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Abstract

Location-based services, such as finding the nearest gas
station, require users to supply their location information.
However, a user’s location can be tracked without her con-
sent or knowledge. Lowering the spatial and temporal reso-
lution of location data sent to the server has been proposed
as a solution. Although this technique is effective in protect-
ing privacy, it may be overkill and the quality of desired ser-
vices can be severely affected. In this paper, we investigate
the relationship between uncertainty, privacy, and quality
of services. We propose using imprecise queries to hide the
location of the query issuer and evaluate uncertain informa-
tion. We also suggest a framework where uncertainty can be
controlled to provide high quality and privacy-preserving
services. We study how the idea can be applied to a mov-
ing range query over moving objects. We further investigate
how the linkability of the proposed solution can be protected
against trajectory-tracing.

1 Introduction

Positioning technologies such as GPS, GSM, RF-ID and
WiFi(802.11) have undergone rapid developments in recent
years [19, 21, 7]. These new technologies allow locations
of users to be determined accurately, and enable a new class
of applications known as Location-Based Services (LBS).
An important LBS is the E-911 application mandated by
the U.S. (correspondingly E-112 in Europe), which requires
cell phone companies to provide an accurate (within a few
hundred feet) location of a cell phone user that calls for
emergency help [7]. Another example is the use of RF-ID
tags on items such as razors in large departmental stores for
inventory management [21].

Although LBS applications hold the promise of safety,
convenience, and new business opportunities, the ability to
locate users and items accurately also raises a new concern –
intrusion oflocation privacy. According to [2], location pri-

vacy is defined as “the ability to prevent other parties from
learning one’s current or past location”. Using locationing
technologies, a service provider can track the whereabouts
of a user and discover her personal habits. These pieces of
sensitive information can be sold to unknown third parties.
It is often feared that government agencies can monitor the
behavior of individuals, the places they have visited, etc.
Preventing location privacy from being invaded is thus of
utmost importance.

Recently several solutions for location privacy protection
have been proposed. Some researchers suggest the use of
“policies”, in which the service provider is required to state
explicitly how user’s location information can be used [20,
10, 9]. In another proposal, a user “cloaks” her information
before sending it to the LBS, by providing her location at a
lower resolution in terms of time and space [7, 2]. In other
words, rather than giving a precise location and time instant,
a larger region covered in a time frame is reported. This
solution, also known aslocation cloaking, provides the user
with more flexibility in controlling her information. We will
study it extensively in this paper.

By reducing the granularity of spatial and temporal in-
formation, location cloaking allows a user’s privacy to be be
better protected. Unfortunately, this scheme can also reduce
the quality of service provided by the LBS. This is simply
because the LBS does not have the most accurate informa-
tion to provide the best service. Consider a remote cab ser-
vice that allows a subscriber to call for a cab nearby. If the
subscriber reports her precise location, the service provider
can find her the closest cab, and can tell the cab driver how
to reach the customer. However, if only a vague location
is given, it may take more time for a cab to reach the cus-
tomer. Indeed, for such a scheme, there is a tradeoff among:
(1) How uncertain the location information sent by a user to
the LBS is, (2) the location privacy of the user, and (3) the
service quality. In this paper, we propose a framework de-
signed for moving-object environments. The model takes
into account these three factors, allowing us to have a better
understanding of their interaction. We also present a formal



model for cloaked locations, and provide metrics for quan-
tifying privacy of location cloaking.

We then investigate the role of the location-cloaking
framework for non-anonymous application, where the
owner of the location is reported to the service provider,
in addition to the location data itself. We choose this type
of applications because existing techniques usually focus
on anonymity or pseudonymity of the users’ identities, and
it is not clear how they can be applied to non-anonymous
solutions. Moreover, non-anonymous location-based appli-
cations post extra difficulties in privacy protection due to
the fact that the owner of the location is also known to the
service provider.

A non-anonymous query studied extensively in this pa-
per is themoving range query(MRQ), where a user is no-
tified any object of interest within a fixed distance from
her current location. This query is well studied in spatial-
temporal database literature (e.g.,[14, 15]). Here we study
an “imprecise” version of moving range query, namely
IMRQ. Essentially, an IMRQ processes cloaked locations
instead of precise locations. Moreover, since the location
of the query issuer is also inexact, the query itself also car-
ries uncertain information. Due to the uncertainty of the
query and data, the query result is “imprecise”, and proba-
bilistic guarantees are augmented to the answers. For exam-
ple, an answer for IMRQ:{(S1, 0.4), (S2, 0.8)} means that
usersS1 andS2 have probabilities of 0.4 and 0.8 respec-
tively of satisfying the query. We develop query processing
algorithms for computing probabilistic answers for IMRQ,
based on spatial database techniques.

We also study the quality metric of IMRQ, in order to
quantify the ambiguity due to the inexactness of cloaked lo-
cation data. We define two different metrics, one based on
uncertainty in the database, and the other based on the am-
biguity of the query. These scoring metrics can be used to
quantify the quality of a service, allowing the user to decide
whether she should adjust the granularity of her cloaked lo-
cation information in order to attain a better service. Exten-
sive simulations are performed to study how these quality
metrics fare in a moving-object environment.

Finally, we address the issues of inference attacks, where
future locations can be inferred based on tracing movement
in the past. We study modifications to our approach in order
to prevent the linkability between a user’s identity and loca-
tions from being increased, thereby reducing the impact of
this kind of threats.

