

A
FT

code instructions, it is possible to overwrite the saved stack frame and upon return(s) force the processor to execute
user supplied instructions with elevated permissions.

ULTIMATE IMPACT:
internal root access

DIRECT IMPACT:
mixed access

IMPACT TEXT:
Non-privileged users can exploit a vulnerability in the getopt(3) routine inside libc. As most SUID programs in Solaris
are dynamically linked, users can gain root privileges.

IDENTIFICATION OF THE NATURE OF THREAT:

Threat Threat Threat Threat
Observe Destroy Modify Create

No No Yes No

Threat Threat Threat Threat Threat Threat
Availability Disclose Misrepresent Repudiate Integrity Confidentiality

No No No No No No

SOURCE DETAIL :
L0pht Advisory

SYSTEMS:
Solaris

SYSTEM VERSION:
Solaris 2.5

SYSTEM VENDOR:
SUN

TYPE OF OS:
UNIX

APPLICATION:
NA
APPLICATION VERSION:
NA
VERBOSE APPLICATION:
NA

ADVISORY/IES:
L0pht Advisory:Solaris libc - getopt(3)

ANALYSIS:
From: mudge@l0pht.com

While evaluating programs in the Solaris Operating System environment it became apparent that changing many
programs trustargv[0] to never exceed a certain length. In addition it seemed as thoughgetopt was simply
copyingargv[0] into a fixed size character array.

./test >>& ccc

Draft - Cite, quote or reference indicating the draft date.29 February 27, 1998

D
R

A
FT

Illegal instruction (core dumped)

Knowing that the code in./test was overflow free it seemed that the problem must exist in one of the functions
dynamically linked in at runtime throughld.so . A quick gander through the namelist showed a very limited range
of choices for the problem to exist in.

00020890 B _end
0002088c B _environ
00010782 R _etext

U _exit
00010760 ? _fini
0001074c ? _init
00010778 R _lib_version
000105ac T _start

U atexit
0002088c W environ

U exit
0001067c t fini_dummy
0002087c d force_to_data
0002087c d force_to_data
000106e4 t gcc2_compiled.
00010620 t gcc2_compiled.

U getopt
00010740 t init_dummy
00010688 T main

Next we checked outgetopt() — as it looked like the most likely suspect.

#include <stdio.h>

main(int argc, char **argv)
{

int opt;

while ((opt = getopt(argc, argv, "a")) != EOF) {
switch (opt) {
}

}
}

>gcc -o test test.c
>./test -z
./test: illegal option -- z

Note the name it threw back at the beginning of the error message. It was quite obvious that they are just yanking
argv[0] . Changingargv[0] in the test program confirms this.

for (i=0; i< 4096; i++)
buffer[i] = 0x41;

argv[0] = buffer;

With the above in place we see the following result:

>./test -z
[lot’s of A’s removed]AAAAAAAAA: illegal option -- z
Bus error (core dumped)

Draft - Cite, quote or reference indicating the draft date.30 February 27, 1998

D
R

A
FT

By yanking out the object file from the static archivelibc that is supplied with Solaris our culprit was spotted
(note - we assumed thatlibc.a was built from the same code base thatlibc.so was.)

> nm getopt.o
U _dgettext

00000000 T _getopt
00000000 D _sp

U _write
00000000 W getopt

U optarg
U opterr
U optind
U optopt
U sprintf
U strchr
U strcmp
U strlen

Here we see one of the infamous non-bounds-checking routines:sprintf() More than likely the code inside
getopt.c looks something like the following:

getopt.c:
char opterr[SOMESIZE];
...
sprintf(opterr, argv[0]...);

Thus, whenever you pass in a non-existent option to a program that uses getopt you run into the potential problem
with trusting thatargv[0] is smaller than the space that has been allocated foropterr[] .

This is interesting on the Sparc architecture asgetopt() is usually called out ofmain() and you need two
returns (note - there are certain situations in code on Sparc architectures that allow you to switch execution to your
own code without needing two returns. Take a look at the TBR for some enjoyable hacking) due to the sliding register
windows. Some quick analysis of SUID programs on a standard Solaris 2.5 box show that most of these programs
exit() or more likely call some form ofusage()-exit() in the default case forgetopt and thus are not
exploitable. However, at least two of these programs provide the necessary returns to throw your address into the PC:

passwd(1)
login(1)

\begin{verbatim}

On Solaris X86 you do not need these double returns and thus a whole
world of SUID programs allow unprivileged users to gain root access:

\newchar{Core Vulnerability}

Excerpt from actual rpcbind code from {\tt
/p/src/sun5.3/solaris2.3/os-net/src_ws/usr/src/cmd/rpcbind.c}
Full disclosure may violate NDA. For {\tt getopt}:

\begin{verbatim}
#define ERR(s, argv0, c) if (opterr){\

char errbuf[256]; \
(void)

sprintf(errbuf, s, argv0, c); \
(void)

write(2, errbuf, strlen(errbuf));}

Draft - Cite, quote or reference indicating the draft date.31 February 27, 1998

D
R

A
FT

main() {
...
ERR("%s\n",argv[0]."");

}

FIX :
For those with source: If you are one of the few people who have a source code license the fix should be fairly simple.
Replace thesprintf() routine ingetopt.c with snprintf() and rebuildlibc .