To summarize, our major contributions are:

• A framework that relates location cloaking, privacy
and quality of service;

• A formal model of cloaking and privacy metrics;

• An evaluation algorithm for IMRQ that manipulates
cloaked data;

• Quality metrics for IMRQ based on data and query im-
precision;

• Experimental results for the proposed scheme; and

• Inference attacks and protection for the scheme.

The rest of this paper is organized as follows. We pro-
pose a framework to capture data uncertainty, privacy and
quality of service in Section 2. In Section 3, we formally
present the definitions of non-anonymous applications, lo-
cation privacy, cloaking and service quality. Section 4
presents a querying algorithm, and Section 5 describes ser-
vice quality metrics for moving-range queries. Experimen-
tal results are presented in Section 6. Section 7 investigates
the problems of location inference and their corresponding
solutions. Related works are presented in Section 8. We
conclude the paper in Section 9.

2 A Framework for Balancing Privacy and
Service Quality

Let us now describe a system model that connects pri-
vacy, cloaked information and service quality. It forms the
basis for subsequent discussions.

Figure 1 illustrates this framework. Its main idea is to al-
low the user to specify her location, service request and pri-
vacy requirements to thecloaking agent, which then pro-
duces the cloaked location and an “imprecise” service re-
quest. On receiving these pieces of information, the service
provider processes the request and sends back the service
and feedback to the user.

Inside the cloaking agent, thepolicy translator pro-
duces a cloaked location (i.e., a larger region) based on the
(precise) location of the user as well as her privacy require-
ments, which can be specified using some high-level lan-
guages such as EPAL [1] and P3P [6]. For instance, if the
user’s requirement is “generate a cloaked location that cov-
ers five buildings when I am in AreaX”, the policy trans-
lator produces the corresponding cloaked location when it
detects the user is in AreaX. The cloaked location pro-
duced is then directed to theservice translator.

Based on the cloaked location and the service request,
the service translator produces an “imprecise” service re-
quest. For example, the MRQ is a service request from
the user, and the service translator transforms the MRQ to
IMRQ, an imprecise service request that processes cloaked
location data. Both the cloaked location and the imprecise
service request are then shipped to theimprecise service
processor, which stores the cloaked location in a spatial-
temporal database and processes the service request. Since
location values are imprecise, the service processor pro-
duces a “probabilistic service result” i.e., answers are aug-
mented with probability to indicate the confidence of their
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Figure 1. Managing Privacy and Service Quality with Cloaking Agent.

presence [3]. For example, the result of IMRQ contains
user names together with their probabilities. In addition,
a score indicating the quality of the service is generated.
These technical issues are detailed in Sections 4 and 5.

Both the probabilistic service result and the quality score
can be transferred directly to the user, or optionally to the
result translator inside the cloaking agent. The main pur-
pose of the result translator is to hide the technical details
of the probabilistic service result (e.g., probability, qual-
ity scores), and converts the answers to a higher-level form
that even casual users can understand. For example, for an
IMRQ, the translator can choose to return only the names
for which there is a high confidence (e.g.,pj > 0.8) and not
return any probability value. It can also describe to the user
the quality asLOW, MEDIUM andHIGH for quality score
ranges between[0, 0.2], [0.2, 0.8], [0.8, 1] respectively, in-
stead of requiring the user to interpret the numerical values.
Based on the recommendation from the cloaking agent, the
user can then decide if the degree of privacy should be re-
duced.

3 Privacy, Cloaking, and Service Quality

In this section, we outline the classification of LBS,
based on which non-anonymous applications are defined.
We then explore a formal model of location cloaking, based
on which privacy is defined.

3.1 Classification of Location-based Services

An LBS application can be classified according to how
the identity of the owner of the location information is dis-
closed along with the location information. In general, there
are three classes of LBS applications [2]:

1. Anonymous: This application class works with loca-
tion information only, and does not require a user’s
identity. For example, in querying a LBS about the
price of a coffee when approaching a coffee shop, a
user only needs to supply her location to the LBS.

2. Pseudonymous: This type of applications needs to
know the identity of a user, but it can use the user’s
pseudonym, rather than her real identity. An exam-
ple is: “When I walk past a computer kiosk, display
my emails”. The LBS can use the user’s pseudonym,
rather than her real name, to retrieve her emails.

3. Non-Anonymous: This application class does not
work without knowing a user’s true identity. A typi-
cal example is: “When I am inside the building, let my
project groupmates know where I am”.

These three classes of applications are arranged in the as-
cending order of the amount of information about the owner
of the location information is disclosed. The more the in-
formation is disclosed, the higher is the risk to the intrusion
of privacy. We are interested in studying the protection of
privacy for non-anonymousapplications, which involves
more privacy-related information than the other two service
classes.

Our framework, however, is not limited to non-
anonymous applications – it can be applied to anonymous
or pseudonymous applications as well.

3.2 Protecting Privacy by Cloaking

A non-anonymous application is defined formally as fol-
lows.

Definition 1 Non-anonymous Application: a
user supplies to the service provider a tuple
(UserID, L(t),request) at time t, where UserID
is the identity of the user andL(t) is the location of the
user at timet with coordinates(x(t), y(t)). On receiving
this tuple, the service provider processes therequest and
returns the service results to the user.