Super Ugly kludge fix: If you don’t have the source code available (like most of us), one solution is to useadb
to change the name forgetopt with something likegetopz , yank a publicly availablegetopt.c , and put it in
place ofgetopt . If anyone can tell me how to yank the object files out of dynamically linked libraries it would be
appreciated as you suffer performance hits among larger problems by doing this from the static library Sun provides
as, of course, it is not PIC code.

ACCESSREQUIRED:
user account

ASLAM CLASSIFICATION:
3:4:4:1

SYSTEM/COMPONENT:
os other

OBJECT AFFECTED:
stack code
stack return

EFFECT ONOBJECT:
changed

METHOD:
memcpy

TYPE OF INPUT:
other

EXPECTED POLICY VIOLATED:

� System libraries should always check that their inputs are of the appropriate size

� Thegetopt() system library should only check the arguments of the program that called it and return.
� #VDBINCLUDE povide buffer overflow.MIME ① .

ENVIRONMENT FEATURES:

� Requires a stack based machine

� Stack must be executable

CHARACTERISTICS:

� Library call.
� Used by administrative programs that run SETUID root.

Draft - Cite, quote or reference indicating the draft date.32 February 27, 1998

D
R

A
FT

� Copies data to buffer without regards to bounds checking.
� Vulnerability involves thesprintf routine.
� Programmed in “C”.

� Processes user input directly
� Routine does not validate parameters passed to it.
� Requires that the program that calls the library does not check the validity of the inputs either.

ANNOTATIONS AND ENDNOTES::
① The document that is referenced by this MIME tag is included in this document in section 15.

10 Detailed Description of the Schema File

The vulnerability database schema file (VDBSCH) describes the fields allowable in the database. It is a text file where
comments are indicated by starting a line with the character#. Every non-comment line defines a field or a separating
header.

Every field specification is composed of the following parts separated by the# character: Field ID, short name,
long name, field type, field height. Field IDs should be unique. The short name is used to display identify the field in
editors and reports. The long name is used to provide descriptive information about the field to the user on data entry
and reports. The field type and number of lines tells the Java interface how to represent this field in the data entry
editor.

The field types are one oftext , secsep , cclass , andlist 3:

text : Fields of typetext are general text fields that can contain any textual information. These fields can have in-
cluded MIME parts that are specified by putting in a line an include directive of the form#VBDINCLUDE
file name where the file name corresponds to a MIME part file in the appropriate directory under the
MIMEINCLUDES directory.

secsep : Fields of this type are not real data fields but used to specify that the line in the schema is a section separator.

cclass : These are choice lists. The user is presented with a list of choices and can select a single item from the list.

list : These fields are lists where the user can select multiple elements from the list.

Fields can have options that are indicated by following the field type by a question mark and the options desired.
As of this release, the options defined are:

c : Every field can have aconfidence interval. These are ratings that are given to the field that indicate the level of
confidence that the data entry operator has on the correctness of the value.

The following text is an example of the schema file for the database. If represents the database as it was defined
on October 19, 1997.

IMPORTANT NOTE: The schema file does not support continuation characters. In this example, however, we
have added two backslashes (\\) to split lines that were to long to display in this document.

One line per field. Each line has the vulnerability field ID,
a title, a long [er] description of what the description
is, a field type, and the recommended editor height
#
Field types can be one of:
text (A text field.)
class:classifier_file_name (Choice list classifier)
list:list_file_name (List of allowed values)
#

3The database supports fields of typehclass andmatrix but these are not used anymore. Look at the code to find out how to use these!

Draft - Cite, quote or reference indicating the draft date.33 February 27, 1998

D
R

A
FT

Please be ware that the field title is hard-coded
in all the programs and it should never change or be removed.
#
March/97 - Ivan Krsul - krsul@cs.purdue.edu
#

Identification
#Identification##secsep#1
title#Title#Title of the vulnerability#text#2

Information about modification
#Modification History##secsep#1
modifications#Modifications by#Person(s) that have modified this record, \\

the date of modification, and the modifications made#text#4

#Description and impact
#Description and impact##secsep#1
desc#Description#Description of the vulnerability#text#15
indirect_impact#Ultimate Impact#Ultimate consequences of an attack \\

exploiting the vulnerabilty by a threat agent#cclass:indirect_impact#1
direct_impact#Direct Impact#Rather the the ultimate impact of the \\

vulnerability, the direct or immediate impact#cclass:direc_impact#1
impact_verbatim#Impact Text#Textual description of the impact of exploiting \\

the vulnerability#text#7

#Threat
#Identification of the Nature of Threat##secsep#1
thac_observe#Threat: Observe#The vulnerability can result in a user observing \\

objects, data, etc., in violation of expected policy#cclass:yes_no#1
thac_destroy#Threat: Destroy#The vulnerability can result in a user destroying \\

objects, data, etc., in violation of expected policy#cclass:yes_no#1
thac_modify#Threat: Modify#The vulnerability can result in a user modifying \\

objects, data, etc., in violation of expected policy#cclass:yes_no#1
thac_create#Threat: Create#The vulnerability can result in a user creating \\

objects in violation of expected policy#cclass:yes_no#1
thac_cavail#Threat: Availability#The vulnerability can result in the change of \\

availability of the system#cclass:yes_no#1
thac_disclose#Threat: Disclose#The vulnerability can result in the disclosure of \\

information in violation of expected policy#cclass:yes_no#1
thac_misrep#Threat: Misreprsent#The vulnerability can result in \\

misrepresentation of information#cclass:yes_no#1
thac_repudiate#Threat: Repudiate#The vulnerability can result in repudiation of \\

information#cclass:yes_no#1
thac_integrity#Threat: integrity#The vulnerability can result in change of \\

integrity of the system#cclass:yes_no#1
thac_conf#Threat: Confidentiality#The vulnerability can result in the loss of \\

confidentiality of information#cclass:yes_no#1

Information about the source of the information
#Information Regarding the Source of the Information##secsep#1
source_addres#Source Detail#Detailed information on the source of the \\

information. The WWW address, email address, books, etc. where the \\
information was gathered from.#text#4

System identification
#System Identification##secsep#1
system#System(s)#System(s) vulnerable#list:system?c#4
system_version#System Version#System Version#text?c#4

Draft - Cite, quote or reference indicating the draft date.34 February 27, 1998

D
R

A
FT

system_vendor#System Vendor#System Vendor#list:vendor?c#4
system_verbatim#Misc System#Additional textual description of system#text?c#4
os_type#Type of OS#Type of operating systems affected#cclass:os_type#1

Application information
#Application Information##secsep#1
app#Application#Application that contains the vulnerability#list:application?c#4
app_version#Application Version#Application Version#text?c#4
app_verbatim#Verbose application#Long description of applications that contain \\

vulnerabilities#text?c#5

References
#References##secsep#1
advisory#Advisory/ies#Advisory/ies that warn/describe about the \\

vulnerability.#text#4
reference#References#References to the vulnerability in literature or in the \\

net#text#4
related_docs#Related Docs.#Documents that describe the vulnerability, related \\

to the vulnerability or that are useful in the analysis of the \\
vulnerability#text#10

Detailed analysis, detection techniques and fixes
#Detailed Analysis, Detection Techniques, and Fixes##secsep#1
analysis#Analysis#A detailed analysis of the vulnerability#text?c#15
core_vulner#Core Vulnerability#If the vulnerability is in a piece of code, the \\

smallest piece of code that still has the vulnerability#text?c#15
detection#Detection#Method of detecting that the vulnerability is being \\

exploited#text?c#10
fix#Fix#A fix that can be used to eliminate the vulnerability.#text?c#10
test#Test#Method that can be used to detect whether the vulnerability is present \\

in a system#text?c#10
workaround#Workaround#A temporary workaround for the vulnerability. Used until \\

a patch can be applied.#text?c#10
patch#Patch(es)#A patch or a series of patches that can be used to eliminate the \\

vulnerability.#text?c#15

Detailed information about exploitation
#Detailed Information About Exploitation##secsep#1
exploit#Exploit Scripts#Reference to exploit scripts or programs#text?c#15
ease_of_exploit#Ease of Exploit#How easy is it to exploit the \\

vulnerability#list:ease_of_exploit#3
idiot#IDIOT Pattern#IDIOT Pattern used to detect the exploitation of the \\

vulnerability.#text#15
access_required#Access Required#What access is required for the \\

exploitation#cclass:access_required#1
complexity_of_exploit#Complexity of Exploit#How complex is the exploitation of the \\

vulnerability#cclass:complexity_of_exploit#1

Source code and pointers to source code for the systems that contain the \\
vulnerabilities.

#System Sources##secsep#1
system_source#System Source#Source code or a pointer to the source code for the \\

system that contains the vulnerability#text#7

Classifications and features
#Fault Classification##secsep#1
class#Aslam Classification#Aslam Classification. See the documentation for the \\

possible values and an explanation.#cclass:classification?c#3

Draft - Cite, quote or reference indicating the draft date.35 February 27, 1998

D
R

A
FT

#Category and Component Classification##secsep#1
category#System/Component#To what system or component does the vulnerability belong \\

to#cclass:category#1

Nature of vulnerability
#Identification of Nature of the Vulnerability##secsep#1
nature_object#Object Affected#The object fundamentally affected by the \\

vulnerability#list:nature_object?c#3
nature_effect#Effect on Object#The effect that the vulnerability has on the \\

object#list:nature_effect?c#3
nature_method#Method#The method or means by which the object is \\

affected#list:nature_method?c#3
nature_method_input#Type of Input#The type of input, if any, that leads to the \\

effect#list:nature_method_input?c#3

Verification of vulnerabilty.
Although the verif field accepts any value, it is unlikely that it
will ever be used as an enumeration. Rather it is likely to be used
as a boolean that indicates if this vulnerability was verified.
However, it may be useful for humans reading the database to add the
full name of the person or persons that verified the vulnerability.
#Verification of Vulnerability##secsep#1
verif#Verified by#Person or entity that verified the vulnerability. Verification \\

should imply that the vulnerability is know to exist and had been exploited or \\
verified by the person named.#text#3

#
Policy features
#Identification of Policy Violation##secsep#1
policyvio#Expected Policy Violated#Expected Policy Violated by the Vulnerability. \\

These policies need not be formally specified and are the expectation that users \\
feel have been violated.#text?c#5

#
The following fields are used to indicate future features that would be desirable
for this record of the database
#Identification of Environmental Factors##secsep#1
environment#Environment Features#What environmental conditions contribute to the \\

vulnerability? What assumptions are made about the environment that don’t hold? \\
What about the environment makes this vulnerability possible?#text#10

features#Other Features#What other characteristics and features are relevant for the \\
understanding of the vulnerability?#text#10

11 MIME Support in the Database

To support the inclusion of all kinds of data in the database, all of the text fields that do not contain classifiers can
contain pointers to MIME encoded fields.