When a service provider receives the request, it can as-
sociate the identity of the user (UserID) with her current
locationL(t). By correlatingL(t) with a map, it is easy to
obtain the region the user is in. If the area issensitive[8],
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Figure 2. Exact and cloaked location.

e.g., a hospital or the house of a political leader, the user’s
privacy may be threatened, since this information can be
sold to third parties without the user’s consent. The user’s
identity is said to have a high degree of “linkability” with
her location (using the definition of “linkability” in [17]).

The purpose of protecting privacy for non-anonymous
applications is to reduce the degree of linkability. One way
to do this is to require the service provider to state its poli-
cies of using the user’s location information [20, 10, 9].
However, this places the burden of privacy protection to ser-
vice providers, and it is often doubtful whether these poli-
cies are enforced adequately. Even if these policies are im-
plemented correctly, location privacy can still be breached
if attackers obtain this information through the communica-
tion channel. In this paper we use a complementary tech-
nique calledcloaking, where the user takes a better control
over linkability by adjusting the degree of accuracy of the
spatial information sent to the service provider [7, 2]. Let us
assume the system hasn users with namesS1, S2, . . . , Sn.
Also, the current location of each userSi is Li(t). We can
define cloaking as follows.

Definition 2 Cloaking: A userSi reports to the service
provider a closed region called uncertainty region, denoted
Ui(t), such thatLi(t) is insideUi(t).

When the service provider receives the uncertainty re-
gion, it perceives that each point of the region has an equal
chance of being the user’s true location i.e., the probability
density function (pdf) of the user’s location within the un-
certainty region is 1

Area(Ui(t))
. Hence the service provider

does not know the user’s precise location. Unless stated
otherwise, we also assume that the uncertainty region in-
formation received by the server does not change until new
location data is reported. Figure 2 shows the difference be-
tween an exact location and a cloaked location. It also illus-
trates that the user’s location is uniformly distributed within
the region from the service provider’s perspective.

3.3 Measuring Privacy of Cloaking

By “injecting” different amount of spatial uncertainty to
her location, cloaking provides a simple way for a user to
control the release of her private information to untrusted
parties. The degree of privacy can be measured in two ways:
(i) size of uncertainty region and (ii) coverage of sensitive
area.

1. Size of uncertainty region. By providing a larger
uncertainty region, the spatial resolution of a location is
reduced, making the user’s location more difficult to be
guessed. The size of the uncertainty region can thus be
used to reflect the degree of privacy: the larger the region
size, the more the privacy.

2. Coverage of sensitive region.The second means of
quantifying privacy depends on the location of the user. To
see this, assume the size of the uncertainty region is fixed.
Suppose the user is inside a hospital (which she does not
want people to know about this), and her uncertainty region
has a fraction of 90% overlap with the hospital. One can
easily guess she is in the hospital. On the other hand, if the
user is shopping in a mall, she may not be very concerned
even if her location is known.

From this example, we can see that whether the user’s
located in a “sensitive region” (e.g., hospital, nightclub) af-
fects the degree of privacy. Based on this observation, we
define the “coverage” of sensitive region for userSi as fol-
lows:

Coverage=
Area(sensitive regions ofSi ∩ Ui(t))

Area(Ui(t))
(1)

In general, the higher the coverage, the lower the privacy.
In the previous example, the coverage is 90%, and thus the
user can be easily guessed that she is in the hospital. Thus
the uncertainty region should be enlarged in order to assure
that the user’s location cannot be easily associated with a
sensitive region.

It is also worth mention that the definition of sensitive
region is user-specific. For example, while for a physician
a hospital may not be a sensitive region, the same cannot be
said about a patient.

3.4 Cloaking and Service Quality

Although cloaking lessens the threat to location privacy,
it can affect thequality of service provided. In particular,
since the service provider does not receive accurate location
information, it may be impossible for it to provide a good
service. For example, suppose a user wants to know who is
her nearest neighbor, and her cloaked location is supplied.
Then there can be more than one answer that satisfies her
query, and the user may be unable to get a precise answer.
Next we study the technical details of querying cloaked lo-
cations and measuring query quality.



4 Evaluation of Imprecise Queries

In this section, we study the technical details of the eval-
uating cloaked locations in a database system. We first dis-
cuss how a traditional query can be “transformed” to a query
that handles cloaked information. We then illustrate how the
query can be evaluated in a spatial database. We also exam-
ine the quality of moving range queries. Themoving range
queryis used as a running example.

4.1 Precise and Imprecise Queries

Intuitively, a moving range query is a range query whose
“range” depends on the position of the user. For example,
a user may specify that she wants to be notified of any of
her friend who is within ten meters from her. The reader is
reminded that although here we assume a range query has a
circular shape our methods can be applied to range queries
with any geometric shape.

Let Fi be the set of users in whichSi is interested, and
let ri be the radius of the circle withLi(t) as the center. We
can define a moving range query as follows.

Definition 3 Given a userSi with parametersFi, Li(t)
and ri, a Moving Range Query (MRQ) returns{Sj |j =
1, . . . , n}, such thatSj ∈ Fi, andSj has a distance less
thanri units fromSi at timet.

Figure 3(a) illustrates a MRQ. If we assumeF1 =
{S2, S3, S4}, thenS4 is returned as the only answer. Note
that to answer MRQ, the system needs to know both the
location and identity of each user so that the query can be
answered. It is thus a non-anonymous query. Further, when
a user submits a MRQ, the user needs to submit her name
in addition to her current position, so that only the names
of the people of interest to her are returned. As discussed
in the last section, privacy can be threatened since both the
identity and the location information are supplied to the ser-
vice provider.