The complete list of MIME types possible is listed in section 12

12 MIME Types Defined for the Database

The MIME types listed in this section were compiled from theexmh MIME types file, a Java package that imple-
mented some of the MIME functionality (The original author of the package is unknown), and the SUNmetamail
andexmh distributions.

Draft - Cite, quote or reference indicating the draft date.36 February 27, 1998

D
R

A
FT

Draft - Cite, quote or reference indicating the draft date.37 February 27, 1998

D
R

A
FT

MIME Type File Extension MIME Type File Extension
application/activemessage application/andrew-inset
application/applefile application/atomicmail
application/dca-rft application/dec-dx
application/mac-binhex40 application/macwriteii
application/msword application/news-message-id
application/news-transmission application/octet-stream .a
application/octet-stream .arc application/octet-stream .bin
application/octet-stream .dump application/octet-stream .exe
application/octet-stream .gz application/octet-stream .hqx
application/octet-stream .o application/octet-stream .saveme
application/octet-stream .uu application/octet-stream .z
application/octet-stream .bin application/oda .oda
application/pdf .pdf application/postscript .ai
application/postscript .eps application/postscript .ps
application/remote-printing application/rtf .rtf
application/rtf .rtx application/slate
application/wita application/wordperfect5.1
application/x-IslandDraw application/x-IslandWrite
application/x-answerbook application/x-bcpio .bcpio
application/x-colorchooser application/x-compress
application/x-cpio .cpio application/x-csh .csh
application/x-default-app application/x-dos
application/x-dvi .dvi application/x-fontedit
application/x-frame application/x-gtar .gtar
application/x-guide application/x-hdf .hdf
application/x-latex .latex application/x-lotus-123
application/x-makefile application/x-mif .mif
application/x-netcdf .cdf application/x-netcdf .nc
application/x-patch .patch application/x-script
application/x-sh sh application/x-shar .sh
application/x-shar .shar application/x-shell-script
application/x-sun-executable application/x-sun-prog
application/x-suncalendar application/x-sundraw
application/x-sunwrite application/x-sv4cpio .sv4cpio
application/x-sv4crc .sv4crc application/x-tar .tar
application/x-tcl .tcl application/x-tex .tex
application/x-texinfo .texi application/x-texinfo .texinfo
application/x-troff .roff application/x-troff .t
application/x-troff .tr application/x-troff-man .man
application/x-troff-me .me application/x-troff-ms .ms
application/x-troff-msvideo .avi application/x-ustar .ustar
application/x-wais-source .src application/x-wais-source .wsrc
application/zip .zip audio/basic .au
audio/basic .snd audio/x-aiff .aif
audio/x-aiff .aifc audio/x-aiff .aiff
audio/x-sunaudio audio/x-wav .wav
content/unknown image/gif .gif
image/ief .ief image/jpeg .jfif

Draft - Cite, quote or reference indicating the draft date.38 February 27, 1998

D
R

A
FT

MIME Type File Extension MIME Type File Extension
image/jpeg .jfif-tbnl image/jpeg .jpe
image/jpeg .jpeg image/jpeg .jpg
image/tiff .tif image/tiff .tiff
image/x-atk image/x-brush
image/x-cmu image/x-cmu-rast .ras
image/x-fits image/x-fs
image/x-g3 image/x-gould
image/x-hips image/x-ilbm
image/x-img image/x-imgw
image/x-lispm image/x-mac
image/x-mgr image/x-mtv
image/x-pbm image/x-pcx
image/x-pgm image/x-photocd
image/x-pi1 image/x-pi3
image/x-pict image/x-pj
image/x-portable-anymap .pnm image/x-portable-bitmap .pbm
image/x-portable-graymap .pgm image/x-portable-pixmap .ppm
image/x-ppm image/x-qrt
image/x-raw image/x-rawg
image/x-rgb .rgb image/x-rgb3
image/x-sld image/x-spc
image/x-spu image/x-sun-icon
image/x-sun-raster image/x-tga
image/x-tiff image/x-xbitmap .xbm
image/x-xbm image/x-xim
image/x-xpixmap .xpm image/x-xpm
image/x-xwd image/x-xwindowdump .xwd
image/x-ybm image/x-yuv
message/external-body message/news
message/partial message/rfc822 .mime
multipart/alternative multipart/appledouble
multipart/digest multipart/mixed
multipart/parallel text/html .htm
text/plain .c text/plain .c++
text/plain .cc text/plain .h
text/plain .java text/plain .pl
text/plain .text text/plain .txt
text/richtext .rtx text/tab-separated-values.tsv
text/x-setext .etx video/mpeg .mpe
video/mpeg .mpeg video/mpeg .mpg
video/quicktime .mov video/quicktime .qt
video/x-msvideo .avi video/x-sgi-movie .movie
video/x-sgi-movie .mv

13 Considerations on the Inner Workings of the Java Interface

� The source code for the database is has sufficient comments to be easily understood. Thedocs directory in the
JAVAGUIDEV contains the Javadocs documentation for all the classes of the database GUI. The main Java file
is VulnerabilityDatabase.java .