Location cloaking can alleviate the threat to privacy. In-
stead of supplying exact locations, users only supply their
cloaked locations. We call the version of MRQ that employs
cloaked location informationImprecise Moving Range
Query. The word “imprecise” arises from the fact that the
query is made ambiguous by imposing uncertain informa-
tion on the location of the user submitting the query. It is
formally defined below:

Definition 4 Given a userSi with parametersFi, Ui(t) and
ri, an Imprecise Moving Range Query (IMRQ) returns
a set of tuples{(Sj , pj)|j = 1, . . . , n}, whereSj ∈ Fi,
and pj > 0 is the non-zero probability that userSj has a
distance less thanri units fromSi at timet.
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Figure 3. Moving Range Query using (a) exact
locations, and (b) cloaked locations.

Figure 3(b) shows a scenario where an IMRQ is
computed over cloaked locations, with range queries is-
sued at two different locations inU1(t). For Q1, the
answer is{(S2, 0.2), (S3, 0.6), (S4, 0.7)}, while for the
Q2, the answer is{(S3, 0.9), (S4, 1)}. After consider-
ing the probabilities of the objects satisfying the range
queries issued at all possible points inU1(t), the answer
{(S2, 0.1), (S3, 0.7), (S4, 0.9)} is returned. The probabili-
ties in the answer allow the user to place appropriate confi-
dence in the answer, which is the consequence of evaluating
cloaked (or imprecise) location values. Depending upon the
requirements of the application, one may choose to report
only the object with thek highest probability value, or only
those objects whose probability values exceed a minimum
threshold. Our proposed work will be able to work with any
of these models. Now let us examine how IMRQ can be
evaluated.

4.2 Evaluation of IMRQ

Given a MRQ and a cloaked locationUi(t), computing
its corresponding IMRQ involves two main steps:

1. Transformation Phase, which converts the MRQ to the
IMRQ, and

2. Evaluation Phase, which computes probabilistic an-
swers for the IMRQ.

Transformation Phase.In MRQ, the query range of the
userSi is a circleCi with radiusri and centerLi(t). If the
user transmits her cloaked location, the query range is no
longerCi, since the service provider has no idea of where
Li(t) exactly is. The service provider does know thatLi(t)
is within Ui(t), so it transforms the query into sub-queries
over all possible locations ofSi. In other words, at each



point (u, v) ∈ Ui(t), a query is issued to find out which
users are within the regionC ′

i(u, v), whereC ′
i(u, v) is the

circle with radiusr centered at(u, v). The result of IMRQ
is essentially the union of the results of the range queries
issued at each point inUi(t). The transformation potentially
covers more objects than MRQ. In Figure 3, for example,
the converted ranges in (b) overlap with{S2, S3, S4} while
the original query in (a) only coversS4.

Evaluation Phase. Since the location of each object
is uncertain, each user only has some chance of satisfy-
ing the IMRQ. In particular, ifSj ∈ Fi, then the prob-
ability pj(u, v) of userSj satisfyingSi’s request at point
(u, v) ∈ Ui(t) is given by

pj(u, v) =
Area(Uj(tj) ∩ C ′

i(u, v))

Area(Uj(tj))
(2)

wheretj ≤ t is the time instant of the latest value ofUj ,
andUj(tj)∩C ′

i(u, v) is the common region betweenUj(tj)
andC ′

i(u, v). For simplicity, we assumeUj(tj) = Uj(t).1

Essentially,pj(u, v) is the fraction ofUj(t) that overlaps
C ′

i(u, v).
The total probability ofSj satisfying the IMRQ issued

by Si is given by the integration of the product of the pdf of
userSi’s location at(u, v) (i.e., 1

Area(Ui(t))
) andpj(u, v)

over all(u, v) ∈ Ui(t). Therefore,

pj =

∫
Ui(t)

1

Area(Ui(t))
pj(u, v)dudv (3)

=

∫
Ui(t)

Area(Uj(tj) ∩ C′

i(u, v))dudv

Area(Ui(t))Area(Uj(tj))
(4)

by substitutingpj(u, v) with Equation 2. The probability
value so computed serves as an indication of the confidence
placed on the answer. For example, in Figure 3(b),p2 is
only 0.1, showing thatS2 is unlikely to be answer, whileS3

andS4 have a much higher chance (0.5 and 0.9 respectively)
of being the answers.

4.3 Query Implementation

We now address the implementation issues of IMRQ pre-
sented in the last section.

We assume the service provider maintains a spatial-
temporal database system for storing the location informa-
tion of each user. LetT be a relation with two attributes
<user-name, region>, which stores the identity and the ge-
ometry of the current uncertainty region of all users. Fig-
ure 4 describes an evaluation algorithm for IMRQ.

In this algorithm, the first four steps correspond to the
Transformation Phase. Steps 1 and 2 partitionUi(t) into

1The possible locations ofSj at timet may be derived from the location
at tj if the maximum speed ofSj is known. We investigate this issue in
Section 7.

Input
T /* relation containing<ID, uncertainty region> of all users */
Si, Ui(t) /* identity and uncertainty region of userSi */
Fi, ri /* parameters of IMRQ for userSi */
M /* resolution of IMRQ */

Output
(Sj , pj) /* names and probabilities of users that satisfi es IMRQ */

Transformation Phase
1. DivideUi(t) into M equal subregions.
2. Letqm (m = 1, . . . , M ) be the midpoint of them-th subregion.
3. LetI be a relation with attributes<user-name, region>.
4. for m ← 1, . . . , M do

a. Let them-th row of I be< Si, C
′

i(midpoint ofm-th subregion) >

Evaluation Phase
5. LetV be a relation with attributes< user-name, prob >.
6. Evaluate the following query:

INSERT INTOV VALUES
(SELECTT.ID, Area(Intersection(I.region, T.region))/Area(T.region)
FROM I, T

WHERE Overlaps(I.region, T.region)
AND I.ID <> T.ID
AND (T.ID INTERSECTFi) <> NULL;

7. Evaluate the following query:

SELECTID, SUM(prob)
FROMV

GROUPBYID;

Figure 4. Evaluating an IMRQ.

M subregions, whereM is called “resolution” and is a pa-
rameter that controls the precision of the query answer. The
range query region formed by each midpoint of the subre-
gion is inserted to relationI (Steps 3 and 4).

In theEvaluation Phase, a spatial-join using theOver-
lapspredicate is performed between the range query region
of I and the uncertainty region ofT (i.e., the tuple pairs that
have non-zero overlap are joined [18]). These joined tuples
correspond to users that satisfy any of the queries formed
by the midpoints of the subregions. Out of these join pairs,
only the identities of users who are the members ofFi are
inserted, together with their probabilities (Equation 2), to
relation V (Steps 5 and 6). Notice that theIntersection
function evaluates the geometry of the common region of
two given regions, while theArea function returns the area
of a given region, which can be computed using well known
algorithms from the spatial database literature [18]. Finally,
Step 7 sums up all the probability values that belong to the



same user in the relationV , corresponding to Equation 4. It
returns the identity and probability of each user that satisfy-
ing the IMRQ.

This algorithm can be implemented by PL/SQL and any
spatial database system that supports theOverlap join, In-
tersectionandArea. Also, for presentation purpose, we per-
form two queries in Steps 6 and 7, but they may be com-
bined into a single query for efficiency.

Complexity. Steps 1 to 4 takeO(M) times. The
worst case of Step 6 needsO(Mn) times and Step 7 needs
O(Mn) times. Thus the complexity of the algorithm is
O(M + Mn + Mn) = O(Mn). In practice, many effi-
cient spatial join techniques based onz-ordering trees and
R-trees [18] can significantly improve the cost of evalua-
tion.

5 Quality of Imprecise Queries

Due to the inherent imprecision in location data and the
query itself, an imprecise query returns probabilistic an-
swers. In this section we try to answer the question: how
ambiguous is an answer? We investigate the notion of qual-
ity of imprecise queries, which can serve as a hint for the
query issuer on whether she should adjust the degree of her
location uncertainty. There are two types of quality metrics:
one due to the inexactness of data, and the other one due to
the ambiguity of the a query.

5.1 Quality Due to Data Imprecision

The first factor that produces answer uncertainty is the
ambiguity of cloaked location data. This ambiguity is re-
flected by the probability of the query answer. Here we
modify the metric for probabilistic query range queries de-
scribed in [3, 13].

For example, for an IMRQ, the result is the clearest if
we are sure thatSj is either completely inside or outside the
query range;pj equal to 100% and 0% respectively. Uncer-
tainty arises when we are less than 100% sure whether the
location ofSj is inside the query range. This corresponds to
the case when the uncertainty region ofSj , i.e.,Uj(t), only
lies partially insideSi’s query range. The most ambiguous
case happens whenpj is 0.5 i.e., Sj has a half chance of
being inside the range. Hence a reasonable metric for mea-
suring the quality of an answer due topj is:

|pj − 0.5|

0.5
(5)

The value of Equation 5 varies between0 to 1, with a larger
value representing a better quality. We can define thedata
scoreof an IMRQ as the average of the values evaluated in

Equation 5 for all objects that satisfy the IMRQ:

Data score forSi =
1

|Ri|

∑
j∈Ri∧j 6=i

|pj − 0.5|

0.5
(6)

whereRi is the set of tuples(Tj , pj) returned by an IMRQ
for Si.

Metrics for quantifying the quality of answers exist for
other queries like nearest-neighbor and SUM, and readers
are referred to [3] for more details. Also notice that the
quality defined here depends on the location data of users
being queried. Next, we present quality metrics due to the
uncertainty of the query issuer herself.

5.2 Quality Due to Query Imprecision

Recall from the Evaluation Phase that the answer to
IMRQ is in fact the union of the answers to the sub-queries
(with rangeC ′

i(u, v)), executed over the uncertainty region
of the query issuerSi. Out of these range queries, only one
is correct. The union operation can potentially produce in-
correct answers (called false positives in [16]), due to the
imprecision of the location of the query issuer. Here we
present a metric for computing quality of an answer due to
the uncertainty of the IMRQ.

Let us assume that each sub-query returns a set of an-
swersQ′

i(u, v). Also, suppose there arem distinctive re-
sults, Ri,1, . . . , Ri,m, for all the sub-queries. LetRi be
the set of identities returned by IMRQ, and thusRi =⋃m

k=1 Ri,k. Let p(Ri,k) be the probability thatRi,k is the
true result. Thenp(Ri,k) is also the probability that userSi

gets the answerRi,k:

p(Ri,k)=

∫
(u,v)∈Ui(t)∧Ri,k=Q′

i
(u,v)

1

Area(Ui(t))
dudv (7)

that is, the integration of uniform pdf over all points
in Ui(t) that evaluate the same resultRi,k. Note that∑m

k=1 p(Ri,k) = 1.
We also define theprecisionof R with respect toRi,k as

V (Ri,k) =
|Ri,k|

|Ri|
(8)

where V (Ri,k) indicates the amount of “impurities” in-
jected toRi,k assumingRi,k is the correct answer. Note
thatV (Ri,k) varies from 0 to 1, with a higher value indicat-
ing a higher precision.