� In addition to all the source code developed at COAST, the database uses the PerlTools classes for implementing

Draft - Cite, quote or reference indicating the draft date.39 February 27, 1998

D
R

A
FT

pattern matching4. The MIME routines were developed on top of the Cryptix-Java V2.2 sources5, however, we
only used the MIME packages of that distribution and hence there is no crypto code in our program.

� All the site-dependencies have been centralized in a single class calledvdbGlobals.java .
� The Java GUI uses two perl programs to MIME encode large files and export records to a multipart MIME file.

These are theencodeMIMEFile.pl andgenerateMIMEMultiPart.pl . These perl programs are not
system specific and hence should be completely portable. They receive from the Java GUI all the information
they need to perform their task.

14 Classifiers Defined for the Database

In addition to the classifiers described in section 7, the following classifiers are defined for the database:
Feature: Yes/No Classifier

� yes ! Yes
� no ! No
� NA! Does not apply

� ? ! Unknown
Feature: Application

This feature defines the application that has the vulnerability. This classifier is relevant for those vulnerabili-
ties that are present in user-level programs, daemons, servers, etc. that are not a part of the operating system
itself. This feature can take on many values and here we give a small subset as examples.

� Netscape ! Netscape WWW Browser
� HotJava ! SUN’s HotJava WWW Browser
� JDK appviewer ! Java Developer Kit’s appler

viewer
� Ora pbrow ! Oracle PowerBrowser
� XMCD! CD digital audio player utility for

X11/Motif
� NIS ! Network Information System
� Apache ! Apache WWWhttpd

� FrontPage !Microsoft FrontPage

� InternetExplorer ! Microsoft Internet Ex-
plorer

� NetscapeNewsServer ! Netscape’s News
Server

� Minicom ! Linux free telecom program

� NTHTTPServer ! HTTP Server included in
Windows NT

� rpcbind ! Universal addresses to RPC program
number mapper

� rlogin ! Remote login

� stat ! File status
� ftpd ! Internet File Transfer Protocol server

(ftpd)

� talkd ! Server for talk program (talkd)
� ps ! Report process status:ps

� rmail ! Read mail program in Unix
� lpr ! Unix lpr - Send a job to the printer
� ircd ! IRC Server
� NCSAhttpd ! NCSA WWW httpd
� pkgtool ! PKGTOOL Linux Software Manage-

ment Utility
� sysdiag ! HP System Diagnostics tool

� majordomo ! Majordomo mailer
� passwd ! Unix password change utility
� binmail ! /usr/bin/mail on Unix
� rdist ! Remote file distribution client
� ppp ! Implementation of the Point-to-point pro-

tocol for TCP/IP
� sperl ! SetUID Perl

� xterm ! Terminal emulator for X
� cxterm ! Chinese Terminal emulator for X
� admintool ! Sun administration tool
� inperson ! InPerson desktop video conferenc-

ing package
� lynx ! Lynx text web browser
� swinstall !HPUX software installation utility

� glance ! HPUX Glance software
� workman !Workman CD digital audio player
� lpd ! Line printer daemon

4Seehttp://www.oroinc.com/
5Seehttp://www.systemics.com/docs/cryptix/

Draft - Cite, quote or reference indicating the draft date.40 February 27, 1998

D
R

A
FT

� sendmail ! Un*x program for sending email
over the Internet

� lmgrd ! FLEXlm license manager daemon
� expreserve ! vi andex file preservation util-

ity
� ld.so ! run-time linker used by dynamically

linked executables (a.out)
� fm fls ! FrameMaker license server
� vold ! Solaris volume mounting daemon
� kcms ! Kodak Color Management System

� wuftpd !Washington University ftpd
� rpcmountd ! rpc mount daemon
� df ! Disk space reporting command
� ordist ! IRIX version ofrdist

� pset ! IRIX processor set modification utility

� chkey ! RPC change key utility
� cdplayer ! SGI CD digital audio player
� fpkg2swpkg ! HPUX product spec. conv. util-

ity
� test-cgi ! A script that returns the status of the

cgi systems onhttp daemons
� crontab ! System clock daemon manager for

users
� website ! Website Commercial NT/95 web

server
� telnetd ! DARPA TELNET protocol server
� norton ! Norton Utilities
� usrmgr ! NT user manager

� mstimeserv ! NT Time Server
� msaccess ! Microsoft Access
� msoffice ! Microsoft Office
� innd ! Internet News daemon

� abuse ! Abuse game
� at ! Unix Job Scheduler command
� dip ! Dial up IP program for Linux
� newgrp ! Program to create a new group

� bash ! GNU Project’s Bourne Again SHell
� BIND! Berkeley Internet Name Domain
� elm ! The Elm Mail System
� NA! Does not apply

Feature: Ease of Exploit
This classifier was originally defined from a talk given by Tom Longstaff [Lon97] and attempts to identify
how easy (or how hard) it is to exploit the vulnerability.