Thequery scoreof IMRQ can then be measured by

Query score forSi =
m∑

k=1

p(Ri,k)V (Ri,k) (9)

which varies between 0 (lowest quality) and 1 (highest
quality). To understand this metric, let us look at Fig-
ure 5, which shows three distinct answers for query issuer
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Figure 5. Illustrating the query score of IMRQ.

S1, and also the probability thatS1 yields each of the an-
swer (i.e., the fraction ofU1(t) that yields the answer).
SinceS1 is located at only one point inU1(t), only one
of the three answers is correct. SupposeR1,3 is correct.
Then its precisionV (R1,3) is 3/4, sinceS2 is a false pos-
itive. The valuep(R1,3) is the probability thatS1 gets
the answerR1,3, which is 0.3. The query score of this
IMRQ is thus the weighted sum of theV (R1,k)’s, that is,
0.4 · 1

2 + 0.3 · 1
4 + 0.3 · 3

4 = 0.5.
Implementation of Query Score. Similar to the trans-

formation phase of IMRQ, the query score is computed by
first gettingM sampling points fromUi(t). The query re-
sults of the range query for each of theM points are then
grouped according to their query answers. Equation 7 is
then simply equal to the fraction of a total ofM points that
share the same set of objects in their query answers. Due to
the limitation of space, we omit the algorithm details.

5.3 Managing Answer Quality

The answer quality metrics allow a user to trade-off pri-
vacy for a potentially better answer quality. In particular,
the query score depends on the size of the uncertainty re-
gion – a larger uncertainty region potentially yields more
distinct answers and lower query scores. Therefore, a low
query score indicates that the user may reduce the size of
her uncertainty region and resubmit the query.

However, reducing uncertainty region size may not im-
prove the data score, since it depends on the uncertainty of
the cloaked location information of other users that cannot
be controlled by the query issuer herself. To see whether the
data score is improved as a result of shrinking uncertainty
region, the server can use the same cloaked location pro-
vided by the user and re-evaluate the query with a smaller
uncertainty region. The server then suggests to the user to
reduce her uncertainty region only if there is an improve-
ment of the data score. Notice that as the query results are
obtained by sampling over the uncertainty region, rerunning

the query with a smaller uncertainty region means reusing
the results of a subset of sampling points over the uncer-
tainty region. Hence the server may be able to compute the
new query incrementally.

6 Experimental Results

We have performed an extensive simulation study on the
behavior of location cloaking. Here we present the simula-
tion model, followed by experimental results.

6.1 Simulation Model

Param Default Meaning

City Simulator parameters
λu 5, 000 Location update rate (sec−1)
Tstart 0.15 Start threshold
Tfill 0.09 Fill threshold
Tempty 0.5 Empty threshold
Nobj 100 # of moving objects
Nrelax 2000 Max samples skipped before recording

Location cloaking parameters
r 150 Radius of query
Ui(t).r 20 Radius of uncertainty region
M 49 Sampling size

Table 1. Parameters and baseline values.

Our experiments are based upon data generated by the
City Simulator 2.0 [12] developed independently at IBM.
The City Simulator simulates the realistic motion ofNobj

people moving in a city. The input to the simulator is a map
of a city. We used the sample map provided with the simu-
lator that models a city of size840×1260 square units, with
71 buildings, 48 roads, six road intersections and one park.
Each building is three-dimensional and contains a number
of floors. The simulator models the movement of objects
within the buildings and on the roads and park. To generate
reasonable movement and occupation of buildings, the sim-
ulator keeps track of two conditions based on parameters
Tfill andTempty. The simulator ensures that the fraction of
people at the ground level lies betweenTfill andTempty.

Each object reports its location to the server at an aver-
age rate ofλu. Before recording the simulation results, the
simulator enters a warm-up phase, where at mostNrelax

samples for each object are generated, or at leastTstart of
the population are at the ground level of buildings. Next,
the simulator records the location updates of each object in
a trace file, which contains the timestamp of the update and
the spatial coordinates of the object at that time. The trace
file serves as the data source for our experiments.

An IMRQ is generated by randomly choosing a user as
the query issuer. The IMRQ has a range of radiusr. Each
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user has an uncertainty region of radiusUi(t).r. A sam-
pling size ofM is used to implement the IMRQ evaluation
algorithm.

The City Simulator is implemented in Java and runs un-
der Windows XP. The simulation and cloaking agent pro-
gram is written in C++, and the testbed is run on a UNIX
server. Each data point is the average value over 200 loca-
tion update cycles. We use the radius of uncertainty region
as a measure of the location privacy of user – a larger ra-
dius implies a higher degree of privacy. Since we are inter-
ested in the interaction between privacy and service qual-
ity, our experiments use the IMRQ’s query score as the pri-
mary metric of quality, the value of which can be adjusted
by changing the resolution of the cloaked location. Table 1
illustrates the parameters of the simulation model.