� simple ! Simple command

� toolkit ! Toolkit available
� expertise ! Expertise required
� user !Must convince a user to take an action
� administrator ! Must convince an administrator to take an action

Feature: Vendor
This classifier is used to identify the vendor of the systems or that the vulnerability is present on.

� SUN! Sun Microsystems, Inc.
� Microsoft !Microsoft

� SGI ! Sillicon Graphics Inc.
� Netscape ! Netscape Corporation
� BSDI ! Berkeley Software Design, Inc.
� Slackware !Walnut Creek CDROM

� Redhat ! Redhat Software, Inc.
� Debian ! Software in the Public Interest (SPI)
� MkLinux ! Apple Computer
� DGC! Data General Corporation
� FreeBSD ! FreeBSD, Inc

� HP! Hewlett-Packard Company
� IBM ! IBM Corporation
� NEC! NEC Corporation

� SCO! The Santa Cruz Operation, Inc.
� NeXT! NeXT Software, Inc.

� OpenGroup ! The Open Group
� SantaCruz ! The Santa Cruz Operation (SCO)
� Caldera ! Caldera
� DEC! Digital Equipment Corporation

� Apple ! Apple Computer
� OSF! Open Software Foundation
� CRAY! Cray
� NetBSD! The NetBSD Project
� OpenBSD! The OpenBSD Project

� Novell ! Novell
� NA! Does not apply

Feature: System

Draft - Cite, quote or reference indicating the draft date.41 February 27, 1998

D
R

A
FT

This classifier is used to indicate the systems that are known (to us!) to have the vulnerability. To date we
have recorded vulnerabilities for the following operating systems.

� Solaris ! SUN Solaris

� SunOS! SUN OS
� DOS! Microsoft DOS
� Windows95 !Microsoft Windows 95
� WindowsNT!Microsoft Windows NT
� WindowsWG!Microsoft Windows (pre-95)

� Slackware ! Linux Slackware Distribution
� Redhat ! Linux Redhat Distribution
� Debian ! Linux Debian Distribution
� MkLinux ! Linux Apple Distribution

� OpenLinux ! Linux Caldera Distribution
� OtherLinux ! Unknown, unsuported, or un-

common Linux Distribution

� BSDI ! BSDI Unix
� NovellUnix ! Novel UnixWare
� NetBSD! NetBSD Unix
� FreeBSD ! FreeBSD Unix

� Athena ! MIT-distributed Athena
� Cygnus ! Cygnus Network Security
� OpenVision ! openVision

� SGIRIX ! SGI IRIX

� DECOSF1! Digital OSF/1
� NECUX! NEC XX-UX
� HP-UX! Hewlett-Packard Unix
� AIX ! IBM’s AIX
� OpenStep ! OpenStep

� OSF! OSF
� Caldera ! Caldera
� Goah! NEC’s Goah
� Ultrix ! Ultrix

� DECUNIX! Digital Unix
� AUX! Apple’s Unix
� DG! Data General
� unicos ! Cray’s UNICOS

� OpenBSD! OpenBSD Unix
� MacOS! Macintosh OS (MacOS)
� Netware ! Novell Netware
� VMS! DEC VMS
� NA! Does not apply

15 MIME Inclusion: povide buffer overflow.MIME

.
The text of this function corresponds to the text that would be included as a MIME file called

povide buffer overflow.MIME .
There is a class of computer vulnerabilities that is commonly called “buffer overflows” that is difficult to character-

ize and define. There are many variations of these but they essentially have one of the forms shown below. A program
tries to copy some data from one object into another, does not check that the destination object is large enough to
contain the source object, and uses a routine such assprintf to do the copying.

Draft - Cite, quote or reference indicating the draft date.42 February 27, 1998

D
R

A
FT

Line Form 1 Form 2 Form 3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

main(int ac,
char *av[]) {
p(av[1]);

}

void p(char *a){
char b[30];

strcpy(b,a);
}

main() {
p();

}

void p(){
char b[30];
char *p;

p = getenv("TERM"));
sprintf(b,"%s",p);

}

main() {
p();

}

void p(){
struct hostent *h;
sockaddr_in s;

h = gethostbyname(*host);
bzero(&s, sizeof s);
s.sin_family =

h->h_addrtype;
s.sin_port = 25;
bcopy(h->h_addr_list[0],

&s.sin_addr,
h->h_length); 6

}

Normally h->h length would be the same size ash->h addr list [0]. However, it is possible to create a (possibly fake)
DNS reply that will violate this assumption.

However, not all program that share this characteristic are vulnerable. The programs shown below all have buffer
overflows but are not vulnerable because either the function never returns–in which case the program never has the
opportunity to jump to the code inserted–or the program’s buffer is declared static–in which case the program overruns
the heap and not the stack.

Line Form 1 Form 2
1
2
3
4
5
6
7
8
9
10
11

main(int ac,
char *av[]) {
p(av[1]);

}

void p(char *a){
char b[30];

strcpy(b,a);
exit(1);

}

main() {
p();

}

void p(){
static char b[30];
char *p;

p = getenv("TERM"));
sprintf(b,"%s",p);

}

Programs and programmers implicitly make assumptions about the environment the code will execute under. For
most architectures, programmers make the implicit assumption that programming counter (PC) will execute the code
provided and not anything else. Figure 19 illustrates the ranges where the PC can execute in the cases of non-
fragmented code segments, fragmented code segments, and fragmented code segments with dynamic loading of code7.

The so-called “buffer overflow” vulnerabilities are instances of programs where, as shown in figure 20, the pro-
gramming counter jumps from an allowable executable region to a region in memory, normally the stack, where it
executed some arbitrary code. Because there are instances of buffer overflows that do cannot be characterized as vul-
nerabilities, the real issue behind these vulnerabilities is not the buffer overflow but rather what happens when a user
can cause the stack pointer to change so that it points back at the stack.

The program shown below illustrates how a program that can provide an attacker an index into arbitrary stack
memory can be vulnerable to the same problem without overwriting the program’s local memory or altering anything
else than the return address in the stack and the portion of memory that will be used to store the code to be executed.
The program segment was extracted from a project for graduate operating system course and it’s function is to allow
the programmer to change the value of debugging flags without having to recompile the code.

main() {

7This simplified model does not take into account the system area of memory and this can be incorporated by adding an additional set of segment
market to signal that it is OK for the PC to execute system memory.

Draft - Cite, quote or reference indicating the draft date.43 February 27, 1998

D
R

A
FT

Heap

Code

Stack

←

←

T0

B0

Allowable execution
range for the PC

Heap

Code

Stack

←

←

T0

B0

Allowable execution
range for the PC

←

←

T1

B1

Allowable execution
range for the PCCode

Heap

Code

Stack

←

←

T0

B0

Allowable execution
range for the PC

←

←

T1

B1

Allowable execution
range for the PCCode

←
←

T2

B2

Executablearea
dynamically allocated

A program normally contains
three segments that can be dis-
tinguished: heap, code, and
stack. We expect the PC to re-
main in the area between theB0

andT0 markers.

If the code segment is frag-
mented, the program counter is
expected to remain in the areas
between theB0, T0,B1, andT1
markers.

Dynamic code can be loaded into the stack and
the program explicitly (by calling a function
that dynamically links the code) creates an-
other area where the PC is allowed to execute:
the are between theB2 andT2 markers.

Figure 19: Programs normally execute code from well defined
regions in memory, even if the memory is fragmented or the
program contains dynamic executable code.

Draft - Cite, quote or reference indicating the draft date.44 February 27, 1998

D
R

A
FT

Heap

Code

Stack

←

←

T0

B0

Figure 20: Buffer overflows are among the vulnerabilities
where the programming counter (PC) jumps from an allowable
region to the stack to execute arbitrary code.

Draft - Cite, quote or reference indicating the draft date.45 February 27, 1998

D
R

A
FT

int dbg1, dbg2, dbg3, dbg4;
int numiter,index, i, j;
FILE *fp;

/* Read from a file the values
of the debugging variables
as a series of (position, value)
pairs: (1,5) would set dbg1 to 5
and (4,0) would clear the dbg4
flag. */

if((fp = fopen("conf","r"))!=NULL){
/* How many flags to change? */
fscanf(fp,"%d",&numiter);
printf("numiter = %d\n",numiter);
for(i=0;i<numiter;i++) {

fscanf(fp,"%d%d",&index,&j);
*(&dbg1-index+1) = j;

}
}

}

The expected policy violated by this sample code, and all of the “buffer-overflow” vulnerabilities we have seen to
date, is that the program’s PC should remain within the allowable range. A policy specification for this case can now
be generated with the the model and the notation described in [KT].

For simplicity, an atomic operation will be axiomatically defined as the execution of any instruction that causes the
program counter (PC) to move. Note that, however, an alternative definition could consider only those operations that
cause the program counter to jump or we could consider only those operations that cause a program to return from a
subroutine. Although less general, these definitions are just as effective and much more practical.

Or policy function takes as arguments a system value function, an object value function, and two sets of interest
(before and after the execution of an instruction). The function returnstrue if the policy has not been violated and
false otherwise.

Policy : System Value function�Object Value function�
set of interest� set of interest! boolean

fun Policy(Value; v; Ii; Ii+1) ::=
if Value(Ii; v) � Value(Ii+1; v) then

Policy := true;
else

Policy := false;
fi

nuf

(1)

The system value function is an aggregation of the values of the objects in the system:

Value: set of interest�Object Value function! integer
fun Value(S; v) ::=

Value:=
P

x2S
v (x; S � x) 8x 2 S;

nuf

(2)

The policy we will specify requires that applications only execute instructions within the bounds defined. The set
of interest consists of programs, program counters, and boundaries:

Programs:
} Set of boundaries:b.
} Set of program counter locations:pc.

Boundary:

Draft - Cite, quote or reference indicating the draft date.46 February 27, 1998

D
R

A
FT

} Top of allowed segment:T .
} Bottom of allowed segment:B.

Program Counter:
} Location:l.