6.2 Results

Quality and Performance. We first decide experimen-
tally the number of sampling points for the uncertainty re-
gion, M , that gives us the highest quality with the lowest
evaluation cost. Figure 6 shows the results for some com-
binations of privacy value, query size and number of users.
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When more sampling points are used, the quality increases
(due to the increase in value ofp(Ri,k) in Equations 7,9).
The rate of increase drops whenM is larger than 49. We
therefore chooseM to be 49 in other experiments.

In Figure 7 we see that an increase in privacy value
lengthens the execution time of IMRQ. With a higher pri-
vacy (or uncertainty region of the query issuer), the ranges
of sub-queries cover a larger area. Thus more objects are in-
volved in computation, resulting in a higher execution time.
We remark that an IMRQ needs little time to complete in
our experiments; for example, it takes only25ms for an
IMRQ with a privacy radius of25 units.

Quality and Privacy. We investigate the effect of loca-
tion privacy on query score of the IMRQ. Figure 8 shows the
result for different number of users. The quality is 1 (high-
est) when there is no privacy at all. As privacy (i.e., uncer-
tainty region area) increases, the query score drops. This is
because the larger uncertainty region increases the number
of distinct query answers, thereby lowering the query score.

An interesting observation is that the query score does
not drop linearly. This is due to the fact that the data distri-
bution is not uniform. When an object enters a building, it
can spend some time traveling around different floors of the
building before going out. As a result, many moving ob-
jects are clustered in a fixed area (buildings) rather than be-
ing scattered on roads. As explained before, an increase in
uncertainty region of the query issuer creates more distinct
answer sets. When her uncertainty region starts to overlap
a densely-populated region (i.e., a building), a slight expan-
sion of her uncertainty region can generate many different
distinct answer sets, due to the inclusion of many location
data during this expansion. Thus we can see a sharper drop
at some regions of the curve. On the contrary, when the un-
certainty region starts to cover the road, the drop is much
slower because the population density on the roads is lower.

We also observe the difference in quality when the num-
ber of users varies. In general, for the same privacy value,
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a larger population produces a lower score, since more dis-
tinct answer sets are produced. The reason why the quality
for Nobj = 100 is slightly better thanNobj = 10 when pri-
vacy is less than 20 is again due to non-uniform distribution
of location data. AtNobj = 10, the query issuer chosen
is located in a denser area than the case forNobj = 100.
Thus an increase in privacy value has a stronger effect on
the quality whenNobj = 10 than whenNobj = 100.

We can conclude that the query score is sensitive to the
density of the region covered by the cloaked location. If
the region is highly dense, a slight increase in uncertainty
region can reduce the quality significantly. This observation
can be useful to the cloaking agent. For example, it may
advise the user not to further reduce the spatial resolution
of her location if she is in a crowded area.

The quality continues to decrease (slowly) when the un-
certainty radius further increases. The dropping rate is
much slower because the uncertainty region covers most of
the objects, and so there is not much difference in the an-
swer sets. The quality drop is mostly due to the reduction
of the pdf at each point in the uncertainty region, and in turn
the value of Equation 7. Due to space limitation we do not
show the detailed results here.

Quality and Query Size. Next, we study the effect of
query size on answer quality. Figure 9 illustrates the re-
sults: the answer quality increases with query size. With
a fixed privacy value (uncertainty radius), a continuous in-
crease in the query size will not create many distinct an-
swer sets. When the query range has a very large radius
(160) compared with the uncertainty radius (20), the query
ranges created will render many similar answers, since the
difference in the queries at different points in the uncertainty
region is relatively small. At a larger radius (30), the rela-
tive difference between the uncertainty size and privacy is
smaller than when the radius is 20, and thus the quality is
lower too.
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Figure 10. Increasing linkability with the last
location record.

7 Protecting Linkability Against Trajectory
Tracing

Before we can claim that cloaking safeguards location
privacy, there is one final puzzle left to be solved – prevent-
ing the use of trajectories for inferring locations. Suppose
the service provider saves all the cloaked locations it re-
ceived. Also assume the maximum speed of the movement
of the user is known, which can be obtained through the
movement history, the vehicle owned by the user, etc. We
now show that it is possible for the service provider (or at-
tacker) to increase the linkability of a user’s identity with
her locations, even when it has been cloaked by the user.

Specifically, let the maximum speed of a certain user be
Vmax. Assume the user sent her last cloaked location at
time t0, i.e., U(t0), and then again afterT time units, i.e.,
U(t0 + T ). UsingVmax, it is possible to derive the bound
enclosing the user’s location at timet0+T (calledmaximum
bound), as shown in Figure 10. Even if the user says she
is located somewhere inU(t0 + T ), her possible location
is actually limited within the overlapping region between
U(t0 + T ) and the maximum bound, which is smaller than
U(t0 + T ). The linkability between the user and the loca-
tions is thus higher than she expected. Notice that this is an
accumulative effect, since the service provider can derive a
smaller bound based on the overlapping region. We propose
two techniques, calledpatching anddelaying, in order to
solve this important problem.

7.1 Patching and Delaying

The first idea of preventing linkability from being in-
creased is to combine the cloaked locations released in the
past with the current cloaked location before it is sent. We
call this techniquepatching. Figure 11(a) illustrates this
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Figure 11. Linkability protection techniques
by (a) patching, and (b) delaying.

concept. At timet0 + T , in place ofU(t0 + T ), the region
U ′(t0 + T ) = U(t0) ∪ U(t0 + T ) is sent. The increase in
linkability due to trajectory tracing, or “loss” of uncertainty
in U(t0 + T ), is thus “compensated” by the inclusion of
U(t0), which is assured to be within the maximum bound.
Essentially, the spatial accuracy of the location is further re-
laxed. Notice that this may cause a degradation in query
score due to the increase in uncertainty.