The value function that can be used to implement the desired policy is:

v : object of interest� set of object of interest! integer
fun v (o;S) ::=

v := 0;
if o is a programthen

8x 2 o:pc do
m := 0;
) Check to see if the PC is is a correct range
8y 2 o:b do

m := 1 if x:l � y:B ^ x:l � y:T ;
od
) Violation if we did not find a valid range for the PC
v := v � 1 if m = 0;

od
fi

nuf

(3)

ADDENDUM:
There are a class of vulnerabilities that result from buffer overflows that cannot be caught by the violation of the

policy specified in this document. We will show next two such vulnerabilities—at this point theoretical because we
have no evidence that these actually exist in released systems

The first program declares all it’s variables to bestatic and hence cannot have a buffer overflow that overwrite
the stack. However, the execution path of the program can be changed to execute code that would not be executed
under normal circumstances:

main() {
/* Static variables. Can’t inject anything into the stack */
static char name[10];
static char term[5];
static char userID[10];

/* Do something that will determine the name and userID
of the user */

strcpy(userID,"krsul");
strcpy(name,"ivan");

/* The program needs to know the terminal type... so lets read
it from the environment variable */

/* BUFFER OVERFLOW HAPPENS HERE! */
strcpy(term,getenv("TERM"));

/* Now that we know the terminal... */
if(strcmp(userID,"root")==0) {

/* Do something super restricted or secret */
do_secret(term);

} else {
/* Print error message telling the user that

he/she does not have access */
print_error(term);

}
}

Draft - Cite, quote or reference indicating the draft date.47 February 27, 1998

D
R

A
FT

If the environment variable “TERM” is set to the value “vt100root” then the program will execute the function
do secret regardless of the original value of the variableuserID . The program counter remains in the area allowed
by design but violates the semantic of the program specification.

The second program8 is an example of a program that can modify only the return address on the stack to return to
a different part of the program than expected:

main() {
f(1);
printf("1");
printf("2");
printf("3");
printf("4\n");

}

int f(int i1) {
int i;

for(i=0;i<2;i++)
*(&i1-i) += 13;

}

The execution of the program results in the string “234” rather than the expected string “1234”. The program has
skippeda statement by changing the return address of the functionf() . If the attacker can calculate the offset from the
original return of the function to an arbitrary point in the code, and the offset change (the value 13), can be provided
by the attacker, then the program will effectivelyjumpto that portion of code.

We argue that, although these vulnerabilities are the result of buffer overflows, they belong to a different class
of vulnerabilities because the attacker cannot inject arbitrary code that will be executed by the program. Rather, the
attacker can just cause existing code to be executed in a different order that specified in the program design.

16 Acronyms

COAST Computer Operations, Audit, and Security Technology. COAST is a multiple project, multiple investigator
laboratory in computer security research in the Computer Sciences Department at Purdue University.

OS Operating System. In a computer system, the software that controls processing, manages resources, and com-
municates with external devices like disks and printers is sometimes referred to theexecutive, monitor, task
manager, or kernel. For all of these we can use the broader term Operating System (OS) [Com84].

SETUID Set-User-ID. Processes in UNIX can assume the identity of the user that owns an executable file that has the
Set-User-ID (SETUID) bit set. Such executable files are said to be SETUID programs.

MIME Multipurpose Internet Mail Extensions. MIME defines a format and general framework for the representation
of a wide variety of data types in Internet mail so that the body of messages, encoded as flat US ASCII, can
include textual messages in character sets other that US ASCII and non-textual messages [FB96].

ASCII American Standard Code for Information Interchange A standard data transmission code that was introduced
to achieve compatibility between devices [LS90].

GUI Graphical User Interface. A program user interface that includes non textual-only graphical information such as
windows, menus, buttons, etc.

8Thanks to Wenliang Kevin Du of the COAST laboratory for this example

Draft - Cite, quote or reference indicating the draft date.48 February 27, 1998

D
R

A
FT

17 Acknowledgments

Many people at COAST contributed to the development of the COAST vulnerability database. Tom Daniels and Adam
Wilson contributed in the development and data entering phases; Wenliang Du, Tugkan Tuglular, and Diego Zamboni
contributed with comments and feedback. Eugene Spafford, the director of the COAST laboratory, gave the project
perspective and direction.

References

[Aud95] Robert Audi, editor.The Cambridge Dictionary of Philosophy. Cabridge University Press, 1995.

[Com84] Douglas Comer.Operating System Design: The XINU Approach. Prentice Hall, 1984.

[FB96] N. Freed and N. Borenstein. RFC 2045: Multipurpose Internet Mail Extensions. (MIME) Part One: Format
of Internet Mssage Bodies, November 1996.

[KSa] Ivan Krsul and Eugene Spafford. On taxonomies and classifications for computer security applications.
Under review by Spaf.

[KSb] Ivan Krsul and Eugene Spafford. The Feature Selection Problem for the Applicaton of Machine Learning
Algorithms to the Analysis of Computer Vulnerabilities. Under review by Spaf.

[KT] Ivan Krsul and Tugkan Tuglular. An economic model for modeling computer policies. Under review by
Spaf.

[Lon97] Tom Longstaff. Update: CERT/CC Vulnerability Knowledgebase. Technical presentation at a DARPA
workshop in Savannah, Georgia, February 1997.

[LS90] Dennis Longley and Michael Shain. The Data and Computer Security Dictionary of Standards, Concepts,
and Terms, 1990.

[Pow96] Richar Power. Current And Future Danger: A CSI Primer of Computer Crime & Information Warfare. CSI
Bulletin, 1996.

Draft - Cite, quote or reference indicating the draft date.49 February 27, 1998