Another technique is based on relaxing the timing re-
quirement, which we termed “delaying”. The idea is to
suspend the request until the cloaked location fits into the
maximum bound. As shown in Figure 11(b),U(t0 + T ) is
not sent until afterδt more time units, whenU(t0 + T ) is
guaranteed to be within the maximum bound. The advan-
tage of this scheme over patching is that the extent of the
cloaked location remains unchanged and so the query score
is not affected. However, the response time of the query
can be increased due to the delay introduced, which can be
an important Quality-of-Service parameter in time-critical
applications.

8 Related Works

The idea of cloaking location information has been re-
cently proposed by Gruteser et al.[7] for anonymous appli-
cations. In their model, each tuple(x, y, t) (i.e., location
(x, y) at timet) is transformed to([x1, x2], [y1, y2], [t1, t2])
where ([x1, x2], [y1, y2]) is the rectangular area within
which (x, y) is found, between the time interval[t1, t2]. To
measure the degree of privacy introduced by cloaking, they
propose a metric calledk-anonymity, which measures be-
tween time interval[t1, t2] the number of users,k, at the
same spatial vicinity([x1, x2], [y1, y2]).

Another work that uses thek-anonymity metric is found
in [2], where pseudonymous applications are studied. The
authors use a middleware to rename pseudonyms, so that a

user’s identity cannot be traced. Moreover, this renaming is
done while there are at leastk users in the same zone at the
same time period.

Thek-anonymity metric has several problems. First, the
scheme may not be used if there are fewer thank users in
the system. Secondly, even if there are more thank users,
they may span in a large area over an extended time period,
in which case the cloaked location can be very large and
cause a severe degradation of service quality. Thirdly, algo-
rithms using this metric assume a trusted middleware which
collects information from all users. It may present a perfor-
mance bottleneck and face the risk of being compromised.
It is also not clear howk-anonymity can be applied to non-
anonymous applications, since it measures the anonymity
of a user, while in non-anonymous application the identity
of the user is already known. We suggest the level of pri-
vacy of cloaked location be measured by the the uncertainty
region size and the entropy of uncertainty pdf, independent
of the number of users inside the uncertainty region.

As far as we know, few papers study location privacy in
non-anonymous applications. A recent paper by Gruteser et
al. [8] proposes the idea of classifying a map into sensitive
and non-sensitive areas. Further, everyk sensitive areas are
clustered into a partition. When a user enters a partition, her
location updates are not released until she left the partition,
provided that she had not entered any sensitive area while
she was inside the partition. In this scheme, if thek sensitive
areas are close to each other, it is still easy to guess that
the user has entered one of the sensitive areas. In addition,
there is no guarantee that there are enough sensitive areas
to be clustered. Moreover, service quality is not considered,
which can be seriously affected due to delay and omission
of location information.

To our best knowledge, there is no previous work on re-
lating the effect of location cloaking with service quality.
We proposed in the position paper [5] a framework to bal-
ance the uncertainty injected to a location and quality of
service. Here we study this idea in more detail, and present
a solution for supporting IMRQ, a typical example of non-
anonymous queries.

Another idea for querying private data is to use encrypted
databases. Recently, Hore et al. [11] discussed a privacy-
preserving index for querying range queries over encrypted
data. To the best of our knowledge, these techniques only
work for specific query operators. Also, the feasibility of
those schemes depend on the strength of encryption. Our
method does not need encryption and can be easily extended
to work with other queries.

In [4], the idea of using an uncertainty model to cap-
ture the imprecision of moving objects (due to the mea-
surement and sampling error) is proposed. That model is
a generalized version of the one presented here, where the
uncertainty can change with time and the pdf within the un-



certainty region can be non-uniform. That paper also pre-
sented algorithms for probabilistic nearest-neighbor queries
over different object movement models. In [3], we studied
other types of probabilistic queries, such as range queries
and aggregate queries, and also defined notions of answer
quality for them. The main difference between probabilistic
queries and imprecise queries is that the information about
the query issuer in probabilistic queries is exact, which may
not be the case for imprecise queries. For instance, in the
imprecise moving range query model, the query issuer’s lo-
cation is uncertain rather than exact. This calls for new eval-
uation algorithms and quality notions for imprecise queries.

9 Conclusions

Location privacy is an important and emerging topic. To
allow a user more flexibility in controlling her privacy, the
idea of injecting uncertainty to sanitize location information
has been proposed recently. However, those schemes did
not consider the quality and accuracy of services provided,
and it was not clear how the cloaked information can be
queried. We suggested a framework to connect privacy, in-
formation cloaking and service quality. We proposed impre-
cise queries, which hide the identity of the query issuer and
enable evaluation of cloaked information. We studied an
evaluation algorithm and quality metrics of moving range
queries, and showed how they can be implemented conve-
niently using spatial-database technologies. We performed
an extensive simulation to investigate behavior of the pro-
posed scheme. We also presented techniques to protect link-
ability of cloaked information against trajectory tracing.

There are interesting avenues for future work. We would
like to build a software system for the cloaking agent. We
want to examine how our proposed metric for location
cloaking can be applicable to anonymous and pseudony-
mous applications. We will also investigate other kinds
of imprecise queries such as nearest-neighbor and average
queries.
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